【精选】湘教版九年级数学下册期中试卷有答案
- 格式:doc
- 大小:160.61 KB
- 文档页数:5
湘教版九年级数学下册期中考试卷【含答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中,最简二次根式的是( ) A .15B .0.5C .5D .502.下列说法中正确的是 ( ) A .若0a <,则20a < B .x 是实数,且2x a =,则0a > C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.在实数|﹣3|,﹣2,0,π中,最小的数是( ) A .|﹣3|B .﹣2C .0D .π4.当1<a<2时,代数式|a -2|+|1-a|的值是( ) A .-1B .1C .3D .-35.如果分式||11x x -+的值为0,那么x 的值为( )A .-1B .1C .-1或1D .1或06.若2x y +=-,则222x y xy ++的值为( ) A .2-B .2C .4-D .47.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BC B .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A 在反比例函数y=6x(x >0)的图象上,则经过点B 的反比例函数解析式为( )A .y=﹣6xB .y=﹣4xC .y=﹣2xD .y=2x9.如图,扇形OAB 中,∠AOB=100°,OA=12,C 是OB 的中点,CD ⊥OB 交AB 于点D ,以OC 为半径的CE 交OA 于点E ,则图中阴影部分的面积是( )A .12π+183B .12π+363C .6π+183D .6π+36310.已知0ab <,一次函数y ax b =-与反比例函数ay x=在同一直角坐标系中的图象可能( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1124503_____. 2.分解因式:34x x -=________.3.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是__________.4.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为__________.5.如图,抛物线y=﹣x 2+2x+3与y 轴交于点C ,点D (0,1),点P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,则点P 的坐标为__________.6.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.三、解答题(本大题共6小题,共72分)1.解方程:33122x x x -+=--2.已知关于x 的一元二次方程2(3)0x m x m ---=. (1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.3.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式; (2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.4.如图,四边形ABCD 内接于⊙O ,∠BAD=90°,点E 在BC 的延长线上,且∠DEC=∠BAC .(1)求证:DE 是⊙O 的切线;(2)若AC ∥DE ,当AB=8,CE=2时,求AC 的长.5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A :篮球 B :乒乓球C :羽毛球 D :足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、B5、B6、D7、D8、C9、C 10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2、x (x +2)(x ﹣2).3、k <44、25、(,2)或(1,2).6、454353x y x y +=⎧⎨-=⎩三、解答题(本大题共6小题,共72分)1、4x =2、(1)证明见解析(2)1或23、(1)抛物线的解析式为223y x x =--+,直线的解析式为3yx.(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或(-或(-.4、(1)略;(2)AC的长为5. 5、解:(1)200.(2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P126==.。
湘教版九年级数学下册期中试卷【带答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( )A .14B .7C .﹣2D .24.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定5.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x ﹣1)2+4C .y=(x+1)2+2D .y=(x ﹣1)2+26.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x <3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤8.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm 9.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.52cm C.53cm D.6cm10.如图,能判定EB∥AC的条件是()A.∠C=∠1 B.∠A=∠2C.∠C=∠3 D.∠A=∠1二、填空题(本大题共6小题,每小题3分,共18分)1.计算:27﹣12=__________.2.因式分解:32-+=_________.69a a a3.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为__________.4.