新人教版九年级数学上册《24.1.4圆周角(1)》学案
- 格式:doc
- 大小:110.50 KB
- 文档页数:3
人教版九年级上册§24.1.4 圆周角(教案)第一课时24.1.4 圆周角(第一课时教案)教材分析:1、本节课是在学习了圆的有关概念、垂径定理、圆心角定理的基础上对圆的有关性质的进一步探索。
2、利用弧等构造弦等、角等是解决圆中相关问题非常重要的方法。
学情分析:九年级的学生虽然已经具备了一些问题的说理能力,但是初三的几何证明过程中,学生的逻辑思维仍然是不成熟的,所以对于知识的生成过程任然是教学中的重点内容,针对上述情况,本节课我采用了学生动手操作——猜想——验证——组长对组员进一步讲解的学习过程。
一、目标设计:(一)知识技能:1、了解圆周角的概念,会证明圆周角的定理及推论。
2、掌握圆周角定理的两个推论,并能简单应用。
(二)过程方法:1、培养学生观察、分析、想象、归纳和逻辑推理的能力。
2、结合圆周角定理的探索与证明的过程,进一步体会分类讨论和转化的思想方法。
(三)情感态度:1、通过组长的讲,小组的交流,增进同学间互相学习、互相帮助、共同提高的氛围。
2、通过小组合作学习创造学习气氛,培养学生的学习兴趣。
二、教学重难点:重点:定理及推论的理解与运用难点:定理的证明三、教学过程:【课前引入】:出示几何画板,一个圆柱形房间有4人:A、B、C、D,D站在圆心位置,A,B,C三人在圆周上观察弧形落地窗外的风景,四人谁的视角比较大?大多少?设计意图:带着问题进入本节内容,培养学生的学习兴趣。
【课堂探究】:探究一:圆周角概念的理解。
圆周角:顶点在圆上,并且两边都与圆相交的角。
针对性思考:判断下列图形中的角,哪些是圆周角?()()()()()()()()设计意图:学生通过对图形的识别,得出圆周角的两个特点:顶点在圆上;两边都与圆相交。
通过正例与反例的判断,加深对概念的理解。
探究二:圆周角定理的掌握。
1、学生度量图1中弧BC所对的圆周角和圆心角的大小,猜想这两个角的大小关系。
教师也可利用几何画板的动态性来加以验证。
(5)(4)A24.1.4圆周角导学案(1)学习目标:1.了解圆周角的概念.理解圆周角的定理.理解圆周角定理的推论.(重点)2.熟练掌握圆周角的定理及其推理的灵活运用.(难点) 自主学习:阅读教材85至86页 1.定义:顶点在 ,并且两边都和圆 的角叫做圆周角.(完成书后练习第1题) 2. ① 如图,AB 为⊙O 的直径,∠BOC 、∠BAC 分别是所对的圆心角、圆周角,利用以前所学知识求出图(1),(2),(3)中∠BAC 的度数分别为 .通过计算发现:∠BAC = ∠BOC , 即, 。
② 观察图(4)和(5)中的圆周角和圆心角,它们与图(1)(2)(3)有什么不同?还能得到与①相同的结论吗?你是怎么得到的?③ 圆周角定理的证明运用了什么数学思想?3.如图(6),在⊙O 中,所对的圆心角为 ,所对的圆周角是 ,你能得到什么结论?合作探究探究1 教材88页练习3 探究2 教材88页练习2 典型题例1.如图(7),点A 、B 、C 、D 在⊙O 上,点A 与点D 在点B 、C 所在直线的同侧,∠BAC=350①∠BDC=_______°,理由是_________________. ②∠BOC=_______°,理由是_______________. 2.如图(8),点A ,B ,C 在⊙O 上, 若∠BAC=60°,则∠BOC=____°;若∠AOB=90°,则∠ACB=____°. 3.如图(9),点A 、B 、C 、D 在⊙O 上,∠ADC=∠BDC=60°.判断△ABC 的形状,并说明理由.4.如图(10),⊙O 的直径AB=8cm,∠CBD=30°,求弦DC 的长.BC (1) (2) (3)BC (6)(7)(8)(9)(10)B(13)圆周角(1)限时训练1.在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数是( ) A.30° B.30°或150° C.60° D.60°或120°2.如图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是( ) A.40° B.50° C.70° D.110°3.如图,已知圆心角∠BOC=100°,则圆周角∠BAC 的度数是( ) A.50° B.100° C.130° D.200°4.如图,A 、B 、C 、D 四点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( ) A.2对 B.3对 C.4对 D.5对5.如图,D 是弧AC 的中点,则图中与∠ABD 相等的角的个数是( ) A.4个 B.3个 C.2个 D.1个6.