图论论文
- 格式:doc
- 大小:115.50 KB
- 文档页数:10
课程名称图论入门论文题目图论在物流物配送上的应用指导教师刘颖学院管理学院姓名郭凤午学号2011030284图论在物流货物配送中的应用摘要:最短路径问题对于节约人们的时间成本具有重要意义。
最短路问题是图论理论的一个经典问题。
寻找最短路径就是在指定网络中两结点间找一条距离最小的路。
最短路不仅仅指一般地理意义上的距离最短,还可以引申到其它的度量,如时间、费用、线路容量等。
它可被用来解决厂区布局、管路铺设、线路安装等实际问题。
本文介绍了图论的起源和发展、最短路径问题及其算法,并应用图论最短路径问题的分析方法解决物流货物配送中问题。
1 引言数学是一门古老的学科,它已经有了几千年的历史。
然而,图论作为数学的一个分支,却只有200多年的历史,但是其发展十分迅速。
图论是以图为研究对象,图形中我们用点表示对象,两点之间的连线表示对象之间的某种特定的关系。
事实上,任何一个包含了某种二元关系的系统都可以用图形来模拟,而且它具有形象直观的特点,在图中点的位置和线的长短曲直无关紧要[1]。
图论的发展大力地推进了科学文明的进步,解决了很多实际应用问题。
图论是数学领域中发展最快的分支之一,它以图为研究对象。
图论中的图是有若干给定的点及连接两点的线所构成的图形,这种图形常用来描述某些事物之间的某种特定关系,用来代表事物,用连接两点的线表示相应两个事物间具有这种关系。
图论本身是应用数学的一部分,因此,历史上图论曾经被好多位数学家各自独立的建立过。
关于图论的文字记载最早出现在欧拉1736年的论文中,他所考虑的原始问题有很强的实际背景。
数学史上著名的七桥问题欧拉只用了一步就证明了不重复地通过7座桥的路线是根本不存在的!这是拓扑学研究的先声。
图的染色问题一直是图论研究的焦点问题。
数学家赫伍德成功地运用肯普的方法证明了五色定理,即一张地图能够用五种或者更少的颜色染色。
美国伊利诺斯大学的黑肯和阿佩尔,经过四年的艰苦工作.终于完成了四色猜想的证明。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==图论的论文篇一:图论论文课程论文课程名称题目最短路径在最优截断切割问题中的应用姓名学号学院专业摘要本文是把长方体切割的最小代价问题,转化成一个我们所熟悉的图论问题,把其抽象成为一个图论之中求路径的最短路的问题,并采用了图论中的Dijkstra 算法,以求其的最短路,最终得到了对长方体切割问题的求解,最后我们通过了一个长方体切割实例,说明了我们的算法是可靠,有效的。
关键字:最短路径Dijkstra算法最优截断切割1. 预备知识1.1图的基本概念有序三元组G =(V,E,)称为一个图,其中:(1)V是有穷非空集,称为顶点集,其元素叫做图的顶点;(2)E称为边集,其元素叫做图的边;(3)是从边集E到顶点集的有序或者无序对集合的映射,称为关联函数。
1.2 权如果图G中任意一条边上都附有一个数,则称这样的图G为加权图。
若边e标记数为k,称边e的权为k。
定义1在无向图G=(V,E,?)中:(1)顶点与边相互交错且?(ei)?vi?1vi (i=1,2,…k)的有限非空序列w?(v0e1v1e2?vk?1ekvk)称为一条从v0到vk的通路,记为Wv0vk(2)边不重复但顶点可重复的通路称为道路,记为Tvv0k(3)边与顶点均不重复的通路称为路径,记为Pv右图中,我们可以根据定义得到:通路Wvv?v1e4v4e5v2e1v1e4v414vk道路Tvv?v1e1v2e5v4e6v2e2v3e3v414路径Pvv?v1e1v2e5v414定义2(1)任意两点均有路径的图称为连通图.(2)起点与终点重合的路径称为圈.(3)连通而无圈的图称为树.