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为__________.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.6.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.三、解答题(本大题共6小题,共72分)1.解方程:33122 xx x-+=--2.已知关于x的方程220x ax a++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.3.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.4.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.5.共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A、B、C、D 的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、A5、D6、C7、A8、B9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)12、2(3)a a -3、(3,7)或(3,-3)4、5、360°.6、5三、解答题(本大题共6小题,共72分)1、4x =2、(1)12,32-;(2)证明见解析. 3、(1)略;(2)S 平行四边形ABCD =244、(1)略;(2)AC 的长为5. 5、(1)14;(2)16。
湘教版九年级数学下册期中试卷【及答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2的倒数是( )A .2B .12C .12-D .-22.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .1523.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限5.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D . 6.对于二次函数,下列说法正确的是( ) A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图,AB 、是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④9.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是:( )A .B .C .D .10.如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F 处.若AB =3,BC =5,则tan ∠DAE 的值为( )A.12B.920C.25D.13二、填空题(本大题共6小题,每小题3分,共18分)1.化简:4=____________.2.因式分解:3x3﹣12x=_______.3.若a、b为实数,且b=22117a aa-+-++4,则a+b=__________.4.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需__________米.5.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m.6.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为___________cm.三、解答题(本大题共6小题,共72分)1.解方程:12133xx x -+=--2.先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.3.已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣mx>0的解集.4.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.5.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、B5、B6、B7、B8、B9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、22、3x(x+2)(x﹣2)3、5或34、2+235、1 36、15.三、解答题(本大题共6小题,共72分)1、1x=2、-11x+,-14.3、(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣2;(2)6;(3)x<﹣4或0<x<2.4、(1)略;(2)AC的长为1655.5、(1)600(2)见解析(3)3200(4)。
湘教版九年级数学下册期中测试卷及答案【各版本】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是()A.3B.13C.13-D.3-2.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥33.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.24.当1<a<2时,代数式|a-2|+|1-a|的值是()A.-1 B.1 C.3 D.-35.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 6.下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等 B.对角线互相平分C.对角线互相垂直 D.邻边互相垂直7.如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.248.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABCC.AP ABAB AC=D.AB ACBP CB=9.若关于x的一元二次方程2210x x kb-++=有两个不相等的实数根,则一次函数y kx b=+的图象可能是:()A. B.C. D.10.