如图,∠AOB=100°,则∠A+∠B 等于( ) A.100° B.80° C.50° D.40°7.如图⊙O 中弧AB 的度数为60°,AC 是⊙O 的直径,那么∠BOC 等于 ( ) A .150° B .130° C .120° D .60°8.如图,等边三角形ABC 的三个顶点都在⊙O 上,D 是弧AC 上任一点(不与A 、C 重合),则∠ADC 的度数是________.9.如图,四边形ABCD 的四个顶点都在⊙O 上,且AD ∥BC,对角线AC 与BD 相交于点E,那么图中有_________对全等三角形.10.已知,如图,∠BAC 的邻补角∠BAD=100°,则∠BOC=_____度. 11.如图,A 、B 、C 为⊙O 上三点,若∠OAB=46°,则∠ACB=_____度.12.如图,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30 °,则点O 到CD 的距离OE= . 13.如图(13),A 、B 、C 、D 四点都在⊙O 上,AD 是⊙O 的直径,且AD=6cm ,若∠ABC=∠CAD,求弦AC 的长.第2题第3题 第4题 第5题 第7题 第6题 第9题 第10题 CD 第11题 第12题24.1.4圆周角导学案(2)学习目标:1.掌握直径(或半圆)所对的圆周角是直角及90°的圆周角所对的弦是直径。
《24.1.4 圆周角》教案第1课时圆周角的概念和圆周角定理教学目标1.理解圆周角的定义,了解与圆心角的关系,会在具体情景中辨别圆周角。
2.通过学生的探索过程,培养学生的动手操作、自主探索和合作交流的能力。
3.通过操作交流等活动,培养学生互相帮助、团结协作、互相讨论的团队精神,培养学生学习数学的兴趣。
教学重点圆周角定理及其推论的探究与应用。
教学难点圆周角定理的证明中由一般到特殊的数学思想方法以及圆周角定理及推论的应用。
课时安排1课时教学方法启发引导、合作探究、拓展新知课前准备课件、课本等教学过程一、导入新知活动:请同学们口答下面两个问题.1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系呢?点评:1.我们把顶点在圆心的角叫圆心角.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等.刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这节课,我们就一起来学习《圆周率的概念和圆周角定理》。
(板书课题)二、探究新知(一)师生互动,启发猜想1.摆一摆:一条弧对的圆心角有几个,圆周角有几个?学生利用手中的学具和皮筋,通过由实验、观察等方法可得出:一条弧对的圆心角只有一个,圆周角有无数个;2.找一找:圆心与圆周角有几种位置关系?充分的活动交流后,教师挑选有代表性的几个小组派代表在展台上展示图片,说明圆心与圆周角的位置关系:①圆心O在∠BAC的内部②圆心O在∠BAC的一边上③圆心O在∠BAC的外部请同学们思考除这三种位置关系外是否还有遗漏?分别做出这三个图中的圆心角∠BOC,①圆心O在∠BAC的内部②圆心O在∠BAC的一边上③圆心O在∠BAC的外部3.量一量:同一条弧所对的圆周角∠BAC与圆心角∠BOC的度数,你有什么发现?(二)观察猜想,寻找规律1.教师出示同一条弧所对圆周角为90°,圆心角为180°和同一条弧所对圆周角为45°,圆心角为90°的特殊情况的图形.提出问题:在这两个图形中,对着同一条弧的圆周角和圆心角,它们之间有什么数量关系.由于情况特殊,学生观察、测量后,容易得出:对着同一条弧的圆周角是圆心角的一半.2.教师提出:在一般情况下,对着同一条弧的圆周角还是圆心角的一半吗?通过上面的特例,学生猜想,得出命题:一条弧所对的圆周角等于它所对的圆心角的一半.(三)动手画图,证明定理1.猜想是否正确,还有待证明.教师引导学生结合命题,画出图形,写出已知、求证.2.先分小组交流画出的图形,议一议:所画图形是否相同?所画图形是否合理?3.利用实物投影在全班交流,得到三种情况.若三种位置关系未出现全,教师利用电脑演示同一条弧所对圆周角的顶点在圆周上运动的过程,得出同一条弧所对的圆心角和圆周角之间可能出现的不同位置关系,得到圆心角的顶点在圆周角的一边上、内部、外部三种情况.4.引导学生选一种最特殊、最容易证明的“圆心角的顶点在圆周角的一边上”进行证明,写出证明过程,教师点评.5.引导学生通过添加辅助线,把“圆心角的顶点在圆周角的内部、外部”转化成“圆心角的顶点在圆周角的一边上”的情形,进行证明,若学生不能构造过圆周角和圆心角顶点的直径,教师给予提示.然后小组交流讨论,上台展示证明过程,教师点评证明过程.6.将“命题”改为“定理”,即“圆周角定理”.三、随堂练习1.教材第88页练习第1题.2.如图,∠BAC和∠BOC分别是⊙O中的弧BC所对的圆周角和圆心角,若∠BAC=60°,那么∠BOC=________.3.如图,AB,AC为⊙O的两条弦,延长CA到D,使AD=AB,如果∠ADB=30°,那么∠BOC=________.答案:1.略;2.120°;3.120°.四、归纳新知1.圆周角概念及定理.2.类比从一般到特殊的数学方法及分类讨论、转化与化归的数学思想.五、教后反思。
