微分方程模型
- 格式:doc
- 大小:264.00 KB
- 文档页数:7
微分方程模型的建立与求解微分方程是自然界中许多现象的数学描述,通过建立微分方程模型可以更好地理解和预测各种现象。
本文将介绍微分方程模型的建立与求解方法。
一、微分方程模型的建立微分方程通常用来描述系统内部的变化规律,要建立微分方程模型,首先需要根据具体问题分析系统的特点,确定影响系统变化的因素,并建立相关的数学表达式。
以一个简单的弹簧振子系统为例,假设弹簧的位移为x(t),弹簧的弹性系数为k,质量为m,外力为f(t),则可以建立微分方程模型:$$ m\\frac{{d^2x}}{{dt^2}} + kx = f(t) $$二、微分方程模型的求解1. 解析解法对于一些简单的微分方程,可以通过解析的方法求解。
例如,对于一阶线性微分方程:$$ \\frac{{dy}}{{dx}} + P(x)y = Q(x) $$可以通过积分因子的方法求解。
2. 数值解法对于复杂的微分方程或无法求得解析解的情况,可以借助数值方法进行求解。
常用的数值解法包括欧拉方法、龙格-库塔法等,通过逐步迭代逼近真实解。
3. 计算机模拟借助计算机编程,可以通过数值方法对微分方程进行求解,这在实际工程和科学研究中非常常见。
利用计算机程序,可以模拟出系统的运行状态,观察系统的响应特性。
三、实例分析以简单的振动系统为例,通过建立微分方程模型并利用数值方法进行求解,可以分析系统的振动特性。
通过调节参数值,可以观察到系统振动的变化规律,为系统设计和控制提供重要参考。
结论微分方程模型的建立与求解是数学建模中的重要一环,通过适当的模型建立和求解方法,可以更好地了解和预测系统的行为。
在实际应用中,需要综合运用解析方法、数值方法和计算机模拟,以全面分析和解决问题。
以上是关于微分方程模型的建立与求解的介绍,希望对读者有所帮助。
常见的微分方程模型引言微分方程是数学中的一个重要分支,用于描述自然界中的各种现象和规律。
微分方程模型是一类特定形式的微分方程,常用于解决实际问题。
本文将介绍几个常见的微分方程模型,并讨论它们在不同领域中的应用。
1. 简单增长模型简单增长模型描述了一个系统中某个物质或某个群体数量随时间变化的规律。
它可以用以下形式表示:dNdt=rN其中,N表示物质或群体的数量,t表示时间,r表示增长率。
这个模型可以应用于人口增长、细菌繁殖等问题。
例如,在人口学中,我们可以使用简单增长模型来预测未来人口数量的变化趋势。
2. 指数衰减模型指数衰减模型描述了一个系统中某个物质或某个群体数量随时间指数衰减的规律。
它可以用以下形式表示:dNdt=−rN其中,N表示物质或群体的数量,t表示时间,r表示衰减率。
这个模型可以应用于放射性元素的衰变、药物的消失等问题。
例如,在医学中,我们可以使用指数衰减模型来预测药物在人体内的浓度随时间的变化。
3. 指数增长模型指数增长模型描述了一个系统中某个物质或某个群体数量随时间指数增长的规律。
它可以用以下形式表示:dN dt =rN(1−NK)其中,N表示物质或群体的数量,t表示时间,r表示增长率,K表示系统的容量。
这个模型可以应用于生态学中研究种群数量随时间变化的问题。
例如,在生态学中,我们可以使用指数增长模型来研究某种生物在特定环境下的种群动态。
4. 鱼类生长模型鱼类生长模型描述了鱼类体重随时间变化的规律。
它可以用以下形式表示:dW dt =rW(1−WK)其中,W表示鱼类的体重,t表示时间,r表示生长速率,K表示饱和重量。
这个模型可以应用于渔业学中研究鱼类养殖和捕捞的问题。
例如,在渔业学中,我们可以使用鱼类生长模型来预测鱼类的生长轨迹和最优捕捞量。
5. 热传导方程热传导方程描述了物体内部温度随时间和空间变化的规律。
它可以用以下形式表示:∂u ∂t =α∂2u∂x2其中,u(x,t)表示物体在位置x处、时间t时的温度,α表示热扩散系数。
常见的微分方程模型微分方程是数学的一个重要分支,广泛应用于自然科学和工程领域。
它描述了物理现象、社会问题和自然现象的变化规律,能够帮助我们理解和预测各种现象的发展趋势。
下面将介绍一些常见的微分方程模型。
1. 一阶线性微分方程一阶线性微分方程是最简单且常见的微分方程之一。
它可以描述许多实际问题,比如放射性衰变、人口模型等。