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45︒B.50︒C.60︒D.75︒二、填空题(本大题共6小题,每小题3分,共18分)1.8的立方根为___________.2.分解因式:a2﹣4b2=_______.3.若a,b都是实数,b12a-21a-﹣2,则a b的值为__________.4.如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为__________.5.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C 处测得A,B两点的俯角分别为45和30.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为______米(结果保留根号).6.如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:3213 xx x--=-2.先化简,再求值:822224x xxx x+⎛⎫-+÷⎪--⎝⎭,其中12x=-.3.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.4.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、D4、B5、C6、C7、A8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、(a+2b)(a﹣2b)3、44、140°5、) 120016、2三、解答题(本大题共6小题,共72分)1、95 x=2、3.3、(1)略;(2)37°4、(1)略;(2)1;(3)略.5、(1)90人,补全条形统计图见解析;.(2)48︒;(3)560人.。
湘教版九年级数学下册期中考试题及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4B .4C .﹣2D .2 3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 4.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 5.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .86.已知1x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( )A .-1或2B .-1C .2D .07.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A.3x2>B.x3>C.3x2<D.x3<8.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k 的图象大致是()A. B.C. D.9.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.24B.14C.13D.2310.如图,点A,B在双曲线y=3x(x>0)上,点C在双曲线y=1x(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于()A2B.2C.4 D.2二、填空题(本大题共6小题,每小题3分,共18分)1.27的立方根是____________.2.分解因式:2x +xy =_______.3.已知二次函数y =x 2,当x >0时,y 随x 的增大而_____(填“增大”或“减小”).4.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =__________度.5.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点P (m ,n )在第二象限的概率为__________.6.如图,在ABC ∆中,AB AC =,点A 在反比例函数k y x=(0k >,0x >)的图象上,点B ,C 在x 轴上,15OC OB =,延长AC 交y 轴于点D ,连接BD ,若BCD ∆的面积等于1,则k 的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:24221933x x x x =+---+2.先化简,再求值:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中2x =.3.如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.4.如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF和AD.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠EAC=60°,求AD的长.5.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、D5、C6、B7、C8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、()x x+y.3、增大.4、805、3 166、3三、解答题(本大题共6小题,共72分)1、x=12、11x+,13.3、(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M 的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),4、(1)略;(2)AD=.5、(1)50;(2)240;(3)1 2 .。