24.1.4 圆周角学案【学习目标】1、理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;2、掌握圆周角定理的三个推论,并会熟练运用这些知识进行有关的计算和证明. 【重点难点】重点:圆周角定理及定理的三个推论的应用. 难点:圆周角定理的证明,三个推论的灵活应用.【课堂探究】一、自主探究探究一作一个圆,并在圆中画出两个圆周角,根据你画出的角, (1)说出圆周角的顶点的位置,两边与圆的关系是什么? (2)说出圆周角与圆心角的异同点? 探究二1、拿出课前准备好的圆形纸片,先在上面任意画一个圆周角∠BAC ,然后画出同弧所对的圆心角∠BOC ,再分别量出∠BAC 和 ∠BOC 的度数,比较一下,你有什么发现?小组交流一下,能得出什么共同结论?2、为了进一步探究上面的发现,请同学们将刚才的圆形纸片沿圆周角的顶点A 和圆心O 对折,小组交流、归纳,看看这时折痕和圆周角∠BAC 的位置可能有哪几种关系?分别一一画出来.B 图c图b图aD D3、利用第2题的图形,分别证明图a、图b、图c中的∠B OC=2∠B AC.4、用自己的语言说出圆周角定理的内容是什么?5、利用上面的结论,完成下列问题:(1)∠C与∠D相等吗?为什么?(2)若AB是直径,则∠C= ,∠D=(3)若∠C=90°,则弦AB是⊙O的直径吗?(4)若圆周角∠ACB与∠DAB相等,则它们所对的弧相等吗?为什么?通过以上4个小题的解答,你又能得到什么结论?归纳一下.探究三1、什么是圆的内接多边形?什么是多边形的外接圆?2、画一个圆内接四边形ABCD,它有什么性质,你是如何得到的?与同学交流一下.二、尝试运用1、教材第88页练习1、22、如图,四边形ABCD 为⊙O 的内接四边形,∠BOD则∠BAD = ,∠BCD = .3、教材第87页例24、足球场上正在进行激烈的比赛,队员甲、队员乙正准备射门,是队员甲直接射门好,还是传给队员乙让队员乙射门好,为什么?三、补偿提高1、如图,AB 是⊙O 的直径,∠BAC =30°,点D 在圆上,则∠ADC 等于( ) .A. 30°B.40°C.50°D.60°2、求证:如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.四、小结与作业学生小结:1、必做题:教材第88页练习3,习题24.1第89页5,6题2、选做题如图,点A,B,D,E在⊙O上,弦AE,BD的延长线相交于点C,若AB是⊙O的直径,D是BC的中点.(1)试判断AB与AC之间的大小关系,并给出证明;(2)在上述题设条件下,△ABC还需满足什么条件,点E才一定是AC的中点?(直接写出结论)。
九年级数学上册24.1.4圆周角导学案(新版)新人教版(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册24.1.4 圆周角导学案(新版)新人教版(1))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册24.1.4 圆周角导学案(新版)新人教版(1)的全部内容。
24.1.4 圆周角预习案一、预习目标及范围:1。
理解圆周角的概念,会叙述并证明圆周角定理.2.理解圆周角与圆心角的关系并能运用圆周角定理及推论解决简单的几何问题。
3.了解圆周角的分类,会推理验证“圆周角与圆心角的关系”。
预习范围:P85—88二、预习要点1、圆周角定义: 叫圆周角.特征:①角的顶点在;②角的两边都。
2、圆心角与所对的弧的关系:3、圆周角与所对的弧的关系:4、同弧所对的圆心角与圆周角的关系:圆周角定理:一条弧所对的圆周角等于的一半.三、预习检测1。
如图,点A、B、C、D在☉O上,点A与点D在点B、C所在直线的同侧,∠BAC=35º.(1)∠BOC= º, 理由是;(2)∠BDC= º,理由是2.四边形ABCD是⊙O的内接四边形,且∠A=110°,∠B=80°,则∠C= ,∠D= .3.⊙O的内接四边形ABCD中,∠A∶∠B∶∠C=1∶2∶3,则∠D= .探究案一、合作探究活动内容1:活动1:小组合作探究1:圆周角的定义定义:叫做圆周角判一判:下列各图中的∠BAC是否为圆周角并简述理由。