定义3(1)设P(u,v)是赋权图G中从u到v的路径,则称w(P)??w(e)为路径P的权.e?E(P)(2)在赋权图G中,从顶点u到顶点v的具有最小权的路 P*(u,v),称为u到v的最短路.1.3 固定起点的最短路最短路是一条路径,且最短路的任一段也是最短路.假设在u0-v0的最短路中只取一条,则从u0到其余顶点的最短路将构成一棵以u0为根的树.因此, 可采用树生长的过程来求指定顶点到其余顶点的最短路.Dijkstra算法:求G中从顶点u0到其余顶点的最短路,如图1所示:设G为赋权有向图或无向图,G边上的权均非负.对每个顶点,定义两个标记(l(v),z(v)),其中:l(v):表从顶点u0到v的一条路的权.z(v):v的父亲点,用以确定最短路的路线算法的过程就是在每一步改进这两个标记,使最终l(v)为从顶点u0到v的最短路的权。
图论毕业论文图论是数学的一个分支,主要研究图的性质和结构。
它对于解决各种实际问题具有重要的意义,如交通网络优化、电子芯片设计等。
本文将就图论的概念、基本性质以及其在实际问题中的应用等方面进行论述。
首先,图论是研究图的性质和结构的数学学科。
图是由节点和边组成的数学结构,可以用来描述各种实际问题,如交通网络、社交关系等。
图由节点和边构成,节点表示图中的元素或对象,边表示节点之间的关系。
图可以分为有向图和无向图,有向图中的边有方向性,无向图中的边没有方向性。
图的回路是指从一个节点出发,沿着边走过一系列节点之后再回到起始节点的路径。
图的连通性是指图中的任意两个节点之间存在一条路径。
其次,图论具有一些基本性质。
首先是图的度数。
图的度数是指图中一个节点与其相邻节点的边的个数。
度数为奇数的节点称为奇节点,度数为偶数的节点称为偶节点。
其次是图的邻接矩阵和关联矩阵。
邻接矩阵是一个n×n的矩阵,其中n是图的节点数,矩阵元素a_ij表示节点i与节点j之间是否存在边。
关联矩阵是一个n×m的矩阵,其中n是图的节点数,m是图的边数,矩阵元素b_ij表示节点i是否与边j相关联。
最后是图的连通性。
图的连通性决定了图中是否存在从一个节点到达另一个节点的路径。
如果图中的任意两个节点之间都存在路径,则图是连通的;否则,图是非连通的。
最后,图论在实际问题中有广泛的应用。
首先是交通网络优化。
图论可以用来优化交通网络中的路径规划和交通流量分析等问题,从而提高交通的效率和安全性。
其次是电子芯片设计。
图论可以用来分析电子芯片中各个元件之间的连接关系,从而提高芯片的性能和可靠性。
此外,图论还可以用来解决诸如社交网络分析、物流规划等实际问题。
综上所述,图论是数学的一个分支,主要研究图的性质和结构。
它对于解决各种实际问题具有重要的意义。
未来,随着科学技术的不断发展,图论在实际问题中的应用将会越来越广泛。
因此,对图论的进一步研究和应用具有重要的意义。
1.引言图论是数学的一个分支,并且是组合数学和应用数学的一部分。
它以图做为研究对象,而图是由若干节点和节点之间的边所构成的图型。
在图论中,图往往是某个具体现实生活中问题的数学抽象,可以说,图中的节点代表着生活中的某些特定事物,而节点之间的边则代表着节点之间的特定联系。
图论这门学科需要解决的就是如何利用数学知识去解决它们之间的关系。
图论最早起源于1736年著名的柯尼斯堡七桥问题[1]。
这个问题的内容是:在柯尼斯堡的普莱格尔河上有七座桥将河中的岛屿与河岸连接起来。
问题是要从这四块陆地中任何一块开始,通过每一座桥正好一次,最后再回到起始点。
然而人们无数次的尝试解决却都没有成功。
直到1736年,欧拉解决了这个问题。
他用抽像分析法将这个问题化为世界上第一个图论问题:即把每一块陆地用一个点来代替,将每一座桥用联接相应的两个点的一条边来代替,从而得到了一个“图”。
最终,欧拉成功证明了这个问题是无解的,并且推广了这个问题的意义,给出了对于一个给定的图可以某种方式走遍的判定法则。