湘教版九年级数学下册期中考试题及答案【精选】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 2.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100993.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元5.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯6.若三点()1,4,()2,7,(),10a 在同一直线上,则a 的值等于( )A .-1B .0C .3D .47.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<08.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<19.如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB ∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.分解因式:3x-x=__________.3.函数2y x=-中,自变量x的取值范围是__________.4.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是__________.5.如图,在△ABC中,AB=AC=5,BC=45,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为__________.6.如图,点A是反比例函数y=4x(x>0)图象上一点,直线y=kx+b过点A并且与两坐标轴分别交于点B,C,过点A作AD⊥x轴,垂足为D,连接DC,若△BOC的面积是4,则△DOC的面积是__________.三、解答题(本大题共6小题,共72分)1.解分式方程(1)232x x=+(2)21124xx x-=--2.先化简,再求值:22121244x x xx x x+-⎛⎫-÷⎪--+⎝⎭,其中3x=.3.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF ∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.4.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?5.八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有多少名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、B5、C6、C7、C8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-22、x (x+1)(x -1)3、2x ≥4、15°5、86、﹣2.三、解答题(本大题共6小题,共72分)1、(1)4x =;(2)32x =-2、3x3、(1)略;(2)略;(3)10.4、羊圈的边长AB ,BC 分别是20米、20米.5、(1)参与问卷调查的学生人数为100人;(2)补全图形见解析;(3)估计该校学生一个月阅读2本课外书的人数约为570人.。
湘教版九年级数学下册期中测试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计101+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥33.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.如图,数轴上两点A,B 表示的数互为相反数,则点B 表示的( )A .-6B .6C .0D .无法确定6.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.如图,直线y=kx+b (k ≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为( )A .x >﹣2B .x <﹣2C .x >4D .x <48.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°9.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是( )A .3B .33C .6D .6310.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm二、填空题(本大题共6小题,每小题3分,共18分)181____________.2.分解因式:2ab a -=_______.3.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.4.如图,已知菱形ABCD 的周长为16,面积为83E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为__________.5.如图,M 、N 是正方形ABCD 的边CD 上的两个动点,满足AM BN =,连接AC 交BN 于点E ,连接DE 交AM 于点F ,连接CF ,若正方形的边长为6,则线段CF 的最小值是__________.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:3213x x x --=-2.已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.(1)试证明:无论p 取何值此方程总有两个实数根;(2)若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.3.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.5.某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取 学生进行调查,扇形统计图中的x = .(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是 度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有 名.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、C5、B6、A7、A8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、a(b+1)(b﹣1).3、-124、5、36、4 9三、解答题(本大题共6小题,共72分)1、95 x=2、(1)证明见解析;(2)-2.3、(1)略(2-14、(1)理由见详解;(2)2BD=1,理由见详解.5、(1)200,15%;(2)统计图如图所示见解析;(3)36;(4)900.。
