俄歇电子能谱AES.pptx
- 格式:pptx
- 大小:1.03 MB
- 文档页数:49
§7.4 俄歇电子能谱(AES)俄歇电子能谱的基本机理是:入射电子束使原子内层能级电子电离,产生无辐射俄歇跃迁,用电子能谱仪在真空中对它们进行探测。
虽然早在1925年法国的物理学家俄歇(P.Auger )在用X 射线研究光电效应时就已发现俄歇电子,并对这种电子的产生给予了正确的解释。
但直到1968年哈里斯(L.A.Harris )采用微分电子线路,首创了微分形式俄歇电子能量分布曲线测定法后,解决了如何从强大的本底和噪声中把俄歇信号检测出来的问题,俄歇电子能谱开始进入实用化阶段。
1969年,帕尔姆堡(Palmberg )等引进了筒镜能量分析器,进一步提高了信噪比,使AES 达到很高的灵敏度和分析速度,而一年后出现的扫描俄歇显微探针系统(SAM )使AES 从定点分析发展为二维表面分析。
目前,俄歇电子能谱是表面科学领域中最广泛使用的表面化学成分分析仪器之一。
7.4.1 俄歇过程和俄歇电子能量当原子内层W 能级的一个电子被具有足够能量的光子或入射电子电离时,在W 能级产生一个空穴,该空穴立即就被较高能级的另一电子通过W X →跃迁所填充,多余的能量交给Y 能级上的电子,使之成为俄歇电子发射出去。
这种跃迁过程称为俄歇过程或俄歇效应(图7.4.1)。
一般用原子中出现空穴的能级次序来表示相应的俄歇过程。
上述过程用符号表示就是WXY ,表明W 空穴被X电子填充使Y电子成为俄歇电子。
通常把来自1s 壳层的电子标记为K ,来自2s 的电子标记为1L ,来自2p 的电子标记为2L 、3L 等;把来自价壳层的电子标记为V 。
一般最明显的俄歇跃迁都是X、Y主量子数相等,同时X、Y主量子数比W大一的过程,如KLL 、LMM 、MNN 和NOO 俄歇跃迁。
由WXY 跃迁产生的俄歇电子的动能,可近似地用经验公式估算,即: φ-∆+--=)()()(Z E Z E Z E E Y X W WXY (7.4.1) 其中φ为功函数,Z 是原子序数)3(≥Z 。
俄歇电子能谱(AES, Auger)美信检测
俄歇电子能谱(AES、Auger)是一种利用高能电子束为激发源的表面分析技术. AES分析区域受激原子发射出具有元素特征的俄歇电子。
AES电子束可以扫描一块或大或小的表面. 它也可以直接聚焦在小块表面形貌上(半导体产业经常要求这样)。
聚焦电子束斑到10nm或更小的直径使得AES成为小表面形貌元素分析的非常有用的工具。
此外,它能够在可调整的表面区域内栅蔽电子束从而控制分析区域的尺寸。
当用来与溅射离子源的结合时, AES能胜任大、小面积的深度剖面。
当与聚焦离子束(FIB)一起使用时,它对于截面分析是很有用的。
应用范围:
缺陷分析
颗粒分析
表面分析
小面积深度剖面
工艺控制
薄膜成分分析
AES优点:
小面积分析(30纳米)
良好的表面灵敏度
良好的深度分辨率
AES激发原理示意图应用案例:。