一阶线性微分方程的一般形式可以写为dy/dt = f(t) * y + g(t),其中f(t)和g(t)是已知函数,y是未知函数。
2. 指数衰减模型指数衰减模型是描述某种变化过程的常见微分方程。
它可以用来描述放射性物质的衰变、人口增长的趋势等。
指数衰减模型的一般形式是dy/dt = -ky,其中k是常数。
这个方程表示y的变化速率与y本身成比例,且反向。
3. 扩散方程扩散方程是描述物质或能量传递过程的微分方程。
它可以用来研究热传导、扩散现象等。
扩散方程的一般形式是∂u/∂t = D ∇²u,其中u是未知函数,D是扩散系数,∇²是Laplace算子。
这个方程表示u 的变化率与u的二阶导数成正比。
4. 多体问题多体问题是描述多个物体之间相互作用的微分方程模型。
它可以用来研究天体运动、分子碰撞等问题。
多体问题的方程通常包括牛顿第二定律和对应的初始条件,如F = ma和相关的速度、位置初值条件。
5. 随机微分方程随机微分方程是考虑了随机因素的微分方程模型。
它可以用来研究金融市场的波动、生态系统的不确定性等。
随机微分方程的方程形式通常会引入一个随机项,如dy/dt = f(t, y) dt + g(t, y) dW,其中dW是布朗运动,表示随机项。
以上介绍的是一些常见的微分方程模型,它们在理论和实际应用中都具有重要的地位。
通过研究这些模型,我们可以深入理解各种现象背后的数学规律,并且为实际问题提供解决方案。
微分方程模型不仅有助于推动数学的发展,还在科学研究、工程设计和技术创新等领域中发挥着重要作用。
数学建模微分方程模型在数学建模的旅程中,微分方程模型扮演了至关重要的角色。
它们在描述和解决各种实际问题中,从物理学到社会科学,都起到了关键的作用。
在本章中,我们将探讨微分方程模型的基本概念、类型和应用。
微分方程是一种方程,它包含未知函数的导数。
这种方程在描述变化率时非常有用,例如,描述物体的速度或加速度。
在形式上,微分方程可以表示为 y'(x) = f(x, y),其中 y'表示 y的导数,f是一个给定的函数。
根据方程的特点,微分方程可以划分为多种类型,如线性微分方程、非线性微分方程、常微分方程、偏微分方程等。
每种类型的方程都有其特定的求解方法和应用领域。
微分方程在众多领域中都有应用,如物理学、工程学、经济学等。
例如,牛顿第二定律就是一个微分方程,它描述了物体的加速度如何由作用力决定。
人口增长模型、传染病模型等也都依赖于微分方程。
建立微分方程模型通常需要以下步骤:确定模型的目标和变量;然后,根据问题背景和物理规律建立数学模型;通过数值计算或解析解法得出结果。
求解微分方程的方法主要有两种:数值方法和解析方法。
数值方法是通过计算机程序或软件进行数值计算得到近似解,而解析方法是通过求解方程得到精确解。
对于某些类型的微分方程,可能需要结合使用这两种方法。
建立微分方程模型后,我们需要对模型进行评估和检验,以确保其有效性和准确性。
这通常包括对模型的假设进行检验、对模型的预测结果进行验证以及对模型的参数进行估计和调整等。
随着科学技术的发展,微分方程模型的应用前景越来越广阔。
例如,在生物学中,微分方程被用来描述疾病的传播动态;在经济学中,微分方程被用来分析市场供需关系的变化;在工程学中,微分方程被用来模拟复杂系统的行为等。
未来,随着大数据和人工智能等技术的发展,微分方程模型将在更多领域得到应用和发展。
微分方程模型是数学建模中一个极其重要的部分。
通过学习和掌握微分方程的基本概念、类型、应用以及求解方法等,我们可以更好地理解和解决现实生活中的各种问题。
微分方程数学模型应用举例
1. 生物学模型:微分方程可以用于描述生物系统中的各种动态过程。
例如,Lotka-Volterra模型是一种描述捕食者和被捕食者之间相互作用的微分方程模型,可以用于研究食物链中物种的数量和相互关系。
2. 经济学模型:微分方程可以用于描述经济系统中的各种变化和趋势。
例如,Solow增长模型是一种描述经济增长和资本积累的微分方程模型,可以用于分析国家经济发展的长期趋势。
3. 物理学模型:微分方程可以用于描述物理系统中的各种动态过程。
例如,带有阻尼和驱动力的简谐振动可以用二阶线性常微分方程来描述,可以用于研究机械系统中的振动现象。
4. 化学反应动力学模型:微分方程可以用于描述化学反应中物质浓度随时间变化的关系。
