复数的四则运算
- 格式:doc
- 大小:52.00 KB
- 文档页数:2
复数的四则运算公式复数是数学中的一个概念,它可以表示为实部与虚部的和。
在复数的四则运算中,包括加法、减法、乘法和除法。
下面将分别介绍这四种运算。
一、复数的加法复数的加法是指将两个复数相加的操作。
假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。
则两个复数的加法可以表示为:(a+bi) + (c+di) = (a+c) + (b+d)i即实部相加,虚部相加。
二、复数的减法复数的减法是指将两个复数相减的操作。
假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。
则两个复数的减法可以表示为:(a+bi) - (c+di) = (a-c) + (b-d)i即实部相减,虚部相减。
三、复数的乘法复数的乘法是指将两个复数相乘的操作。
假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。
则两个复数的乘法可以表示为:(a+bi) × (c+di) = (ac-bd) + (ad+bc)i即实部相乘减虚部相乘,并将结果相加。
四、复数的除法复数的除法是指将两个复数相除的操作。
假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。
则两个复数的除法可以表示为:(a+bi) ÷ (c+di) = [(ac+bd)÷(c^2+d^2)] + [(bc-ad)÷(c^2+d^2)]i即将实部和虚部分别除以除数的实部和虚部的平方和。
通过以上介绍,我们了解了复数的四则运算公式。
在实际应用中,复数的四则运算常常用于电路分析、信号处理等领域。
对于复数的运算要求掌握加减法的运算规则,以及乘法和除法的计算方法。
复数的四则运算在解决实际问题中起到了重要的作用,对于深入理解复数的概念和应用具有重要意义。
因此,掌握复数的四则运算公式对于数学学习和实际应用都是非常重要的。
希望通过本文的介绍,读者能够对复数的四则运算有更深入的了解,并能够熟练运用于实际问题的解决中。
§2复数的四则运算学习目标1.熟练掌握复数代数形式的加减乘除运算.2.理解复数乘法的交换律、结合律和乘法对加法的分配律.3.理解共轭复数的概念.知识点一复数代数形式的加减法思考类比多项式的加减法运算,想一想复数如何进行加减法运算?答案两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减),即(a+b i)±(c+d i)=(a±c)+(b±d)i.梳理(1)运算法则设z1=a+b i,z2=c+d i是任意两个复数,那么(a+b i)+(c+d i)=(a+c)+(b+d)i,(a+b i)-(c+d i)=(a-c)+(b-d)i.(2)加法运算律对任意z1,z2,z3∈C,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).知识点二复数的乘法及其运算律思考怎样进行复数的乘法运算?答案两个复数相乘,类似于两个多项式相乘,只要把已得结果中的i2换成-1,并且把实部与虚部分别合并即可.梳理(1)复数的乘法法则设z1=a+b i,z2=c+d i是任意两个复数,那么它们的积(a+b i)(c+d i)=(ac-bd)+(ad+bc)i.(2)复数乘法的运算律对于任意z1,z2,z3∈C,有知识点三共轭复数当两个复数的实部相等,虚部互为相反数时,这两个复数叫作互为共轭复数,z的共轭复数用z表示.即当z=a+b i时,z=a-b i.知识点四复数的除法法则设z1=a+b i,z2=c+d i(a,b,c,d∈R,z2≠0),则z1z2=a+b ic+d i=ac+bdc2+d2+bc-adc2+d2i(c+d i≠0).1.在进行复数的加法时,实部与实部相加得实部,虚部与虚部相加得虚部.(√) 2.复数加减乘除的混合运算法则是先乘除,再加减.(√)3.两个共轭复数的和与积是实数.(√)4.若z1,z2∈C,且z21+z22=0,则z1=z2=0.(×)类型一 复数的加法、减法运算例1 (1)若z 1=2+i ,z 2=3+a i(a ∈R ),复数z 1+z 2所对应的点在实轴上,则a =________.