湘教版九年级数学下册期中考试带答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的倒数是( ) A . B . C .12- D .122.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <64.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.实数a 在数轴上的对应点的位置如图所示.若实数b 满足a b a -<<,则b 的值可以是( )A .2B .-1C .-2D .-36.若三点()1,4,()2,7,(),10a 在同一直线上,则a 的值等于( )A .-1B .0C .3D .47.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b ≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A.①②④B.①②⑤C.②③④D.③④⑤8.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k 的图象大致是()A. B.C. D.9.如图,扇形OAB中,∠AOB=100°,OA=12,C是OB的中点,CD⊥OB交AB 于点D,以OC为半径的CE交OA于点E,则图中阴影部分的面积是()A.12π+183B.12π+363C.6π+183D.6π+363 10.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A .2:5B .3:5C .9:25D .4:25二、填空题(本大题共6小题,每小题3分,共18分)1.2的相反数是__________.2.因式分解:2()4()a a b a b ---=_______.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是_______(结果用含a 、b 代数式表示).5.如图,在△ABC 中,AB=AC=5,BC=45,D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则△BDE 面积的最大值为__________.6.如图,点A 是反比例函数y=4x(x >0)图象上一点,直线y=kx+b 过点A 并且与两坐标轴分别交于点B ,C ,过点A 作AD ⊥x 轴,垂足为D ,连接DC ,若△BOC 的面积是4,则△DOC 的面积是__________.三、解答题(本大题共6小题,共72分)1.解方程:12133x x x-+=--2.先化简,再求值(32m++m﹣2)÷2212m mm-++;其中m=2+1.3.已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣mx>0的解集.4.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.5.胜利中学为丰富同学们的校园生活,举行“校园电视台主待人”选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、C5、B6、C7、A8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、﹣22、()()()22a b a a -+-3、24、a+8b5、86、﹣2.三、解答题(本大题共6小题,共72分)1、1x =2、11m m +-,原式=.3、(1)反比例函数解析式为y=﹣8x ,一次函数的解析式为y=﹣x ﹣2;(2)6;(3)x <﹣4或0<x <2.4、(1)2(2)略5、(1)补图见解析;50°;(2)35.。
湘教版九年级数学下册期中试卷(带答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.把 )A B . C D .2.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A .47B .37C .34D .133.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直4.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <5.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( )A .平均数变小,方差变小B .平均数变小,方差变大C .平均数变大,方差变小D .平均数变大,方差变大6.下列性质中,菱形具有而矩形不一定具有的是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边互相垂直7.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .339.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个10.已知0ab <,一次函数y ax b =-与反比例函数a y x =在同一直角坐标系中的图象可能( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算(31)(31)+-的结果等于___________.2.分解因式(xy ﹣1)2﹣(x+y ﹣2xy )(2﹣x ﹣y )=_______.3.若代数式1x x -有意义,则x 的取值范围为__________. 4.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC =__________度.5.如图,菱形ABCD 的对角线AC,BD 相交于点O ,过点A 作AH ⊥BC 于点H ,连接OH.若OB=4,S 菱形ABCD =24,则OH 的长为___________.6.