例如,化学反应速率方程可以用一阶或二阶线性微分方程来描述,可以用于研究化学反应速率的变化规律。
5. 环境科学模型:微分方程可以用于描述环境系统中的各种变化和相互作用。
例如,Black-Scholes模型是一种描述金融市场中期权价格变化的微分方程模型,可以用于分析金融市场的波动和风险。
6. 工程科学模型:微分方程可以用于描述工程系统中的各种动态过程。
例如,控制系统中的传递函数可以用微分方程表示,可以用于研究系统的稳定性和响应特性。
这些只是微分方程在数学模型中的一些应用举例,实际上微分方程在各个学科领域中都有广泛的应用。
微分方程模型案例库一、经济学模型人口增长模型:人口增长可以用微分方程描述,最简单的模型是人口增长速率与人口数量成正比,即dP/dt=kP。
其中,P是人口数量,t是时间,k是一个常数。
这个模型可以体现人口增长速度与人口数量的关系,可以用来预测未来的人口增长趋势。
供求模型:供求模型是经济学中常用的模型,可以用微分方程描述。
设商品的需求函数为Qd=f(p)(商品需求量与价格的关系),供给函数为Qs=g(p)(商品供给量与价格的关系)。
则供求平衡点满足p和Qs、Qd的交点,即f(p)=g(p)。
通过求解这个方程组,可以得到经济体中的均衡价格和交易量。
二、物理学模型自由落体模型:自由落体是一个常见的物理现象,可以用微分方程描述。
设物体下落的速度为v,物体的质量为m,重力加速度为g,则质量与速度之间的关系为m(dv/dt)=mg。
通过求解这个微分方程,可以得到物体下落的速度随时间的变化。
阻尼振动模型:阻尼振动是另一个常见的物理现象,可以用微分方程描述。
设物体的位移为x,阻尼系数为b,弹簧常数为k,则质量、阻尼和弹簧之间的关系为m(d^2x/dt^2)+b(dx/dt)+kx=0。
通过求解这个微分方程,可以得到物体振动的特性,包括振幅、周期等。
三、生物学模型物种竞争模型:物种竞争是生物学中一个重要的研究问题,也可以用微分方程模型来描述。
设两个物种的数量分别为x和y,它们的增长速率分别为dx/dt和dy/dt,竞争系数为a和b,资源可持续利用的速率为r,则物种数量的变化满足dx/dt=a*x*(1-(x+y)/r)-b*x*y和dy/dt=b*x*y-a*y*(1-(x+y)/r)。
通过求解这个方程组,可以得到两个物种数量随时间的变化,从而研究它们之间的竞争关系。
病毒传播模型:病毒传播是流行病学中的重要问题,也可以用微分方程模型来描述。
设感染者的数量为I,易感者的数量为S,恢复者的数量为R,感染率为β,康复率为γ,则感染者、易感者和恢复者的变化满足dS/dt=-β*S*I,dI/dt=β*S*I-γ*I,dR/dt=γ*I。
微分方程模型是一种用于描述动态系统演化过程的数学模型,它可以预测和分析系统的行为。
微分方程模型的优点和不足如下:
优点:
准确性:微分方程模型可以准确地描述系统的内部规律和事物的内在关系,因此能够提供比较精确的预测结果。
适用性广:微分方程模型适用于多种类型的问题,包括物理、几何、生物、经济等领域。
可解释性强:微分方程模型的建立基于相关原理的因果预测法,因此其解释性比较强,能够提供关于系统行为的深入理解。
不足:
建立困难:微分方程模型的建立需要深厚的数学基础和专业知识,因此对于一些非专业人士来说可能比较困难。
求解困难:微分方程模型的求解过程可能比较复杂,需要使用数值方法或近似方法进行求解,这可能会增加模型的复杂性和计算成本。
局限性:微分方程模型主要适用于连续型问题,对于离散型问题可能不太适用。
此外,微分方程模型的预测结果也可能受到一些假设条件和参数的影响,因此需要注意其适用范围和局限性。
总之,微分方程模型具有优点和不足,需要根据具体问题进行选择和应用。
在使用微分方程模型时,需要注意其适用范围和局限性,并结合实际情况进行模型的建立和改进。
微分方程模型引言微分方程是描述自然界中很多现象和问题的数学模型。
通过建立微分方程模型,我们可以定量地描述和预测各种物理、化学、生物和工程问题的演化和变化。
本文将介绍微分方程模型的基本概念、常见类型和求解方法,并给出一些应用实例。
基本概念微分方程是含有未知函数及其导数的方程。
通常用符号形式表示如下:F(x, y, y', y'', ..., y^(n)) = 0其中,y是未知函数,x是自变量,n是方程中最高阶导数的阶数。