(2)已知复数z 满足|z |i +z =1+3i ,则z =________.考点 复数的加减法运算法则题点 复数加减法的综合应用答案 (1)-1 (2)1+43i 解析 (1)z 1+z 2=(2+i)+(3+a i)=5+(a +1)i ,由题意得a +1=0,则a =-1.(2)设z =x +y i(x ,y ∈R ),则|z |=x 2+y 2, ∴|z |i +z =x 2+y 2i +x +y i =x +(x 2+y 2+y )i=1+3i , ∴⎩⎪⎨⎪⎧ x =1,x 2+y 2+y =3,解得⎩⎪⎨⎪⎧x =1,y =43,∴z =1+43i. 反思与感悟 (1)复数的加减运算就是实部与实部相加减,虚部与虚部相加减.(2)当一个等式中同时含有|z |与z 时,一般用待定系数法,设z =x +y i(x ,y ∈R ). 跟踪训练1 (1)若复数z 满足z +i -3=3-i ,则z =________.(2)(a +b i)-(2a -3b i)-3i =________(a ,b ∈R ).(3)已知复数z 满足|z |+z =1+i ,则z =________.考点 复数的加减法运算法则题点 复数加减法的综合应用答案 (1)6-2i (2)-a +(4b -3)i (3)i解析 (1)∵z +i -3=3-i ,∴z =6-2i.(2)(a +b i)-(2a -3b i)-3i=(a -2a )+(b +3b -3)i =-a +(4b -3)i.(3)设z =x +y i(x ,y ∈R ),|z |=x 2+y 2, ∴|z |+z =(x 2+y 2+x )+y i =1+i ,∴⎩⎪⎨⎪⎧ x 2+y 2+x =1,y =1,解得⎩⎪⎨⎪⎧ x =0,y =1, ∴z =i.类型二 复数代数形式的乘除运算例2 计算:(1)⎝⎛⎭⎫-12+32i ⎝⎛⎭⎫32+12i (1+i); (2)(1+2i )2+3(1-i )2+i; (3)(1-4i )(1+i )+2+4i 3+4i. 考点 复数的乘除法运算法则题点 乘除法的运算法则解 (1)⎝⎛⎭⎫-12+32i ⎝⎛⎭⎫32+12i (1+i) =⎣⎡⎦⎤⎝⎛⎭⎫-34-34+⎝⎛⎭⎫34-14i (1+i) =⎝⎛⎭⎫-32+12i (1+i) =⎝⎛⎭⎫-32-12+⎝⎛⎭⎫12-32i =-1+32+1-32i.(2)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i=i 2+i=i (2-i )5=15+25i. (3)(1-4i )(1+i )+2+4i 3+4i =5-3i +2+4i 3+4i=7+i 3+4i =(7+i )(3-4i )(3+4i )(3-4i ) =21-28i +3i +425=25-25i 25=1-i. 反思与感悟 (1)按照复数的乘法法则,三个或三个以上的复数相乘可按从左到右的顺序运算或利用结合律运算,混合运算和实数的运算顺序一致,在计算时,若符合乘法公式,则可直接运用公式计算.(2)根据复数的除法法则,通过分子、分母都乘以分母的共轭复数,使“分母实数化”,这个过程与“分母有理化”类似.跟踪训练2 计算:(1)(4-i)(6+2i)-(7-i)(4+3i);(2)3+2i 2-3i +3-2i 2+3i; (3)(i -2)(i -1)(1+i )(i -1)+i. 考点 复数的乘除法运算法则题点 乘除法的运算法则解 (1)(4-i)(6+2i)-(7-i)(4+3i)=(24+8i -6i +2)-(28+21i -4i +3)=(26+2i)-(31+17i)=-5-15i.(2)3+2i 2-3i +3-2i 2+3i=i (2-3i )2-3i +-i (2+3i )2+3i=i -i =0.(3)(i -2)(i -1)(1+i )(i -1)+i =i 2-i -2i +2i -1+i 2-i +i=1-3i -2+i =(1-3i )(-2-i )(-2+i )(-2-i ) =-2-i +6i +3i 25=-5+5i 5=-1+i. 类型三 i 的运算性质例3 计算:(1)2+2i (1-i )2+⎝ ⎛⎭⎪⎫21+i 2 016; (2)i +i 2+…+i 2 017.