如图抛物线y=x 2+2x ﹣3与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE ,DF ,则DE+DF 的最小值为__________.三、解答题(本大题共6小题,共72分)1.解方程:24111 xx x-=--2.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.3.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、D5、A6、C7、D8、D9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、22、(y ﹣1)2(x ﹣1)2.3、0x ≥且1x ≠. 4、455、36、三、解答题(本大题共6小题,共72分)1、3x =2、(1)k ≤58;(2)k=﹣1.3、(1)略;(2)结论:四边形ACDF 是矩形.理由略.4、(1)略;(2)45°;(3)略.5、(1)样本容量为50;(2)平均数为14(岁);中位数为14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为720人.。
湘教新版九年级下册数学期中复习试卷及答案(时间:90分钟 满分:120分)题号 一 二 三 总分 合分人 复分人 得分一、选择题(每小题3分,共24分)1.若函数y =axa 2-2是二次函数且图象开口向上,则a =(B )A .-2B .2C .2或-2D .12.下列二次函数中,图象以直线x =2为对称轴、且经过点(0,1)的是(C )A .y =(x -2)2+1B .y =(x +2)2+1C .y =(x -2)2-3D .y =(x +2)2-33.如图,在半径为5 cm 的⊙O 中,弦AB =6 cm ,OC ⊥AB 于点C ,则OC =(B )A .3 cmB .4 cmC .5 cmD .6 cm第3题图 第4题图 第5题图 4.如图,圆O 是△ABC 的外接圆,∠A =68°,则∠OBC 的大小是(A )A .22°B .26°C .32°D .68°5.如图为坐标平面上二次函数y =ax 2+bx +c 的图形,且此图形通过(-1,1),(2,-1)两点.下列关于此二次函数的叙述中正确的是(D )A .y 的最大值小于0B .当x =0时,y 的值大于1C .当x =1时,y 的值大于1D .当x =3时,y 的值小于06.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论中正确的是(D )A .c >-1B .b >0C .2a +b ≠0D .9a +c >3b第6题图 第7题图 第8题图7.如图,CA ,CB 分别与⊙O 相切于点D ,B ,圆心O 在AB 上,AB 与⊙O 的另一交点为E ,AE =2,⊙O 的半径为1,则BC 的长为(A )A. 2B .2 2C.22D. 38.已知抛物线y =a (x -3)2+254(a ≠0)过点C (0,4),顶点为M ,与x 轴交于A ,B 两点.如图所示以AB 为直径作圆,记作⊙D ,下列结论:①抛物线的对称轴是直线x =3;②点C 在⊙D 外;③直线CM 与⊙D 相切.其中正确的有(C )A .0个B .1个C .2个D .3个二、填空题(每小题4分,共32分)9.如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠COD 的度数是120°.10.已知抛物线y =x 2-3x +m 与x 轴只有一个公共点,则m =94.11.已知Rt △ABC 的两直角边的长分别为6 cm 和8 cm ,则它的外接圆的半径为5cm .12.如果将抛物线y =x 2+2x -1向上平移,使它经过点A (0,3),那么所得新抛物线的表达式是y =x 2+2x +3. 13.若二次函数y =2x 2-3的图象上有两个点A (1,m ),B (2,n ),则m <n .(填“<”“=”或“>”)14.如图,点A ,B ,D 在⊙O 上,∠A =25°,OD 的延长线交直线BC 于点C ,且∠OCB =40°,直线BC 与⊙O 的位置关系为相切.第14题图 第15题图 第16题图15.如图,已知AB 是⊙O 的一条直径,延长AB 至C 点,使AC =3BC ,CD 与⊙O 相切于D 点.若CD =3,则劣弧AD 的长为23π.16.如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上,C 点在斜边上,设矩形的一边AB =x m ,矩形的面积为y m 2,则y 的最大值为300__m 2.三、解答题(共64分)17.(6分)已知二次函数y =x 2+4x .用配方法把该函数化为y =a (x -h )2+k (其中a ,h ,k 都是常数,且a ≠0)的形式,并指出函数图象的对称轴和顶点坐标.解:∵y =x 2+4x =(x 2+4x +4)-4=(x +2)2-4, ∴对称轴为直线x =-2.顶点坐标为(-2,-4).18.(7分)如图所示,已知△ABC 内接于⊙O ,AB =AC ,∠BOC =120°,延长BO 交⊙O 于D 点.(1)试求∠BAD 的度数;(2)求证:△ABC 为等边三角形.解:(1)∵BD 是⊙O 的直径,∴∠BAD =90°(直径所对的圆周角是直角). (2)证明:∵∠BOC =120°, ∴∠BAC =12∠BOC =60°.又∵AB =AC ,∴△ABC 是等边三角形.19.(9分)如图,一次函数y 1=kx +1与二次函数y 2=ax 2+bx -2(a ≠0)交于A ,B 两点,且A (1,0),抛物线的对称轴是直线x =-32.(1)求k 和a ,b 的值;(2)根据图象求不等式kx +1>ax 2+bx -2的解集.解:(1)把A (1,0)代入一次函数表达式,得k +1=0,解得k =-1. 根据题意,得⎩⎪⎨⎪⎧-b 2a =-32,a +b -2=0,解得⎩⎨⎧a =12,b =32.(2)解方程组⎩⎪⎨⎪⎧y =-x +1,y =12x 2+32x -2,得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =-6,y =7. 则B 的坐标是(-6,7).根据图象可得不等式kx +1>ax 2+bx -2的解集是-6<x <1.20.(9分)如图,已知AB 为⊙O 的直径,点C ,D 在⊙O 上,且BC =6 cm ,AC =8 cm ,∠ABD =45°.