这就是后来的欧拉通路、欧拉回路以及欧拉图问题。
于是,欧拉成为了图论学的创始人。
从那以后开始的几百年间,图论开始了飞速的发展。
虽然图论研究的是点和边之间所构成图的问题,但其应用领域还是十分广阔的。
图论的应用不仅仅局限于数学问题和计算机领域,它同时还涵盖了交通管理、通信领域、社会学等诸多其他研究领域。
而最短路径问题是图论应用中的基本问题。
最短路径顾名思义就是在所有的路径中找出一条距离最短的有效路径。
实际上,这里所指的“距离”不仅仅是指地理意义上的距离,还可以引申到时间、费用、等其他度量单位上面。
本文中,以重庆地铁为研究对象,利用图论知识解决在搭乘重庆地铁时的最短路径问题。
可以说,最短路径问题再交通网络结构的分析以及交通路线的选择中都有重要的应用价值。
此外,最短路径问题一直是计算机科学、地理信息学、交通管理学等学科中一个研究的热点问题。
图的着色是指对图的每个节点指定一种颜色,使得相邻的节点的颜色不相同。
基于图论的世界贸易网络的方差研究【摘要】世界贸易网络是一个复杂的自组织系统,本文基于图的熵的最可几估计,不同于其他研究——独立的考虑各国进口额和出口额,这里将两国有相互贸易的情形引入世界贸易网络,形成一组无参数模型,运用这些模型计算分析其拓扑性质的方差。
【关键词】自组织;图;拓扑;期望;方差1.引言如果一个系统不靠外部指令而形成组织,系统在内在机制的驱动下,系统内要素各尽其责而又协调地自动地形成有序结构,就是自组织系统;在一定条件下,系统自动地由无序走向有序,由低级有序走向高级有序[1]。
世界经济就是一个复杂的自组织系统,实际情况表明世界经济系统中,各国从事行业多种多样,规模差距很大,赢利能力千差万别,成长性迥异(有每年成倍增长的,也有大幅萎缩的),国家与国家之间以贸易联系起来,从而形成一个复杂网络,而这个复杂网络自行从简单向复杂、从粗糙向精细方向发展,不断地提高自身的复杂度和精细度。
研究表明,世界贸易网络的拓扑性质依赖于世界各国的国民生产总值,国民生产总值又依赖于国际贸易,而国际贸易又促进世界经济,这样世界贸易网络是一个连续的反馈,其动力学性质和其拓扑性质在该网络中共同进化[2]。
一般来说,理解自组织网络在科学上是个大挑战,这类网络的模型只有极少数是解析的。
不过,世界贸易网络的拓扑可以由包含度序列的无参数模型产生,该做法使得研究复杂世界贸易网络成为可能[3]。
本文,在介绍离散化方法后,运用该法去研究相互关联的发生,即研究有向图。
图论算法中,度是一个非常重要的概念,所谓顶点的度,就是指和该顶点相关联的边数。
“入度”是指有向图中某点作为图中边的终点的次数之和;以某顶点为起点,起始于该顶点的边的数目称为该顶点的“出度”[4]。
这里我们引入一个新的概念——互惠度,即两个独立国家之间有相互的贸易往来,在有向图中a是起点有指向b的边,同时b是起点有指向a的边,此联系称为a的一个互惠度。
与其它研究不同的是,一般研究结果仅通过点的入度或仅通过点的出度得到,这里我们考虑每个点的互惠度和非互惠度,则局部信息被强化,图的随机方差很小。
最小生成树——Prim算法1、算法问题的提出首先介绍生成树的概念连通图G=(V,E)是无向带权图,若一个子图G’是一棵包含G的所有顶点的树,则该子图G’称为G的生成树。
生成树是连通图的极小连通子图。
所谓极小是指:若在树中任意增加一条边,则将出现一个回路;若去掉一条边,将会使之变成非连通图。
生成树各边的权值总和称为生成树的权。
本次设计是求在图G中所有生成树中权值总和(费用/代价)最小的生成树,即最小生成树。
用两个例子进行实例演示。
2、Prim算法思想用哲学的观点来说,每个事物都有自己特有的性质,那么图的最小生成树也是不例外的。
按照生成树的定义,n 个顶点的连通网络的生成树有n 个顶点、n-1 条边。
(1)从树中某一个顶点V0开始,将V0到其他顶点的所有边当作候选边。