考点 虚数单位i 及其性质题点 虚数单位i 的运算性质 解 (1)原式=2(1+i )-2i+⎝⎛⎭⎫22i 1 008=i(1+i)+(-i)1 008 =i +i 2+(-1)1 008·i 1 008=i -1+i 4×252=i -1+1=i.(2)方法一 原式=i (1-i 2 017)1-i =i -i 2 0181-i =i -(i 4)504·i 21-i=i +11-i =(1+i )(1+i )(1-i )(1+i )=2i 2=i. 方法二 因为i n +i n +1+i n +2+i n +3=i n (1+i +i 2+i 3)=0(n ∈N +),所以原式=(i +i 2+i 3+i 4)+(i 5+i 6+i 7+i 8)+…+(i 2 013+i 2 014+i 2 015+i 2 016)+i 2 017=i 2 017=(i 4)504·i =1504·i =i.反思与感悟 (1)等差、等比数列的求和公式在复数集C 中仍适用,i 的周期性要记熟,即i n +i n +1+i n +2+i n +3=0(n ∈N +).(2)记住以下结果,可提高运算速度.①(1+i)2=2i ,(1-i)2=-2i.②1-i 1+i =-i ,1+i 1-i=i.③1i=-i. 跟踪训练3 (1)⎝ ⎛⎭⎪⎫1+i 1-i 2 018=________. 考点 虚数单位i 及其性质题点 虚数单位i 的运算性质答案 -1解析 ⎝ ⎛⎭⎪⎫1+i 1-i 2 018=⎣⎢⎡⎦⎥⎤(1+i )(1+i )(1-i )(1+i ) 2 018=⎝⎛⎭⎫2i 2 2 018 =i 2 018=(i 4)504·i 2=1504·i 2=-1.(2)化简i +2i 2+3i 3+…+100i 100.考点 虚数单位i 及其性质题点 虚数单位i 的运算性质解 设S =i +2i 2+3i 3+…+100i 100,①所以i S =i 2+2i 3+…+99i 100+100i 101,②①-②得(1-i)S =i +i 2+i 3+…+i 100-100i 101=i (1-i 100)1-i -100i 101=0-100i =-100i.所以S =-100i 1-i =-100i (1+i )(1-i )(1+i )=-100(-1+i )2 =50-50i.所以i +2i 2+3i 3+…+100i 100=50-50i.类型四 共轭复数及其应用例4 把复数z 的共轭复数记作z ,已知(1+2i)z =4+3i ,求z .考点 共轭复数的定义与应用题点 利用定义求共轭复数解 设z =a +b i(a ,b ∈R ),则z =a -b i ,由已知得(1+2i)(a -b i)=(a +2b )+(2a -b )i =4+3i ,由复数相等的定义知,⎩⎪⎨⎪⎧ a +2b =4,2a -b =3,得⎩⎪⎨⎪⎧ a =2,b =1, 所以z =2+i.引申探究若将本例条件改为z (z +2)=4+3i ,求z .解 设z =x +y i(x ,y ∈R ).则z =x -y i ,由题意知,(x -y i)(x +y i +2)=4+3i.得⎩⎪⎨⎪⎧x (2+x )+y 2=4,xy -y (x +2)=3, 解得⎩⎨⎧ x =-1-112,y =-32或⎩⎨⎧ x =-1+112,y =-32, 所以z =⎝⎛⎭⎫-1-112-32i 或z =⎝⎛⎭⎫-1+112-32i. 反思与感悟 当已知条件出现复数等式时,常设出复数的代数形式,利用复数相等的充要条件转化为实数问题求解.跟踪训练4 已知复数z 满足|z |=1,且(3+4i)z 是纯虚数,求z 的共轭复数z .考点 共轭复数的定义与应用题点 利用定义求共轭复数解 设z =a +b i(a ,b ∈R ),则|z |=a 2+b 2=1,即a 2+b 2=1.①因为(3+4i)z =(3+4i)(a +b i)=(3a -4b )+(3b +4a )i 是纯虚数,所以3a -4b =0,且3b +4a ≠0.② 由①②联立,解得⎩⎨⎧ a =45,b =35或⎩⎨⎧ a =-45,b =-35.所以z =45-35i 或z =-45+35i.1.设z 1=3-4i ,z 2=-2+3i ,则z 1-z 2在复平面内对应的点位于() A .第一象限 B .第二象限C .第三象限D .