TCD的临床应用及报告解读
- 格式:pptx
- 大小:9.36 MB
- 文档页数:3
经颅多普勒超声(TCD)的临床应用北京协和医院神经内科高山1982年Rune Aaslid及其同事[1]将能检测到颅内动脉血流速度的经颅多普勒超声仪(Transcranial Doppler, TCD)应用于临床,其无创、价廉、可靠并可床旁操作的特点使之迅速引起国内外医学界的浓厚兴趣,随着应用领域的不断拓宽和TCD仪功能的不断发展,其临床应用和研究价值得到越来越多的肯定和重视。
TCD临床应用经历了最初的监测蛛网膜下腔出血后脑动脉痉挛,到20世纪80年代已得到充分肯定的诊断脑供血动脉狭窄、判断侧支循环建立和判断急性颅内压增高脑循环停止,至20世纪90年代兴起的术中脑血流监测、脑动脉自动调节功能评估和脑血流微栓子监测等,再到二十一世纪初更加令人振奋的发现即常规TCD可以增强溶栓药物的效果等一系列拓展过程。
遗憾的是,虽然TCD引进我国已有10余年历史,并且也已经遍布于全国大大小小医院,但因毫无科学依据的“血流速度减慢--脑供血不足”和不结合临床病情被滥用的“血流速度增快——脑动脉痉挛”等诊断报告,使其真正的作用和价值在很多地方长期得不到认识和发挥。
随着我国对颅内外脑供血动脉狭窄研究的不断深入以及颈动脉内膜剥脱术和血管内支架成型术的兴起,国内越来越多的神经内外科医生虽仍持怀疑态度但已经开始关注无创的TCD诊断技术。
而在笔者所在的北京协和医院和香港中文大学威尔斯亲王医院,TCD则早已成为研究缺血性脑血管病病因、发病机制、治疗观察和预后判断不可或缺的工具[2-10]。
本文结合笔者多年应用TCD的实践经验,回顾TCD仪发展史,总结其在神经病学领域的主要应用范围,使神经科医生能更多地了解TCD的真正作用和价值。
1. 经颅多普勒超声仪的发展史最初采用低频脉冲多普勒超声探头的经颅多普勒超声仪仅为手持式,预选了深度和取样容积,手持探头检测颅内血管的特定区域。
随着设备不断更新和信号处理技术的不断提高,20年后的今天,TCD与刚推出时相比已有了长足的发展。
2023-11-04•tcd简介•tcd与临床应用•tcd检查结果分析•tcd与其他影像学检查的比较•tcd技术的优势与不足目•tcd临床应用案例分析录01 tcd简介TCD(Transcranial Doppler,经颅多普勒)是一种无创的颅脑超声检查技术,通过高频超声波检测颅内血管的血流速度、血流方向和血流状态,以评估颅脑血管功能和循环状态。
TCD主要应用于脑血管疾病、神经介入手术、脑外伤、颅内感染等疾病的诊断、治疗和预后评估。
tcd的定义诊断脑血管疾病TCD可以检测颅内血管的狭窄、闭塞、血栓形成等异常,有助于诊断脑血管疾病,如脑梗死、脑出血等。
TCD可以实时监测颅脑手术或介入治疗后的血流状态,评估治疗效果和预后。
TCD可以检测颅脑外伤后血管的损伤和炎症反应,有助于诊断脑外伤和颅内感染。
TCD还可以用于监测胎儿脑血流,评估胎儿的生长发育和神经发育情况。
tcd的适应症评估颅脑手术或介入治疗后的血流…诊断脑外伤和颅内感染监测胎儿脑血流tcd的禁忌症脑血管畸形或动脉瘤脑血管畸形或动脉瘤可能会在TCD检测时诱发破裂出血等严重并发症,应谨慎使用TCD进行检查。
严重心肺功能不全严重心肺功能不全患者可能无法耐受TCD检查过程中的呼吸憋气等操作,不宜使用TCD进行检查。
颅内肿瘤或占位性病变颅内肿瘤或占位性病变可能会影响TCD的检测结果,不宜使用TCD进行检查。
02tcd与临床应用诊断准确性经颅多普勒超声(TCD)可以检测到大脑中动脉的血流速度和血管狭窄程度,对于诊断脑卒中具有较高的准确性。
研究表明,TCD能够检测到血流速度的异常,从而预测脑卒中的风险。
实时监测TCD可以在实时状态下监测大脑中动脉的血流速度和血管狭窄程度,从而帮助医生及时发现并处理脑卒中。
这种实时监测对于脑卒中的早期诊断和治疗非常重要。
tcd在脑卒中诊断中的应用偏头痛患者的血流速度通常会出现异常。
TCD可以检测到这些异常,从而帮助医生诊断偏头痛。
健康域影像经颅多普勒超声(TCD)技术是一种无创、实时、动态的颅内血流检测方法,它通过超声波对脑底动脉血流速度进行测定,获取脑底动脉的血流动力学参数。
TCD技术具有非侵入性、安全、快速、准确等优点,广泛应用于临床诊断和治疗中。
它可以帮助医生评估脑血管疾病的风险,监测治疗效果,指导手术操作等。
此外,TCD还可以用于研究脑血管生理学和病理学等领域。
本文将详细介绍TCD技术的基本原理以及在临床上的各种应用。
TCD的基本原理TCD利用超声波在人体组织中的传播特性,通过测量超声波在血管内的传播时间来计算血流速度。
TCD技术采用多普勒效应原理,即当声源和接收器之间存在相对运动时,接收到的声波频率会发生改变。
这种频率变化与声源和接收器之间的相对速度成正比。
因此,通过测量声波频率的变化,就可以计算出血流速度。
TCD设备通常包括一个发射器和一个接收器。
发射器产生高频超声波信号,经过头皮和颅骨传导到脑底动脉内。
接收器接收到反射回来的超声波信号,并将其转换为电信号。
然后,计算机系统对这些信号进行处理,计算出血流速度、方向和搏动指数等参数。
TCD在临床上的应用脑血管疾病的诊断和评估TCD作为一种无创、无痛、无辐射的检查方法,在脑血管疾病的诊断和评估中发挥着重要作用。
通过TCD,医生可以实时监测脑部血管的血流速度、血流方向和血管阻力等参数,从而判断是否存在脑血管疾病。
例如,脑血栓形成时,TCD可以检测到血流速度减慢或血流信号消失;脑出血时,TCD可显示血流速度增加或血流信号紊乱。
此外,TCD还可以评估脑血管疾病的严重程度和预后。
通过观察脑血流速度和血管阻力的变化,医生可以了解疾病的进展情况,预测患者预后,并制定合适的治疗方案。
脑血流动力学的研究TCD可以实时监测脑血流速度的变化,为脑血流动力学的研究提供了宝贵的数据。
通过TCD,研究人员可以深入了解脑血流与血压、心排量、血黏度等因素的关系,从而更好地理解脑血流动力学的规律。