探究2;圆周角定理及其推论如图,连接BO,CO,得圆心角∠BOC.试猜想∠BAC与∠BOC存在怎样的数量关系。
2019-2020学年九年级数学上册《24.1.4 圆周角(第1课时)》学案新人教版学习目标:1.理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;2渗透由“特殊到一般”,由“一般到特殊”的数学思想方法重点难点:重点:圆周角的概念和圆周角定理难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.教学过程:一、板书标题,揭示教学止标教学目标1.理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;2渗透由“特殊到一般”,由“一般到特殊”的数学思想方法二、自学指导自学内容与要求认真阅读课本P84-85(至P85倒数第7行)1.掌握圆周角定义,并与圆心角定义比较2.掌握圆周角定理及推论的推导及证明3.理解分类讨论思想和完全归纳法4.完成P86练习(时间10分钟)三、自学效果检测1、概念辨析判断下列各图形中的是不是圆周角,并说明理由.归纳:一个角是圆周角的条件:①顶点------- ;②两边都和圆 -------- . .2.如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数?3.一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?四、知识归纳(1)圆周角定义及其两个特征;(2)圆周角定理的内容.思想方法:一种方法和一种思想:在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.五、当堂测试1、同弧或等弧所对的()相等;在同圆或等圆中,相等的()所对的()也相等.都等于这条弧所对的圆心角的一半2、“同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?3、半圆(或直径)所对的圆周角是;的圆周角所对的弦直径.4、如图,已知在⊙O中,直径AB为10厘米,弦AC为6厘米,∠ACB的平分线交⊙O于D;求BC,AD和BD的长.六、作业布置《感悟》第66---68页。
人教版九年级数学(上)第24章圆24.1圆的有关性质24.1.4圆周角课时1圆周角定理及其推论教案【教材内容】1.圆周角的概念.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弦所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.【教学目标】知识与技能:1.了解圆周角的概念;2.理解圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半;3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径;【教学重点】圆周角的定理、圆周角的定理的推导.【教学难点】1.探究圆周角的定理的存在;2.运用数学分类思想证明圆周角的定理.【教学过程设计】一、情境导入进行中的足球比赛如图所示,甲队员在圆心O处,乙队员在圆上C处,丙队员带球突破防守到圆上C处,依然把球传给了甲,你知道为什么吗?你能用数学知识解释一下吗?二、合作探究知识点一:圆周角定理例1 如图,AB 是⊙O 的直径,C ,D 为圆上两点,∠AOC =130°,则∠D 等于( )A .25°B .30°C .35°D .50°解析:本题考查同弧所对圆周角与圆心角的关系.∵∠AOC =130°,∠AOB =180°,∴∠BOC =50°,∴∠D =25°.故选A.探究点二:圆周角定理的推论【类型一】利用圆周角定理的推论求角例2 如图,在⊙O 中,AB ︵=AC ︵,∠A =30°,则∠B =( ) A .150° B .75° C .60° D .15°解析:因为AB ︵=AC ︵,根据“同弧或等弧所对的圆周角相等”得到∠B =∠C ,因为∠A +∠B +∠C =180°,所以∠A +2∠B =180°,又因为∠A =30°,所以30°+2∠B =180°,解得∠B =75°,故选B.方法总结:解题的关键是掌握在同圆或等圆中,相等的两条弧所对的圆周角也相等.注意方程思想的应用.例3 如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为( ) A .30° B .45° C .60° D .75°解析:由BD 是直径得∠BCD =90°.∵∠CBD =30°,∴∠BDC =60°.