微分方程模型是以微分方程为基础,结合具体物理、化学、生物和工程问题的特点所建立的数学模型。
通过对问题的建模,我们可以将真实世界中复杂的问题简化为数学形式,从而利用微分方程的性质和解析方法求解或近似解。
常见类型微分方程可以分为多种类型,常见的包括:•一阶常微分方程:包含一个未知函数的一阶导数的方程,形式如下:y' = f(x, y)•高阶常微分方程:包含一个未知函数的高阶导数的方程,形式如下:F(x, y, y', y'', ..., y^(n)) = 0•偏微分方程:包含多个未知函数及其偏导数的方程,形式如下:F(x, y, z, ∂u/∂x, ∂u/∂y, ∂u/∂z, ∂^2u/∂x^2, ∂^2u/∂y^2, ∂^2u/∂z^2, ..., ∂^nu/∂x^n, ∂^nu/∂y^n, ∂^nu/∂z^n) = 0求解方法求解微分方程模型的方法包括解析解和数值解。
解析解对于一些简单的微分方程模型,可以通过解析方法求得解析解。
解析解是指能够用数学公式精确表示的解。
解析解求解的基本思路是尝试找到满足微分方程的函数形式,并通过代入求导的方式得到方程中的常数。
一些经典的微分方程模型如线性微分方程、齐次线性微分方程、可分离变量的微分方程等可以通过解析方法求解。
数值解对于一些复杂的微分方程模型,无法找到解析解或解析解难以求得,我们可以采用数值解法进行近似求解。
数学建模学习辅导第三章 微分方程模型本章重点:车间空气清洁问题、减肥问题、单种群增长问题与多物种相互作用问题等数学模型的建立过程与所使用的方法复习要求:1.进一步理解建模基本方法与基本建模过程,掌握平衡原理与微元法在建模中的用法.所谓平衡原理是指自然界的任何物质在其变化的过程中一定受到某种平衡关系的支配.注意发掘实际问题中的平衡原理是从物质运动机理的角度组建数学模型的一个关键问题.就象中学的数学应用题中等量关系的发现是建立方程的关键一样.微元法是指在组建对象随着时间或空间连续变化的动态模型时,经常考虑它在时间或空间的微小单元变化情况,这是因为在这些微元上的平衡关系比较简单,而且容易使用微分学的手段进行处理.这类模型基本上是以微分方程的形式给出的.例1 设警方对司机饮酒后驾车时血液中酒精含量的规定为不超过80%(mg/ml). 现有一起交通事故,在事故发生3个小时后,测得司机血液中酒精含量是56%(mg/ml), 又过两个小时后, 测得其酒精含量降为40%(mg/ml),试判断: 事故发生时,司机是否违反了酒精含量的规定? 解:模型建立设)(t x 为时刻t 的血液中酒精的浓度, 则依平衡原理时间间隔],[t t t ∆+内, 酒精浓度的改变量t t x x ∆⋅∝∆)(, 即t t kx t x t t x ∆-=-∆+)()()(其中k >0为比例常数, 式前负号表示浓度随时间的推移是递减的, 遍除以t ∆, 并令0→∆t , 则得到,d d kx tx-= 且满足40)5(,56)3(==x x 以及0)0(x x =.模型求解容易求得通解为ktc t x -=e)(, 代入0)0(x x =,得到kt x t x -=e )(0则)0(0x x =为所求. 又由,40)5(,56)3(==x x 代入0)0(x x =可得17.04056e 40e 56e 25030=⇒=⇒⎩⎨⎧==--k x x k kk将17.0=k 代入得 25.93e 5656e17.03017.030≈⋅=⇒=⨯⨯-x x >80 故事故发生时,司机血液中的酒精浓度已超出规定.2.理解种群的相互关系模型的建立原理与结论.• 马尔萨斯模型模型假设(1)初始种群规模已知(设为N 0),种群数量非常大,世代互相重叠,因此种群的数量可以看作是连续变化的;(2)种群在空间分布均匀,没有迁入和迁出(或迁入和迁出平衡);(3)种群的出生率和死亡率为常数,即不区分种群个体的大小、年龄、性别等. (4)环境资源是无限的. 确定变量和参数 :t 自变量,t t N :)(时刻的种群密度, :b 出生率,:d 死亡率.