(1)求BD 的长;(2)求图中阴影部分的面积.解:(1)连接O D.∵AB 为⊙O 的直径,∴∠ACB =90°. ∵BC =6 cm ,AC =8 cm ,∴AB =10 cm .∴OB =5 cm . ∵OD =OB ,∴∠ODB =∠ABD =45°. ∴∠BOD =90°.∴BD =OB 2+OD 2=5 2 cm . (2)S 阴影=S 扇形ODB -S △OBD =90360π×52-12×5×5=25π-504(cm 2).21.(9分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y (件)与销售单价x (元)满足一次函数关系:y =-10x +1 200.(1)求出利润S (元)与销售单价x (元)之间的关系式;(利润=销售额-成本)(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元? 解:(1)S =y (x -40)=(-10x +1 200)(x -40)=-10x 2+1 600x -48 000. (2) S =-10x 2+1 600x -48 000=-10(x -80)2+16 000,则当销售单价定为80元时,工厂每天获得的利润最大,最大利润是16 000元.22.(10分)如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径作⊙O 交AB 于D 点,连接C D.(1)求证:∠A =∠BCD ;(2)若M 为线段BC 上一点,试问当点M 在什么位置时,直线DM 与⊙O 相切?并说明理由.解:(1)证明:∵AC 为⊙O 的直径,∴∠ADC =90°. ∴∠A =90°-∠AC D. 又∠ACB =90°,∴∠BCD =90°-∠AC D. ∴∠A =∠BC D.(2)点M 为线段BC 的中点时,直线DM 与⊙O 相切.理由如下: 连接OD ,作DM ⊥OD ,交BC 于点M ,则DM 为⊙O 的切线. ∵∠ACB =90°,∴∠B =90°-∠A ,BC 为⊙O 的切线. 由切线长定理,得DM =CM . ∴∠MDC =∠BC D.由(1)可知∠A =∠BCD ,CD ⊥A B. ∴∠BDM =90°-∠MDC =90°-∠BC D. ∴∠B =∠BDM .∴DM =BM . ∴CM =BM ,即点M 为线段BC 的中点.23.(14分)如图,抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B.(1)求抛物线的表达式;(2)在抛物线上求点M ,使△MOB 的面积是△AOB 面积的3倍;(3)在x 轴下方的抛物线上是否存在点N ,使△OBN 与△OAB 相似?若存在,求出点N 坐标;若不存在,说明理由.解:(1)设抛物线的表达式为y =a (x -2)2+1. ∵抛物线经过原点(0,0),代入,得a =-14.∴y =-14(x -2)2+1.(2)设点M (a ,b ),S △AOB =12×4×1=2.则S △ M O B =6,∴点M 必在x 轴下方.∴12×4×|b |=6.∴b =-3. 将y =-3代入y =-14(x -2)2+1中,得x =-2或6.∴点M 的坐标为(-2,-3)或(6,-3). (3)存在.∵△OBN 相似于△OAB , 相似比OA ∶OB =5∶4, ∴S △AOB ∶S △OBN =5∶16. 而S △AOB =2.∴S △OBN =325.设点N (m ,n ),点N 在x 轴下方. S △OBN =12×4×|n |=325.n =-165.将其代入抛物线表达式,求得横坐标为2±25105,∴存在点N ,使△OBN 与△OAB 相似,点N 的坐标为(2±25105,-165).。
期中测试(时间:90分钟 满分:120分)题号 一二三总分 合分人 复分人 得分一、选择题(每小题3分,共24分)1.抛物线y =x 2-3x +2与y 轴交点的坐标是( )A .(0,2)B .(1,0)C .(0,-3)D .(0,0) 2.已知点A 在半径为r 的⊙O 内,点A 与点O 的距离为6,则r 的取值范围是( ) A .r >6 B .r ≥6 C .r <6 D .r ≤63.(遂宁中考)如图,在半径为5 cm 的⊙O 中,弦AB =6 cm ,OC ⊥AB 于点C ,则OC =( ) A .3 cm B .4 cm C .5 cm D .6 cm4.(株洲中考)如图,圆O 是△ABC 的外接圆,∠A =68°,则∠OBC 的大小是( ) A .22° B .26° C .32° D .68°5.二次函数y =ax 2+bx +c(a≠0)图象上部分点的坐标满足下表:x … -3 -2 -1 0 1 … y … -3 -2 -3 -6 -11 …则该函数图象的顶点坐标为( )A .(-3,-3)B .(-2,-2)C .(-1,-3)D .(0,-6)6.二次函数y =ax 2+bx +c(a≠0)的图象如图所示,则下列结论中正确的是( )A .c>-1B .b>0C .2a +b≠0D .9a +c>3b7.如图,已知点A ,B ,C 三点在半径为3的⊙O 上,AC =4,则sinB =( ) A.13 B.34 C.45 D.238.已知抛物线y =a(x -3)2+254(a≠0)过点C(0,4),顶点为M ,与x 轴交于A ,B 两点.如图所示以AB 为直径作圆,记作⊙D,下列结论:①抛物线的对称轴是直线x =3;②点C 在⊙D 外;③直线CM 与⊙D 相切.其中正确的有( )A .0个B .1个C .2个D .3个二、填空题(每小题4分,共32分)9.如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠COD 的度数是____________度.10.已知抛物线y =x 2-3x +m 与x 轴只有一个公共点,则m =____________.11.已知Rt △ABC 的两直角边的长分别为6 cm 和8 cm ,则它的外接圆的半径为____________cm.12.(上海中考)如果将抛物线y =x 2+2x -1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是______________.13.