(2)重复以下步骤n-1次,使得其他n-1个顶点被并入到生成树中。
○1从候选边挑出权值最小的边输出,并将与该边另一端的相接的顶点V并入生成树中。
○2考察所有剩余顶点V i,如果(V,V i)的权值比lowcost[V i]小,则用(V,V i)的权值更新lowcost[V i]。
其中的vset[i]的值记录顶点V[i]顶点是否被选入最小生成树中,V[i]=0,表示为被选入,V[i]=1,表示已被选入。
用到辅助数组pre[],记录当前所选入顶点的前驱结点,当并入前一个顶点时,剩下顶点到生成树的权值发生了改变时,就需要及时修改剩下顶点V[i]的前驱结点。
3、程序设计(1)所用数据结构,图的存储结构模块(nodetype.h)#define MAXSIZE 7#define INF 100typedef struct{int no;}VertexType; //顶点类型定义typedef struct{int edges[MAXSIZE][MAXSIZE]; //存入边的权值int n; //顶点数int e; //总的边数VertexType vex[MAXSIZE];}MGraph; //图的存储结构MGraph g;(2)主模块(main.cpp)#include#include"nodetype.h"#include"initiate.h"#include"prim.h"void prim(MGraph g,int v0,int &sum);int main(){int sum=0;int v0;initiate(g); //图的初始化printf("请输入起点编号:\n");scanf("%d",&v0);//输入起始节点prim(g,v0,sum); //调用prim算法,构成最小生成树printf("最小生成树的总代价为%d\n",sum);return 0;}(3)读取数据模块,图的初始化(initiate.h)void initiate(MGraph &g){int i,j,v0=0;printf("Please input the Sumnum of MGraph:\n");scanf("%d",&g.n);printf("依次输入各边权值(不相临接的边权值为100)!\n\n"); for(i=1;i<=g.n;i++){g.vex[i].no=i; //节点编号for(j=1;j<=g.n;j++){printf("边[%d][%d]的权值为:",i,j);//各边的权值scanf("%d",&g.edges[i][j]);printf("\n");}}}(4)运用贪心策略——Prim算法构造最小生成树(prim.h)void prim(MGraph g,int v0,int &sum){int lowcost[MAXSIZE],vset[MAXSIZE];int v,pre[MAXSIZE]; //pre[]存入前驱结点数组int i,j,k,min;v=v0; //初始起点for(i=1;i<=g.n;i++){lowcost[i]=g.edges[v0][i]; //lowcost[]的数组pre[i]=v0;vset[i]=0;}vset[v0]=1;sum=0;for(i=1;imin=INF;for(j=1;j<=g.n;j++){if(vset[j]==0&&lowcost[j]min=lowcost[j];k=j;}}vset[k]=1; //将此结点并入到所够造的生成树中v=k;if(min!=INF){printf("边的起点为:%d 终点为:%d 权值为%d\n",pre[v],v,min);sum+=min;}else{break;}for(j=1;j<=g.n;j++){//并入新结点后修改剩下的结点到生成树的权值if(vset[j]==0&&g.edges[v][j]lowcost[j]=g.edges[v][j];pre[j]=v; //并记其下全趋结点}}}}4、算法分析Prim算法的时间复杂度主要是在双重循环构造最小生成树的过程中,设图的顶点数为n,则双重循环的时间复杂度为O(n2),在生成最小生成树的过程中,增加了两个数组,vset[]和lowcost[]数组,同时增加了一个前驱数组prey[],用来记录所选顶点的全趋结点,故空间复杂度为O(3n)。