模型的建立与求解由上述假设,单种群增长模型与马尔萨斯人口模型极为类似,于是使用完全相同的建模过程易得)(:)()(d )(d t rN t N d b tt N =-= (3.1) 满足初始条件0)0(N N =的解为.e e )(0)(0rt t d b N N t N ==-于是有,)(lim ,,0+∞=>>+∞→t N d b r t 则有即,)(lim ,,00N t N d b r t ===+∞→则有即,0)(lim ,,0=<<+∞→t N d b r t 则有即在种群生长的初期,种群规模较小,有足够的生存空间、足够的食物,彼此间没有利益冲突.但随着种群规模的逐渐扩大,对有限的空间、食物和其他生存必须条件的种内竞争越来越激烈,这必然影响种群的出生率和死亡率,从而降低实际增长率,因而在上述模型中假设出生率、死亡率为常数,资源无限不尽合理.• 罗捷斯蒂克模型完全类似于人口模型的分析知道,种群的增长模型为⎪⎩⎪⎨⎧=-=,)0(),1(0N N K N rN dt dN(3.2) 其中r 是种群的固有(N =0时)增长率,K 是环境的最大容纳量.方程(3.2)既是变量可分离方程,又是贝努利型方程.容易求得其解为00)()(N eN K KN t N rt+-=- (3.3)3.会建立较为简单的相关实际问题的数学模型.例2 在凌晨1时警察发现一具尸体, 测得尸体温度是29︒C, 当时环境温度是21︒C . 一小时后尸体温度下降到27︒C , 若人的正常体温是37︒C , 估计死者的死亡时间.解 运用牛顿冷却定律T ')(T T out -=-α, 得到它的通解为 )(0out out T T T T -+=tα-e , 这里0T 是当0=t 时尸体的温度, 也就是所求的死亡时间时尸体的温度, 将题目提供的参数代入:⎩⎨⎧=-+=-++--27e)2137(2129e )2137(21)1(t t αα 解得: 168e=-tα 和 166e)1(=+-t α 则34e =α求得:)(409.2)12(,2877.0h Ln t ≈-=≈αα 这时求得的t 是死者从死亡起到尸体被发现所经历的时间, 因此反推回去可推测死者的死亡时间大约是前一天的夜晚10:35.例3 设某种动物头数的变化服从Logistic 规律.在正常情况下净相对增长率为a 1,环境容许的极限头数为N 1.假设当头数增加到Q (Q < N 1)时瘟疫流行,使净相对增长率为a 2,极限头数降为N 2(N 2< Q ),于是头数下降.当降至q (q >N 2)时,瘟疫停止,恢复正常.试建立这种情况下动物头数的模型,并讨论在瘟疫影响下动物头数的周期性变化,周期与哪些因素有关.解 由题中条件知,动物头数x (t )应满足:⎪⎪⎩⎪⎪⎨⎧-=-=瘟疫流行时正常时)1(~d ~d )1(d d 2211N x x a t x N x x a t x解得⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-+=----瘟疫流行时正常时)(22)(111201e )1(1)(~e )1(1)(t t a t t a Q N N t x q N N t x其中10,t t 分别为开始转入正常的时刻和开始转入瘟疫流行的时刻,由Q q NN t x t t a =-+=--)(1101e )1(1)(解得 )()(ln 11110Q N q q N Q a t t --=- 由 q QNN t x t t a =-+=--)(2212e )1(1)(~解得 )()(ln 12221N q Q N Q q a t t --=- 即动物头数周期性变化,其周期为)()(ln 1)()(ln 1222111N q Q N Q q a Q N q q N Q a T --+--=典型例题 一、填空题:1.设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若人口增长率是常数r ,那麽人口增长问题的马尔萨斯模型应为 ,其解为 .解 应该填写:⎪⎩⎪⎨⎧==0)0(d d x x rx t x ,.e )(0rtx t x =2.设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若允许的最大人口数为m x ,人口增长率由sx r x r -=)(表示,则人口增长问题的罗捷斯蒂克模型为 ,其解为 .解 应该填写: ⎪⎩⎪⎨⎧=-=0)0()1(d d x x x x rx t xm,.e )1(1)(0rtm m x x x t x --+=二、分析判断题1.