∵∠A与∠BDC 是同弧所对的圆周角,∴∠A =∠BDC =60°.故选C.【类型二】利用圆周角定理的推论求线段长例4 如图所示,点C 在以AB 为直径的⊙O 上,AB =10cm ,∠A =30°,则BC 的长为________.解析:由AB 为⊙O 的直径得∠ACB =90°.在Rt △ABC 中,因为∠A =30°,所以BC =12AB =12×10=5cm.【类型三】利用圆周角定理的推论进行有关证明例5 如图所示,已知△ABC 的顶点在⊙O 上,AD 是△ABC 的高,AE 是⊙O 的直径,求证:∠BAE =∠CAD .解析:连接BE 构造Rt △ABE ,由AD 是△ABC 的高得Rt △ACD ,要证∠BAE =∠CAD ,只要证出它们的余角∠E 与∠C 相等,而∠E 与∠C 是同弧AB 所对的圆周角.证明:连接BE ,∵AE 是⊙O 的直径,∴∠ABE =90°,∴∠BAE +∠E =90°.∵AD 是△ABC 的高,∴∠ADC =90°,∴∠CAD +∠C =90°.∵AB ︵=AB ︵,∴∠E =∠C ,∵∠BAE +∠E =90°,∠CAD +∠C =90°,∴∠BAE =∠CAD .方法总结:涉及直径时,通常是利用“直径所对的圆周角是直角”来构造直角三角形,并借助直角三角形的性质来解决问题.探究点三:圆的内接四边形及性质【类型一】利用圆的内接四边形的性质进行计算例6 如图,点A ,B ,C ,D 在⊙O 上,点O 在∠D 的内部,四边形OABC 为平行四边形,则∠OAD +∠OCD =________度.解析:∵四边形ABCD是圆内接四边形,∴∠B+∠ADC=180°.∵四边形OABC为平行四边形,∴∠AOC=∠B.又由题意可知∠AOC=2∠ADC.∴∠ADC =180°÷3=60°.连接OD,可得AO=OD,CO=OD.∴∠OAD=∠ODA,∠OCD =∠ODC.∴∠OAD+∠OCD=∠ODA+∠ODC=∠D=60°.【类型二】利用圆的内接四边形的性质进行证明例7如图,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.解析:由已知易得∠E=∠BCE,由同角的补角相等,得∠A=∠BCE,则∠E =∠A.证明:∵BC=BE,∴∠E=∠BCE.∵四边形ABCD是圆内接四边形,∴∠A +∠DCB=180°.∵∠BCE+∠DCB=180°,∴∠A=∠BCE.∴∠A=∠E.∴AD=DE.∴△ADE是等腰三角形.方法总结:圆内接四边形对角互补.三、教学小结教师引导学生总结本节所学知识:1.圆周角的概念;2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.【板书设计】24.1 圆的有关性质 24.1.4 圆周角课时1 圆周角定理及其推论1.圆周角的概念2.圆周角定理及推论3.圆内接四边形的性质4.应用圆周角定理及推论进行计算【课堂检测】C1.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系?为什么?分析:BD=CD ,因为AB=AC ,所以这个△ABC 是等腰,要证明D 是BC 的中点,•只要连结AD 证明AD 是高或是∠BAC 的平分线即可. 解:BD=CD理由是:如图24-30,连接AD ∵AB 是⊙O 的直径 ∴∠ADB=90°即AD ⊥BC 又∵AC=AB ∴BD=CD2.如图,已知△ABC 内接于⊙O ,∠A 、∠B 、∠C 的对边分别设为a ,b ,c ,⊙O 半径为R ,求证:sin a A =sin b B =sin cC =2R . 分析:要证明sin a A =sin b B =sin c C =2R ,只要证明sin a A =2R ,sin bB=2R ,sin c C =2R ,即sinA=2a R ,sinB=2b R ,sinC=2c R ,因此,十分明显要在直角三角形中进行.证明:连接CO 并延长交⊙O 于D ,连接DB ∵CD 是直径 ∴∠DBC=90° 又∵∠A=∠D在Rt △DBC 中,sinD=BC DC ,即2R=sin a A同理可证:sin b B =2R ,sin cC=2R∴sin a A =sin b B =sin cC =2R教学过程中,强调圆周角定理得出的理论依据,使学生熟练掌握并会学以致用.在圆中,利用圆周定理及其推论求相关的角度时,注意辅助线的添加及多种可能情况的考虑.人教版九年级数学(上)第24章 圆 24.1 圆的有关性质 24.1.4 圆周角 课时1圆周角定理及其推论学案【学习目标】 知识与技能1.理解圆的轴对称性,掌握垂径定理及其推论;2.学会运用垂径定理及其推论解决一些有关证明、计算和作图问题; 3.