第四象限 考点 复数的加减法运算法则题点 复数加减法与点的对应答案 D解析 ∵z 1-z 2=5-7i ,∴z 1-z 2在复平面内对应的点位于第四象限.2.设复数z 满足i z =1,其中i 为虚数单位,则z 等于( )A .-iB .iC .-1D .1考点 复数的乘除法运算法则题点 利用乘除法求复数答案 A解析 z =1i =-i.3.若z =4+3i(i 为虚数单位),则z|z |等于( )A .1B .-1C.45+35iD.45-35i考点 复数的乘除法运算法则题点 乘除法的运算法则答案 D解析z=4+3i,|z|=5,z|z|=45-35i.4.设i 是虚数单位,z 是复数z 的共轭复数,若z =2i 31+i,则z =________. 考点 共轭复数的定义与应用题点 利用定义求共轭复数答案 -1+i解析 z =2i 31+i =-2i (1-i )(1+i )(1-i )=-1-i , 所以z =-1+i.5.已知复数z 满足:z ·z +2z i =8+6i ,求复数z 的实部与虚部的和.考点 共轭复数的定义与应用题点 与共轭复数有关的综合问题解 设z =a +b i(a ,b ∈R ),则z ·z =a 2+b 2,∴a 2+b 2+2i(a +b i)=8+6i ,即a 2+b 2-2b +2a i =8+6i ,∴⎩⎪⎨⎪⎧ a 2+b 2-2b =8,2a =6,解得⎩⎪⎨⎪⎧a =3,b =1, ∴a +b =4,∴复数z 的实部与虚部的和是4.1.复数代数形式的加减法满足交换律、结合律,复数的减法是加法的逆运算.2.复数代数形式的乘除运算(1)复数代数形式的乘法类似于多项式乘以多项式,复数的乘法满足交换律、结合律以及乘法对加法的分配律.(2)在进行复数代数形式的除法运算时,通常先将除法写成分式的形式,再把分子、分母都乘以分母的共轭复数,化简后可得,类似于以前学习的分母有理化.3.复数问题实数化思想复数问题实数化是解决复数问题的基本思想方法,其桥梁是设复数z=a+b i(a,b∈R),利用复数相等的充要条件转化.一、选择题1.若复数z 满足z +(3-4i)=1,则z 的虚部是( )A .-2B .4C .3D .-4考点 复数的加减法运算法则题点 复数加减法的运算法则答案 B解析 ∵z +(3-4i)=1,∴z =-2+4i ,故z 的虚部是4.2.设复数z 满足关系式z +|z |=2+i ,那么z 等于( )A .-34+i B.34-i C .-34-i D.34+i 考点 复数的加减法运算法则题点 复数加减法的运算法则答案 D解析 设z =a +b i(a ,b ∈R ),则z +|z |=(a +a 2+b 2)+b i =2+i , 则⎩⎪⎨⎪⎧ a +a 2+b 2=2,b =1, 解得⎩⎪⎨⎪⎧a =34,b =1, ∴z =34+i.3.已知复数z满足(z-1)i=1+i,则z等于()A.-2-i B.-2+iC.2-i D.2+i考点复数的乘除法运算法则题点利用乘除法求复数答案 C解析由(z-1)i=1+i,两边同乘以-i,则有z-1=1-i,所以z=2-i.4.已知复数z 1=3-b i ,z 2=1-2i ,若z 1z 2是实数,则实数b 等于( )A .6B .-6C .0 D.16考点 复数的乘除法运算法则题点 利用乘除法求复数中的未知数答案 A解析 ∵z 1z 2=3-b i1-2i =(3-b i )(1+2i )(1-2i )(1+2i )=3+2b +(6-b )i 5是实数,∴6-b =0,∴实数b 的值为6,故选A.5.已知i 为虚数单位,图中复平面内的点A 表示复数z ,则表示复数z1+i 的点是()A .MB .NC .PD .Q考点 复数的乘除法运算法则题点 运算结果与点的对应关系答案 D解析 由图可知z =3+i ,所以复数z 1+i =3+i 1+i =(3+i)(1-i )(1+i )(1-i )=4-2i 2=2-i 表示的点是Q (2,-1).故选D.6.设复数z 满足1+z1-z =i ,则|z |等于( )A .1 B. 2 C. 3 D .2考点 复数的乘除法运算法则题点 利用乘除法求复数答案 A解析 由1+z 1-z=i , 得z =-1+i 1+i=(-1+i )(1-i )2=2i 2=i , ∴|z |=|i|=1.7.