摘要:主要介绍最短路的两种算法,迪杰斯特拉(Dijkstra)以及算法在实际问题中的应用。
关键字:图论,最短路径,树,生成树,迪杰斯特拉(Dijkstra),弗罗伊德(Floyd)算法1 引言最短路问题是图论理论的一个经典问题。
寻找最短路径就是在指定网络中两结点间找一条距离最小的路。
最短路不仅仅指一般地理意义上的距离最短,还可以引申到其它的度量,如时间、费用、线路容量等。
最短路径算法的选择与实现是通道路线设计的基础,最短路径算法是计算机科学与地理信息科学等领域的研究热点,很多网络相关问题均可纳入最短路径问题的范畴之中。
经典的图论与不断发展完善的计算机数据结构及算法的有效结合使得新的最短路径算法不断涌现。
2最短路定义①1若图G=G(V,E)中各边e 都赋有一个实数W(e),称为边e 的权,则称这种图为赋权图,记为G=G(V ,E,W)。
定义②2若图G=G(V,E)是赋权图且()0W e ≥,()e E G ∈,若u 是i v 到j v 的路()W u 的权,则称()W u 为u 的长,长最小的i v 到j v 的路()W u 称为最短路。
3、Dijkstra 算法基本步骤③: 令:{}{}_23,1,,,,i n s v i s v v v === 并令:{()()10,j j W v T v v s-==∞∈1、 对j v s -∈,求()(){}()m in ,j i ij j T v W v w T v +=。
2、 求(){}m in j j v sT v ∈得()k T v ,使()k T v =(){}m in j j v sT v ∈令()()k k W v T v =3、若k n v v =则已找到1v 到n v 的最短路距离()k W v ,否则令i k =从s -中删去i v 转1这样经过有限次迭代则可以求出1v 到n v 的最短路线,可以用一个流程图来表示:第一步先取()10W v =意即1v 到1v 的距离为0,而()j T v 是对()j T v 所赋的初值。
图论本科毕业论文近年来,随着社会的发展和科技的进步,图论在各个领域中得到了广泛应用,尤其是网络科学、计算机科学和数学领域。
图论的基础理论和应用研究,也受到越来越多的关注。
本文主要介绍了图论的基础理论和应用研究,以及本人在此领域中的研究工作。
一、图论的基础理论图论是一门基础数学学科,它主要研究图的结构、性质和算法等方面的问题。
在图论中,图是由节点和边组成的集合,它可以用来描述各种实际问题,例如社交网络、电子电路、物流运输等。
图可以分为有向图和无向图两种类型。
有向图是由有向边连接节点而成的图,可以描述各种节点之间的方向关系。
而无向图则是由无向边连接节点而成的图,不考虑节点之间的方向关系,可以表示各种关系网络。
图论中的一些基本概念包括节点、边、路径、回路和连通性等。
节点是图中的基本元素,边是节点之间的连接线,路径指的是由一系列连续的边连接的节点序列,回路是一个首尾相接的路径。
而连通性则是描述图中各个节点之间的相互可达性的层次结构。
图论的另外一个重要的概念是图的度数。
节点的度数指与此节点相邻的边的数目,而图的度数则是所有节点度数之和。
在研究图的性质和结构时,度数是一个非常重要的指标,它可以用来刻画图的稠密或稀疏程度。