了解拱高、弦心距等概念.过程与方法经历探索发现圆的对称性,证明垂径定理及其他结论的过程,锻炼思维品质,学习证明的方法.情感、态度与价值观在学生通过观察、操作、变换、探究出图形的性质后,还要求对发现的性质 进行证明,培养学生的创新意识. 【学习重点】垂径定理及其推论. 【学习难点】探索并证明垂径定理. 【自主学习】一、自学指导.(10分钟)自学:研读课本P 81~83内容,并完成下列问题.1.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,它也是中心对称图形,对称中心为圆心.2.垂直于弦的直径平分弦,并且平分弦所对的两条弧,即一条直线如果满足:①AB 经过圆心O 且与圆交于A ,B 两点;②AB ⊥CD 交CD 于E ,那么可以推出:③CE =DE ;④CB ︵=DB ︵;⑤CA ︵=DA ︵.3.平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧. 点拨精讲:(1)画图说明这里被平分的弦为什么不能是直径.(2)实际上,当一条直线满足过圆心、垂直弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,这五个条件中的任何两个,就可推出另外三个.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟) 1.在⊙O中,直径为10 cm,圆心O到AB的距离为3 cm,则弦AB的长为__8_cm__.2.在⊙O中,直径为10 cm,弦AB的长为8 cm,则圆心O到AB的距离为__3_cm__.点拨精讲:圆中已知半径、弦长、弦心距三者中的任何两个,即可求出另一个.3.⊙O的半径OA=5 cm,弦AB=8 cm,点C是AB的中点,则OC的长为__3_cm__.点拨精讲:已知弦的中点,连接圆心和中点构造垂线是常用的辅助线.4.某公园的一石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为多少米?(8米)点拨精讲:圆中已知半径、弦长、弦心距或弓形高四者中的任何两个,即可求出另一个.【新知探究】一、小组合作1.AB是⊙O的直径,弦CD⊥AB,E为垂足,若AE=9,BE=1,求CD的长.解:6.点拨精讲:常用辅助线:连接半径,由半径、半弦、弦心距构造直角三角形.2.⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM的长的最小值为__3__,最大值为__5__.点拨精讲:当OM与AB垂直时,OM最小(为什么),M在A(或B)处时OM 最大.3.如图,线段AB与⊙O交于C,D两点,且OA=OB.求证:AC=BD.证明:作OE⊥AB于E.则CE=DE.∵OA=OB,OE⊥AB,∴AE=BE,∴AE-CE=BE-DE.即AC=BD.点拨精讲:过圆心作垂线是圆中常用辅助线.二、跟踪练习学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.在直径是20 cm的⊙O中,∠AOB的度数是60°,那么弦AB的弦心距是__53 __cm.点拨精讲:这里利用60°角构造等边三角形,从而得出弦长.2.弓形的弦长为6 cm,弓形的高为2 cm,则这个弓形所在的圆的半径为__134__cm.3.如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.求证:AC=BD.证明:过点O作OE⊥AB于点E.则AE=BE,CE=DE.∴AE-CE=BE-DE.即AC=BD.点拨精讲:过圆心作垂径.4.已知⊙O的直径是50 cm,⊙O的两条平行弦AB=40 cm,CD=48 cm,求弦AB与CD之间的距离.解:过点O作直线OE⊥AB于点E,直线OE与CD交于点F.由AB∥CD,则OF⊥CD.(1)当AB,CD在点O两侧时,如图①.连接AO,CO,则AO=CO=25 cm,AE=20 cm,CF=24 cm.由勾股定理知OE=15 cm,OF=7 cm.∴EF=OE+OF=22 (cm).即AB与CD之间距离为22 cm.(2)当AB,CD在点O同侧时,如图②,连接AO,CO.则AO=CO=25 cm,AE=20 cm,CF=24 cm.由勾股定理知OE=15 cm,OF=7 cm.∴EF=OE-OF=8 (cm).即AB与CD之间距离为8 cm.由(1)(2)知AB与CD之间的距离为22 cm或8 cm.点拨精讲:分类讨论,①AB,CD在点O两侧,②AB,CD在点O同侧.【学习总结】学生总结本节课的收获与困惑.(2分钟)1.圆是轴对称图形,任何一条直径所在直线都是它的对称轴.2.垂径定理及其推论以及它们的应用.教师点拨:圆是轴对称图形,经过圆心的都是它的对称轴。