若z +z =6,z ·z =10,则z 等于( )A .1±3iB .3±iC .3+iD .3-i考点 共轭复数的定义与应用题点 与共轭复数有关的综合问题答案 B解析 设z =a +b i(a ,b ∈R ),则z =a -b i , 所以⎩⎪⎨⎪⎧ 2a =6,a 2+b 2=10,解得⎩⎪⎨⎪⎧ a =3,b =±1,则z =3±i. 8.计算(-1+3i )3(1+i )6+-2+i 1+2i的值是( ) A .0 B .1 C .2i D .i考点 复数四则运算的综合应用题点 复数的混合运算答案 C解析 原式=(-1+3i )3[(1+i )2]3+(-2+i )(1-2i )(1+2i )(1-2i )=(-1+3i )3(2i )3+-2+4i +i +25=⎝⎛⎭⎫-12+32i 3-i +i =1-i +i =i (-i )i+i =2i.二、填空题9.已知a ,b ∈R ,i 是虚数单位,若(1+i)(1-b i)=a ,则a b的值为________. 考点 复数的乘除法运算法则题点 利用乘除法求复数中的未知数答案 2解析 因为(1+i)(1-b i)=1+b +(1-b )i =a ,又a ,b ∈R ,所以1+b =a 且1-b =0,得a =2,b =1,所以a b=2. 10.若复数z 满足(3-4i)z =4+3i(i 是虚数单位),|z |=________.考点 复数的乘除法运算法则题点 利用乘除法求复数答案 1解析 因为(3-4i)z =4+3i ,所以z =4+3i 3-4i =(4+3i )(3+4i )(3-4i )(3+4i )=25i 25=i. 则|z |=1.11.定义一种运算:⎣⎢⎡⎦⎥⎤a b c d =ad -bc .则复数⎣⎢⎡⎦⎥⎤1+i -12 3i 的共轭复数是________.考点 共轭复数的定义与应用题点 利用定义求共轭复数答案 -1-3i解析 ⎣⎢⎡⎦⎥⎤1+i -12 3i =3i(1+i)+2=-1+3i , ∴其共轭复数为-1-3i.三、解答题12.已知z ,ω为复数,(1+3i)z 为纯虚数,ω=z 2+i,且|ω|=52,求ω. 考点 复数的乘除法运算法则题点 乘除法的综合应用解 设z =a +b i(a ,b ∈R ),则(1+3i)z =a -3b +(3a +b )i.由题意得a -3b =0,3a +b ≠0.因为|ω|=⎪⎪⎪⎪⎪⎪z 2+i =52, 所以|z |=a 2+b 2=510,将a =3b 代入,解得a =15,b =5或a =-15,b =-5,故ω=±15+5i 2+i=±(7-i). 13.已知复数z =1+i.(1)设ω=z 2+3z -4,求ω;(2)若z 2+az +b z 2-z +1=1-i ,求实数a ,b 的值. 考点 复数四则运算的综合应用题点 与混合运算有关的未知数求解解 (1)因为z =1+i ,所以ω=z 2+3z -4=(1+i)2+3(1-i)-4=-1-i.(2)因为z =1+i ,所以z 2+az +b z 2-z +1=(1+i )2+a (1+i )+b (1+i )2-(1+i )+1=1-i , 即(a +b )+(a +2)i i=1-i , 所以(a +b )+(a +2)i =(1-i)i =1+i ,所以⎩⎪⎨⎪⎧ a +2=1,a +b =1,解得⎩⎪⎨⎪⎧a =-1,b =2.四、探究与拓展14.投掷两颗骰子,得到其向上的点数分别为m 和n ,则复数(m +n i)(n -m i)为实数的概率为________.考点 复数的乘除法运算法则题点 乘除法的综合应用答案 16解析 易知(m +n i)(n -m i)=mn -m 2i +n 2i +mn =2mn +(n 2-m 2)i. 若复数(m +n i)(n -m i)为实数,则m 2=n 2,即(m ,n )共有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),6种情况,所以所求概率为636=16. 15.设z 是虚数,ω=z +1z是实数,且-1<ω<2. (1)求|z |的值及z 的实部的取值范围;(2)设μ=1-z 1+z,求证:μ为纯虚数. 考点 复数四则运算的综合应用题点 与四则运算有关的问题(1)解 因为z 是虚数,所以可设z =x +y i(x ,y ∈R ,且y ≠0),则ω=z +1z =(x +y i)+1x +y i =x +y i +x -y i x 2+y 2=⎝⎛⎭⎪⎫x +x x 2+y 2+⎝ ⎛⎭⎪⎫y -y x 2+y 2i. 