二、图论的应用研究图论在实际中的应用非常广泛。
例如,图论可以用于描述社交网络中各个节点之间的关系网络。
在这个网络中,节点代表人或组织,边则代表人和组织之间的关系。
通过研究这个网络的结构和性质,可以分析社交网络中的信息传播和节点的影响力等问题。
图论也广泛应用于计算机科学领域中。
例如,在计算机网络中,图论可以用来描述网络拓扑结构,并通过研究图的各种性质和算法,来优化网络的性能和安全性。
图论还可以用于描述物流和运输网络中的各种问题。
例如,在交通运输中,可以通过赋予各个节点和边合适的权重来刻画交通拥堵程度,从而优化交通运输的效率。
三、本人在图论领域的研究工作在本人的毕业论文中,我主要研究了图论中的连通性问题。
课程名称图论入门论文题目图论在物流物配送上的应用指导教师刘颖学院管理学院姓名郭凤午学号2011030284图论在物流货物配送中的应用摘要:最短路径问题对于节约人们的时间成本具有重要意义。
最短路问题是图论理论的一个经典问题。
寻找最短路径就是在指定网络中两结点间找一条距离最小的路。
最短路不仅仅指一般地理意义上的距离最短,还可以引申到其它的度量,如时间、费用、线路容量等。
它可被用来解决厂区布局、管路铺设、线路安装等实际问题。
本文介绍了图论的起源和发展、最短路径问题及其算法,并应用图论最短路径问题的分析方法解决物流货物配送中问题。
1 引言数学是一门古老的学科,它已经有了几千年的历史。
然而,图论作为数学的一个分支,却只有200多年的历史,但是其发展十分迅速。
图论是以图为研究对象,图形中我们用点表示对象,两点之间的连线表示对象之间的某种特定的关系。
事实上,任何一个包含了某种二元关系的系统都可以用图形来模拟,而且它具有形象直观的特点,在图中点的位置和线的长短曲直无关紧要[1]。
图论的发展大力地推进了科学文明的进步,解决了很多实际应用问题。
图论是数学领域中发展最快的分支之一,它以图为研究对象。
图论中的图是有若干给定的点及连接两点的线所构成的图形,这种图形常用来描述某些事物之间的某种特定关系,用来代表事物,用连接两点的线表示相应两个事物间具有这种关系。
图论本身是应用数学的一部分,因此,历史上图论曾经被好多位数学家各自独立的建立过。
关于图论的文字记载最早出现在欧拉1736年的论文中,他所考虑的原始问题有很强的实际背景。
数学史上著名的七桥问题欧拉只用了一步就证明了不重复地通过7座桥的路线是根本不存在的!这是拓扑学研究的先声。
图的染色问题一直是图论研究的焦点问题。
数学家赫伍德成功地运用肯普的方法证明了五色定理,即一张地图能够用五种或者更少的颜色染色。
美国伊利诺斯大学的黑肯和阿佩尔,经过四年的艰苦工作.终于完成了四色猜想的证明。
正是上述那些似乎没有多大意义的游戏的抽象与论证的方法,开创了图论科学的研究。
2 图论的起源与发展。
第一阶段是从1736年到19世纪中叶。
1736年是图论的历史元年,当时的图论问题是盛行的迷宫问题和游戏问题。
最有代表性的工作是著名数学家L.Euler于1736年解决的哥尼斯堡七桥问题。
东普鲁士的哥尼斯堡城(现今是俄罗斯的加里宁格勒,在波罗的海南岸)位于普雷格尔河的两岸,河中有一个岛,于是城市被河的分支和岛分成了四个部分,各部分通过7座桥彼此相通。
如同德国其他城市的居民一样,该城的居民喜欢在星期日绕城散步。
于是产生了这样一个问题:从四部分陆地任一块出发,按什么样的路线能做到每座桥经过一次且仅一次返回出发点。
这就是有名的哥尼斯堡七桥问题。
哥尼斯堡七桥问题看起来不复杂,因此立刻吸引所有人的注意,但是实际上很难解决。
瑞士数学家(Leonhard Euler)在1736年发表的“哥尼斯堡七桥问题”的文章中解决了这个问题。
这篇论文被公认为是图论历史上的第一篇论文,Euler也因此被誉为图论之父。
欧拉把七桥问题抽象成数学问题---一笔画问题,并给出一笔画问题的判别准则,从而判定七桥问题不存在解。