第5课时 24.1.4圆周角(1)[学习目标]1.理解圆周角的定义,了解与圆心角的关系,会在具体情景中辨别圆周角.2.掌握圆周角定理及推论,并会运用这些知识进行简单的计算和证明. [学习流程] 一、依标独学1.阅读教材认真读图,如图1,视角∠AOB 叫做 角, 2.顶点在 ,并且两边都与圆 的角叫做圆周角.圆周角定义的两个特征:(1)顶点都在 ;(2)两边都与圆 . 二、扣标展示活动1:(1) 阅读教材内容,动手量一量(如图2): 问题1:同弧(弧AB )所对的圆心角AOB ∠ 与圆周角ACB ∠的大小关系是怎样的? 问题2:同弧(弧AB )所对的圆周角ACB ∠与圆周角ADB ∠的大小关系是怎样的?(2)规律:同弧所对的圆周角的度数 ,并且它的度数恰好等于这条弧所对的圆心角的度数的 .活动2:(1)同学们在下面图3的⊙O 中任取AB ⌒所对的圆周角,并思考圆心与圆周角有哪几种位置关系?(2)实际上,圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如图) (3)如何对活动1得到的规律进行证明呢?证明:①当圆心在圆周角的一 边上,如上图(1),②当圆心在圆周角内部(或在圆周角外部)(4)同弧所对的圆周角等于这条弧所对的圆心角的一半.其实,等弧的情况下该命题也是成立的,命题“同弧或等弧所对的圆周角相等”也是正确的,想一想为什么?(5)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角 ,都等于这条弧所对的圆心角的 .活动3:(小组讨论)由图5,结合圆周角定理思考 问题1:半圆(或直径)所对的圆周角是多少度?问题2:90°的圆周角所对的弦是什么?推论2:半圆(或直径)所对的圆周角是 ; 的圆周角所对的弦是直径.四、达标测评1. 在下列与圆有关的角中,哪些是圆周角?哪些不是,为什么?2. 已知:如图,AB 是⊙O 的直径,弦CD ⊥AB 于E ,∠ACD =30°,AE =2cm .求DB 长.(1) (2) (3) (4) (2)(3)(1) (2)(8)五、课后反思。
24.1.4 圆周角1.理解圆周角的定义,会区分圆周角和圆心角.2.理解同弧或等弧所对的圆心角和圆周角的关系,理解记忆各个推论,能在证明或计算中熟练的应用它们处理相关问题.自学指导阅读教材第85至88页,完成下列问题.知识探究1.顶点在圆周上,并且两边都与圆相交的角叫做圆周角.2.在同圆或等圆中,等弧或等弦所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.在同圆或等圆中,相等的圆周角所对的弧也相等.4.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.5.圆内接四边形的对角互补.自学反馈1.如图所示,点A、B、C在圆周上,∠A=65°,求∠D的度数.解:65°.第1题图第2题图2.如图所示,已知圆心角∠BOC=100°,点A为优弧⌒BC上一点,求圆周角∠BAC的度数.解:50°.3.如图所示,在⊙O中,∠AOB=100°,C为优弧⌒AB的中点,求∠CAB的度数.解:65°.第3题图第4题图4.如图所示,已知AB是⊙O的直径,∠BAC=32°,D是⌒AC的中点,那么∠DAC的度数是多少?解:29°.活动1 小组讨论例1如图所示,点A、B、C在⊙O上,连接OA、OB,若∠ABO=25°,则∠C=65°.第1题图第2题图例2如图所示,AB是⊙O的直径,AC是弦,若∠ACO=32°,则∠COB=64°.例3如图所示,OA为⊙O的半径,以OA为直径的圆⊙C与⊙O的弦AB相交于点D,若OD=5cm,则BE=10cm.第3题图第4题图例4 如图所示,点A、B、C在⊙O上,已知∠B=60°,则∠CAO=30°.(1)求圆周角通常先求同弧所对的圆心角.(2)求圆心角可先求对应的圆周角.(3)利用两个直径构造两个垂直,从而构造平行,产生三角形的中位线.(4)连结OC,构造圆心角的同时构造等腰三角形.活动2 跟踪训练1.如图,⊙O的直径AB为10 cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC、AD、BD的长.解:∵AB为直径,∴∠ACB=90°.∴BC=22=8 (cm).∵CD平分∠ACB,∴∠ACD=∠BCD.AB AC∴AD=BD.由AB为直径,知AD⊥BD.∴△ABD为等腰直角三角形.∴AD2+BD2=2AD2=2BD2=AB2.∴AD=52cm,BD=52cm.由直径产生直角三角形,由相等的圆周角带来弦等产生等腰三角形.2.OA、OB、OC都是⊙O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC.证明:∵∠AOB是劣弧⌒AB所对的圆心角,∠ACB是劣弧⌒AB所对的圆周角,∴∠AOB=2∠ACB.同理∠BOC=2∠BAC.∵∠AOB=2∠BOC.∴∠ACB=2∠BAC.看圆周角一定先看它是哪条弧所对圆周角,再看所对的圆心角. 3.如图,在⊙O中,∠CBD=30°,∠BDC=20°,求∠A.解:∠A=50°圆内接四边形的对角互补.活动3 课堂小结圆周角的定义、定理及推论.教学至此,敬请使用学案当堂训练部分.。