若二次函数y =2x 2-3的图象上有两个点A(1,m),B(2,n),则m____________n(填“<”“=”或“>”).14.(长沙中考)如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC =6,AB =10,OD ⊥BC 于点D ,则OD 的长为____________.15.(自贡中考)如图,已知AB 是⊙O 的一条直径,延长AB 至C 点,使AC =3BC ,CD 与⊙O 相切于D 点.若CD =3,则劣弧AD 的长为____________.16.(温州中考)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27 m ,则能建成的饲养室面积最大为____________m 2.三、解答题(共64分)17.(6分)已知二次函数y =x 2+4x.用配方法把该函数化为y =a(x -h)2+k(其中a ,h ,k 都是常数,且a ≠0)的形式,并指出函数图象的对称轴和顶点坐标.18.(7分)如图所示,已知△ABC 内接于⊙O,AB =AC ,∠BOC =120°,延长BO 交⊙O 于D 点. (1)试求∠BAD 的度数;(2)求证:△ABC 为等边三角形.19.(9分)如图,一次函数y 1=kx +1与二次函数y 2=ax 2+bx -2(a≠0)交于A ,B 两点,且A(1,0),抛物线的对称轴是直线x =-32.(1)求k 和a ,b 的值;(2)根据图象求不等式kx +1>ax 2+bx -2的解集.20.(9分)(无锡中考)如图,已知AB 为⊙O 的直径,点C ,D 在⊙O 上,且BC =6 cm ,AC =8 cm ,∠ABD =45°. (1)求BD 的长;(2)求图中阴影部分的面积.21.(9分)(邵阳中考)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y =-10x +1 200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额-成本); (2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?22.(11分)如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径作⊙O 交AB 于D 点,连接CD. (1)求证:∠A=∠BCD;(2)若M 为线段BC 上一点,试问当点M 在什么位置时,直线DM 与⊙O 相切?并说明理由.23.(13分)如图,抛物线的顶点为A(2,1),且经过原点O ,与x 轴的另一个交点为B. (1)求抛物线的解析式;(2)在抛物线上求点M ,使△MOB 的面积是△AOB 面积的3倍;(3)在x 轴下方的抛物线上是否存在点N ,使△OBN 与△OAB 相似?若存在,求出点N 坐标;若不存在,说明理由.参考答案1.A 2.A 3.B 4.A 5.B 6.D 7.D 8.C 9.12010.94 11.5 12.y =x 2+2x +3 13.< 14.4 15.23π 16.7517.∵y=x 2+4x =(x 2+4x +4)-4=(x +2)2-4,∴对称轴为直线x =-2.顶点坐标为(-2,-4). 18.(1)∵BD 是⊙O 的直径,∴∠BAD =90°(直径所对的圆周角是直角).(2)证明:∵∠BOC=120°,∴∠BAC =12∠BOC=60°.又∵AB=AC ,∴△ABC 是等边三角形.19.(1)把A(1,0)代入一次函数解析式,得k +1=0,解得k =-1.根据题意得⎩⎪⎨⎪⎧-b 2a=-32,a +b -2=0,解得⎩⎪⎨⎪⎧a =12,b =32.(2)解方程组⎩⎪⎨⎪⎧y =-x +1,y =12x 2+32x -2,得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =-6,y =7.则B 的坐标是(-6,7).根据图象可得不等式kx +1>ax 2+bx -2的解集是-6<x <1.20.(1)连接OD.∵AB 为⊙O 的直径,∴∠ACB=90°.∵BC =6 cm ,AC =8 cm ,∴AB =10 cm.∴OB=5 cm.∵OD =OB ,∴∠ODB =∠ABD=45°.∴∠BOD =90°.∴BD =OB 2+OD 2=52(cm).(2)S 阴影=S 扇形ODB -S △OBD =90360π·52-12×5×5=25π-504(cm 2).21.(1)S =y(x -40)=(-10x +1 200)(x -40)=-10x 2+1 600x -48 000.(2)S =-10x 2+1 600x -48 000=-10(x -80)2+16 000,则当销售单价定为80元时,工厂每天获得的利润最大,最大利润是16 000元.22.(1)证明:∵AC 为⊙O 的直径,∴∠ADC =90°.∴∠A =90°-∠ACD.又∠ACB=90°,∴∠BCD =90°-∠ACD.∴∠A=∠BCD.(2)点M 为线段BC 的中点时,直线DM 与⊙O 相切.理由如下:连接OD ,作DM⊥OD,交BC 于点M ,则DM 为⊙O 的切线.∵∠ACB=90°,∴∠B =90°-∠A,BC 为⊙O 的切线.由切线长定理,得DM =CM.∴∠MDC =∠BCD.由(1)可知:∠A =∠BCD ,CD ⊥AB.∴∠BDM =90°-∠MDC =90°-∠BCD.∴∠B=∠BDM.∴DM=BM.∴CM=BM ,即点M 为线段BC 的中点.23.(1)设抛物线的解析式为y =a(x -2)2+1.∵抛物线经过原点(0,0),代入得a =-14.∴y=-14(x -2)2+1.(2)设点M(a ,b),S △AOB =12×4×1=2.则S △MOB =6,∴点M 必在x 轴下方.∴12×4×|b|=6.∴b=-3.将y =-3代入y =-14(x -2)2+1中,得x =-2或6.∴点M 的坐标为(-2,-3)或(6,-3).(3)存在.∵△OBN 相似于△OAB,相似比OA∶OB=5∶4,∴S △AOB ∶S △OBN =5∶16.而S △AOB =2.∴S △OBN =325.设点N(m ,n),点N 在x 轴下方.S △OBN =12×4×|n|=325.n =-165.将其代入抛物线解析式,求得横坐标为2±25105,∴存在点N ,使△OBN 与△OAB 相似,点N 的坐标为(2±25105,-165).。