Euler是这样解决这个问题的:将四块陆地表示成四个点,桥看成是对应结点之间的连线,则哥尼斯堡七桥问题就变成了:从A,B,C,D任一点出发,通过每边一次且仅一次返回原出发点的路线(回路)是否存在?Euler证明这样的回路是不存在的。
第二阶段是从19世纪中叶到1936年。
图论主要研究一些游戏问题:迷宫问题、博弈问题、棋盘上马的行走线路问题。
一些图论中的著名问题如四色问题(1852年)和Hamilton环游世界问题(1856年)也大量出现。
同时出现了以图为工具去解决其它领域中一些问题的成果。
1847年德国的克希霍夫将树的概念和理论应用于工程技术的电网络方程组的研究。
1857年英国的凯莱也独立地提出了树的概念,并应用于有机化合物的分子结构的研究中。
1936年匈牙利的数学家哥尼格写出了第一本图论专著《有限图与无限图的理论》。
标志着图论作为一门独立学科。
第三阶段是1936年以后。
由于生产管理、军事、交通运输、计算机和通讯网络等方面的大量问题的出现,大大促进了图论的发展。
特别是电子计算机的大量应用,使大规模问题的求解成为可能。
实际问题如电网络、交通网络、电路设计、数据结构以及社会科学中的问题所涉及到的图形都是很复杂的,需要计算机的帮助才有可能进行分析和解决。
目前图论在物理、化学、运筹学、计算机科学、电子学、信息论、控制论、网络理论、社会科学及经济管理等几乎所有学科领域都有应用。
进入20世纪以来, 科学家们对四色猜想的证明基本上是按照肯普的想法在进进行。
电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的过程。
1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,做了100亿判断,终于完成了四色定理的证明。
不过不少数学家并不满足与计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。
我们看到,正是上述那些似乎没有多大意义的游戏的抽象与论证的方法,开创了图论科学的研究。
遗憾的是,由于当时社会生产落后,对图论知识的要求甚寡,这一学科的发展颇为迟缓,甚至处于停滞状态。
此后的一百多年,图论经历了一场爆炸性的发展,终于成长为数学科学中一门独立的学科。
它的主要分支有图论、超图理论、极值图论、算法图论、网络图论和随机图论等。
近几十年来,图论在科学界可以说是异军突起,活跃非常。
3 图论基本概念3. 1 图的定义有序三元组G = < V(G),E(G),ϕ(G) >称为一个图,其中:(1)V(G)={v1,v2,…,v n}是有穷非空集,称为顶点集,其元素叫做图的顶点;(2)E(G)={e1,e2,…,e n}称为边集,其元素叫做图的边;(3)ϕ(G);E→V⨯V是从边集E到顶点集V的有序或者无序对集合的影射,称为关联函数。
3. 2 图的分类在图G中,与V中的有序偶(v i,v j)对应的边e称为图的有向边(或弧),而与V中顶点的无序偶对应的边e称为图形的无向边,每一条边都是无向边的图,叫做无向图,记为G = (V,E);每一条边都是有向边的图叫做有向图,记为D =(V,E);既有无向边又有有向边的图叫做混合图。
3. 3 权如果图G中任意一条边(v i ,v j)上都附有一个数W ij,则称这样的图G为赋权图,W ij称为边(v i,v j)上的权(weight)。
4 最短路径问题最短路径问题(shortest path problem)是图论中的一个基本问题。
在赋权图(weighted graph)中,每条边都有一个数值——权(weight,代表其长度、成本、时间等),找出两节点之间总权和最小的路径就是最短路径问题。