对于技术革新的推广,在下列几种情况下分别建立模型.(1)推广工作通过已经采用新技术的人进行,推广速度与采用新技术的人数成正比,推广是无限的.(2)总人数有限,因而推广速度还会随着尚未采用新技术人数的减少而降低. (3)在(2)的前提下考虑广告等媒介的传播作用. 解:设t 时刻采用新技术的人数为x (t ).(1)指数模型x t xλ=d d . (2)Logistic 模型)(d d x N ax tx-=,N 为总人数.(3)广告等媒介在早期作用较大,它对传播速度的影响与尚未采用新技术的人数成正比,在模型(2)的基础上,有))((d d x N b ax tx-+= (2)和(3)区别见图1.图12.某种疾病每年新发生1000例,患者中有一半当年可治愈.若2000年底时有1200个病人,到2005年将会出现什么结果?有人说,无论多少年过去,患者人数只是趋向2000人,但不会达到2000人,试判断这个说法的正确性.解: 根据题意可知:下一年病人数=当年患者数的一半+新患者.于是令n X 为从2000年起计算的n 年后患者的人数,可得到递推关系模型:10005.01+=+n n X X 得递推公式).211(2000210n n n X X -+=由,12000=X 可以算出2005年时的患者数19755=X 人.由递推公式容易看出,,2000→n n X X ,且是单调递增的正值数列故结论正确.三、计算题1.建立铅球掷远模型.不考虑阻力,设铅球初速度为v ,出手高度为h ,出手角度为α(与地面夹角),建立投掷距离与v ,h ,α的关系式,并求v ,h 一定的条件下求最佳出手角度. 解:在图2坐标下铅球运动方程为0=x,g y -= ,0)0(=x ,h y =)0(, αcos )0(v x= ,αsin )0(v y = . 解出)(t x ,)(t y 后,可以得铅球掷远为ααααcos )2sin (cos sin 212222v g hgv g v R ++= 图2这个关系还可表为 )tan (cos 2222ααR h v g R +=.由此计算0d d =*ααR ,得最佳出手角度和最佳成绩分别为:)(2sin 21gh v v +=-*α, gh v gvR 22+=*. 设h =1.5m ,v =10m/s ,则4.41=*α,m 4.11=*R .2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:xNrx t xln )(= ,其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为h =Ex .讨论渔场鱼量的平衡点及其稳定性,求最大持续产量h m 及获得最大产量的捕捞强度 E m 和渔场鱼量水平x *0. 解: 模型为 Ex xNrx x F x-==ln )( , 如图3所示,有2个平衡点:x = 0和x 0 =rE N -e.可证x = 0不稳定,x 0稳定(与E ,r 的大小无关).最大持续产量为h m = rN/e ,获得h m 的E m = r ,x *0 =e /N . 图33.在一种溶液中,化学物质A 分解而形成B ,其速度与未转换的A 的浓度成比例.转换A 的一半用了20分钟,把B 的浓度y 表示为时间的函数,并作出图象. 解:记B 的浓度为时间t 的函数y (t ),A 的浓度为x (t ). 一、假设1.1molA 分解后产生n molB . 2.容体的体积在反应过程中不变. 二、建立模型,求解有假设知,A 的消耗速度与A 的浓度成比例,故有下列方程成立kx tx-=d d 其中k 为比例系数.设反应开始时t = 0,A 的浓度为x 0,由题中条件知当t = 20(分)时,A 的浓度为021)20(x x =.解初值问题⎪⎩⎪⎨⎧==-)0(d d x x kx t xrN/得 ktx t x -=e )(0它应满足020021e )20(x x x k ==⨯- 解得 2ln 201=k 所以得 )2ln 200e )((tx t x -=由于B 的浓度为x 浓度减少量的n 倍,故有)e1(]e[)(2ln 2002ln 2000ttnx x x n t y ---=-=三、作图(如图4) 图4nx。