因为ω是实数,且y ≠0,所以y -y x 2+y 2=0,即x 2+y 2=1. 所以|z |=1,此时ω=2x .又-1<ω<2,所以-1<2x <2.所以-12<x <1, 即z 的实部的取值范围是⎝⎛⎭⎫-12,1. (2)证明 μ=1-z 1+z =1-(x +y i )1+(x +y i )=(1-x -y i )(1+x -y i )(1+x )2+y 2=1-x 2-y 2-2y i 1+2x +x 2+y 2.又x2+y2=1,所以μ=-yi.1+x 因为y≠0,所以μ为纯虚数.。
复数的运算
我们可以借助实数的四则运算法则来定义复数的四则运算。
复数的加减法为(a+bi)+(c+di)=(a+c)+(b+d)i
注意到i2=-1,定义复数的乘法为
(a+bi)(c+di)=ac+adi+bci+bdi2
=(ac-bd+(ad+bc)i
可以看到,两个复数的乘积为0当且仅当其中一个复数为0,这与实数的情况是一样的。
特别称a-bi为a+bi的共扼,两个共扼复数的乘积为实数,即
(a+bi)(a-bi)=a2+b2
当c和d不同时为零时,令分子分母同乘分母的共钜,定义复数的除法为
(a+bi)/(c+di)=(ac+bd)/(c2+d2)+[(bc-ad)/(c2+d3)]i
有了上面的定义,我们就可以求任意二次方程的解了,比如
x2-2x+20,由韦达公式可以得到两个解为x1=1+i和x2=1-i。
高斯非常认真地研究了复数,他在1801年发表地《算术研究》中考虑了复整数地问题,即复数a+bi中a和b均为整数的问题;他考虑了复素数的问题,所谓的复素数是指:不能分解为除+1和+i以外复整数乘积的形式的复数。
这样,在实数集合R中的素数在复数集合C中就不一定是复素数了,比如5在实数集合是一个素数,但在复数集合中却可以表示为两个共扼数乘积的形式,即
5=(1+2i)(1-2i),因此,5在C中就不是素数。
特别是,高斯证明
了我们在《数的性质》一讲中提到的“任何一个整数都可以唯表示为若千个素数的乘积的形式”这个事实对于复整数也成立,于是,就开辟了今天被称为代数数论的新的研究邻域.。
5.3 复数的四则运算
1.若z-3-2i=4+i,则z等于
() A.1+i B.1-i
C.-1-i D.-1-3i
答案 B
解析z=(4+i)-(3+2i)=1-3i.
2.若复数z1=1+i,z2=3-i,则z1·z2=
() A.4+2i B.2+i C.2+2i D.3+i
答案 A
解析z1·z2=(1+i)(3-i)=4+2i,故选A.
3.5-(3+2i)=________.
答案2-2i
4.复数1
1-i
的虚部是________.
答案1 2
解析∵1
1-i =
1+i
(1-i)(1+i)
=
1+i
2=
1
2+
1
2i.∴虚部为
1
2.
1.复数代数形式的加、减法运算法则
设z1=a+b i,z2=c+d i(a,b,c,d∈R),则有z1±z2=(a+b i)±(c+d i)=(a±c)+(b±d)i.
即两个复数相加(减),就是把实部与实部、虚部与虚部分别相加(减).
2.复数代数形式的乘法运算法则
(1)复数乘法的法则
复数的乘法与多项式的乘法是类似的,但必须在所得的结果中把i 2换成-1,并且把实部、虚部分别合并.
(2)复数乘法的运算律
对于任意的z 1,z 2,z 3∈C ,有
z 1·z 2=z 2·z 1(交换律),
(z 1·z 2)·z 3=z 1·(z 2·z 3)(结合律),
z 1·(z 2+z 3)=z 1z 2+z 1z 3(乘法对加法的分配律).
3.复数代数形式的除法运算法则
在无理式的除法中,利用有理化因式可以进行无理式的除法运算.类似地,在复数的除法运算中,也存在所谓“分母实数化”问题.将商a +b i
c +
d i 的分子、
分母同乘以c -d i ,最后结果写成实部、虚部分开的形式:a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )
=(ac +bd )+(-ad +bc )i
c 2+
d 2=ac +bd c 2+d 2+-ad +bc c 2+d 2i 即可.。