最短路径算法包括指定顶点对之间的最短路径算法和所有顶点间的最短路径算法,前者对于运输的合理化具有重要理论意义,而后者的意义在于选择合理的中转中心,使得总的费用最少。
在图论中最典型的两种求最短路径算法分别是Dijkstra 算法和Floyd算法,其中Dijkstra算法适用于前者,而Floyd算法适用于后者。
物流货物配送中心的选址问题就是所有顶点间的最短路径问题,在本文中使用的算法就是最具有代表性的Floyd算法。
4.1 Floyd算法的基本思想全部顶点间最短路径算法具有代表性的是1962年由福劳德(Floyd)提出的算法。
他的主要思想是从代表任意2个顶点vi到vj的距离的带权邻接矩阵开始,每次插入一个顶点vk,然后将vi到vj间的已知最短路径与插入顶点vk作为中间顶点(一条路径中除始点和终点外的其他顶点)时可能产生的vi到vj路径距离比较,取较小值以得到新的距离矩阵,如此循环迭代下去,依次构造出n 个矩阵D(1),D(2),…,D(n),当所有的顶点均作为任意2个矩阵vi到vj中间顶点时得到的最后的带权邻接矩阵D(n)就反映了所有顶点对之间的最短距离信息,成为图G的距离矩阵。
最后对G中各行元素求和值并比较大小,决定单个或多个最佳的点。
4.2 Floyd算法1.算法内容:从任意一条单边路径开始。
所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。
对于每一对顶点u 和v,看看是否存在一个顶点w 使得从u 到w 再到v 比已知的路径更短。
如果是更新它。
图用邻接距阵G表示出来,如果从Vi到Vj有路可达,则G[i,j]=d,d表示该路的长度;否则G[i,j]=无穷大。
定义一个距阵D用来记录所插入点的信息,D[i,j]表示从Vi到Vj需要经过的点,初始化D[i,j]=j。
把各个顶点插入图中,比较插点后的距离与原来的距离,G[i,j] = min( G[i,j], G[i,k]+G[k,j] ),如果G[i,j]的值变小,则D[i,j]=k。
在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息比如,要寻找从V5到V1的路径。
根据D,假如D(5,1)=3则说明从V5到V1经过V3,路径为{V5,V3,V1},如果D(5,3)=3,说明V5与V3直接相连,如果D(3,1)=1,说明V3与V1直接相连。
2.构造距离矩阵的原理对一个有n个顶点的图G,将顶点用n个整数(从1到n)进行编号。
把G 的带权邻接矩阵W作为距离的初值,即D(0)=(d ij(0))n x m=W。
第一步构造D(1)=(d ij(1))n x m ,其中d ij(1)=min{ d ij(0),d i1(0)+d1j(0) }是从v i到v j的只允许以v1作为中间点的路径中最短路长度。
第二步构造D(2)=(d ij(2))n x m ,其中d ij(2)=min{ d ij(1),d i2(1)+d2j(1) }是从v i到v j的只允许以v1 、v2作为中间点的路径中最短路长度。
第n步构造D(n)=(d ij(n))n x m ,其中d ij(n)=min{ d ij(n),d in(n)+d nj(n) }是从v i 到v j的只允许以v1、v2、…、v n作为中间点的路径中最短路长度,即是从v i到v j中间可插入任何顶点的路径中最短路的长度,因此D(n)即是距离矩阵。
5 在物流货物配送中的应用某物流公司考虑在开发区建立物流网并选取一个总的配送中心。
物流货物配送中心的选址问题中,点表示可供选址的物流分公司,而其间的连线表示运输费用,其需求点之间运费如图1所示(英文字母为可选物流分公司,数字为相邻站点之间的运费)。
在物流配送中心的选址中,要求该中转站到其他站点的距离最短,即运输费用最少,这里通过运用最短路径Floyd算法可以求出该网点布局的最佳中转站。