圆周角__班级:_____________姓名:__________________组号:_______第一课时一、旧知回顾1.什么叫圆心角?请画图说明。
2.画图举例说明圆心角、弦、弧之间有什么内在联系?二、新知梳理3.圆周角的定义: (请画出图形进行说明)。
4.根据右图找出同弧所对的圆周角和圆心角的例子,并猜想这两个角之间的关系。
学前准备预习导航:认真阅读课本p85-86的内容,类比圆心角的定义,你将学会识别圆周角,从而通过观察、类比、猜想圆周角定理。
特别注意它们之间的数量关系,尤其是如何证明?完成情况由此你可以得出圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
如何证明这一定理?见课本分三种情况讨论5.现在通过圆周角的概念和度量的方法回答下面的问题。
(1)一个弧上所对的圆周角的个数有多少个?(2)同弧所对的圆周角的度数是否发生变化?(3)同弧上的圆周角与圆心角有什么关系?三、试一试6.如右图6,已知∠ACB = 20º,则∠AOB = 。
7.如图,点A、B、C、D在同一个圆上,四边形的对角线把4个内角分成8个角,这些角中哪些是同弧所对的圆周角角?★通过预习你还有什么困惑?87654321DC BA图6OBAC一、课堂活动、记录1.识别圆周角的两个要点是什么?2.圆周角与它所对的圆心角的数量关系式什么? 3.如何进行推理证明?二、精练反馈 A 组:1.如图,AB 为⊙O 的直径,CD 为弦,AB ⊥CD ,如果∠BOC=70°,那么∠A 的度数为( )A .70°B .30°C .35°D .20°2.如图,AB 是⊙O 的直径,点C D ,是圆上两点,100AOC ∠=o ,则D ∠= 。
B 组:3.如图,⊙O 是△ABC 的外接圆,CD 是直径,∠B=40°,则∠ACD 度数是_______。
三、课堂小结1.一个概念:圆心角(两个条件:____________);一个定理:圆周角定理。
新人教版九年级数学上册《24.1.4圆周角(1)》学案
学习[
来源学科网ZXXK][来源:][来源学科网][来源:]方法制作:班级姓名九年级数学
方法
总结
学习内容
明确目标
做到心中
有数
自学课本
完成概念
分情况证
明圆周角
定理,注意
分类思想
的应用,转
化思想的
渗透
24.1.4圆周角(1)
学习目标:
1.理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;
(重点)
2渗透由“特殊到一般”,由“一般到特
殊”的数学思想方法(难点)
学习过程
(一)圆周角的概念
1、复习:(1)什么是圆心角?
(2)圆心角定理是什么
2、什么是圆周角:
如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周
角.(如右图)
定义:。
(二)圆周角的定理
1、提出圆周角的度数问题
问题:圆周角的度数与什么有关系?
引导学生在建立关系时注意弧所对的圆周角的三种情况:
圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部。
(1)当圆心在圆周角的一边上时,
图(1)
(2)当圆心在圆周角内部时
图(2)图(3)(3)当圆心在圆周角外部时
学习制作:田峰班级姓名九年级数学方法
方法学习内容总结总结定理
记忆定理
检测自我
找到不足
及时弥补
由此可得圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角,
都等于这条弧所对的圆心角的。
巩固练习:课本第87页第4题,88页第12题。
自我评价
1、下列各图中,哪一个角是圆周角?()
A B C
D
2、求下图中的x。
3在⊙O中,一条弧所对的圆心角和圆周角分别为(2x+100)°和(5x-30)°,
则x=_
4、在⊙O中,∠CBD=30°,∠BDC=20°,求∠A
5、已知, ⊙O的弦AB长等于圆的半径,求该弦所对的圆心角和圆周角的度
数。
B
A
O . 70°x
A
O . X
120°
教法
二次备课。