【课堂练习题】比较线段的长短
- 格式:doc
- 大小:100.50 KB
- 文档页数:2
线段的长短比较测试题及答案线段的长短比较测试题及答案◆随堂检测1、如图:C,B在线段AD上,且AB=CD,则AC与BD 大小关系是( )A、ACgt;BDB、AC=BDC、AC2、线段AB上有点C,C使AC:CB=2:3,点M和点N 分别是线段AC和CB的中点,若MN=4,则AB的长是( )A、6B、8C、10D、123、以下给出的四个语句中,结论不正确的有( )A、延长线段AB到CB、如果线段AB=BC,则B是线段AC的中点C、线段和射线都可以看作直线上的一部分D、如果线段AB+BC=AC,那么A,B,C在同一直线上4、下列说法正确的是( )A、两点之间的连线中,直线最短B、若P是线段AB 的中点,则AP=BPC、若AP=BP,则P是线段AB的中点D、两点之间的线段叫做者两点之间的距离5、如图:(1)延长AC至点D,使CD=AC,延长BC到点E,使CE=BC;(2)连结DE;(3)比较图中线段DE与AB的长度,你有什么发现?◆典例分析例:如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点。
(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB = a cm,其它条件不变,你能猜想MN的长度吗?并说明理由。
你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC BC =b cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由。
解:(1)MN的长为7cm;(2)若C为线段AB上任一点,满足AC + CB = a cm,其它条件不变,则(3)如图MN= b cm。
评析:本例主要是利用线段中点的定义及线段和差的意义来解。
由特殊从而推断出一般性的规律。
◆课下作业●拓展提高1、如图,线段AB=6cm,BC= AB,D是BC的中点.则AD= cm。
2、已知两根木条,一根长60cm,一根长100cm,将它们的一端重合,放在同一条直线上,此时两根木条的中点之间的距离是。
比较线段的长短练习题线段的长短是数学中一个基本的概念,也是我们日常生活中常常遇到的问题。
通过比较线段的长短,我们可以培养自己的观察力和思维能力。
下面,我们来做一些关于线段长短的练习题,通过解题来加深对这个概念的理解。
练习题一:小明有一条长为8厘米的线段,小红有一条长为5厘米的线段,那么小明的线段比小红的线段长多少厘米?解答:小明的线段长为8厘米,小红的线段长为5厘米。
我们可以通过减法来计算小明的线段比小红的线段长多少厘米。
8厘米 - 5厘米 = 3厘米所以,小明的线段比小红的线段长3厘米。
练习题二:小华有一条长为15厘米的线段,小李有一条长为10厘米的线段,那么小华的线段比小李的线段长多少厘米?小华的线段比小红的线段长多少倍?解答:小华的线段长为15厘米,小李的线段长为10厘米。
我们可以通过减法来计算小华的线段比小李的线段长多少厘米。
15厘米 - 10厘米 = 5厘米所以,小华的线段比小李的线段长5厘米。
我们还可以通过除法来计算小华的线段比小李的线段长多少倍。
15厘米÷ 10厘米 = 1.5倍所以,小华的线段比小李的线段长1.5倍。
通过这两道练习题,我们可以看出,比较线段的长短可以通过减法和除法来解决。
在解决问题的过程中,我们需要运用数学知识,进行计算和推理。
这样的练习可以培养我们的思维能力和逻辑思维能力。
练习题三:小明有一条线段长为12厘米,小红有一条线段长为10毫米,那么小明的线段比小红的线段长多少厘米?解答:小明的线段长为12厘米,小红的线段长为10毫米。
我们需要将小红的线段的单位转换为厘米,然后再进行比较。
10毫米 = 1厘米所以,小红的线段长为0.1厘米。
现在我们可以通过减法来计算小明的线段比小红的线段长多少厘米。
12厘米 - 0.1厘米 = 11.9厘米所以,小明的线段比小红的线段长11.9厘米。
通过这道练习题,我们可以看出,比较线段的长短时,需要注意单位的转换。
在解决问题的过程中,我们需要灵活运用数学知识,进行单位转换和计算。
七年级数学上册比较线段的长短综合练习题一、单选题1.如图,点C是AB的中点,D是AB上的一点,3AB=,则CD的长是( )AB DB=,已知12A.6B.4C.3D.22.已知线段10cmAC=,则线段AB的中点与AC的中点AB=,在直线AB上取一点C,使16cm的距离为( )A. 13cm或26cmB. 6cm或13cmC. 6cm或25cmD. 3cm或13cm3.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直,就能缩短路程.其中可用基本事实“两点之间,线段最短”来解释的现象有( )A.①②B.①③C.②④D.③④4.下列四个生产生活现象,可以用基本事实“两点之间线段最短”来解释的是( )A.用两颗钉子就可以把木条钉在墙上B.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线C.从A地到B地架设电线,总是尽可能沿着线段AB来架设D.打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上5.下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有( )A.1个B.2个C.3个D.4个6.已知线段6BC=,则线段AC的长( )AB=,在直线AB上取一点C,使2A.2B.4C.8D.8或47.关于直线、射线、线段的描述正确的是( )A.直线最长,线段最短B.直线、射线及线段的长度都不确定C.直线没有端点,射线有一个端点,线段有两个端点D.射线是直线长度的一半a b c两两相交,8.按下所语句画图:点M在直线a上,也在直线b上,但不在直线c上,直线,,下图中正确的是( )A. B.C. D.9.在平面上有任意四个点,那么这四个点可以确定的直线有( )A.1条B.4条C.6条D.1条或4条或6条10.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是:( )A.两点之间,直段最短B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线11.平面内互不重合的三条直线的交点个数是( )A. 13,B. 0,1,3C. 0,2,3D. 0,1,2,312.线段AB被分为2:3:4三部分,已知第一部分和第三部分两中点间距离是5.4cm,则线段AB长度为( )A. 8.1cmB. 9.1cmC. 10.8cmD. 7.4cm13.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着直线AB架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点确定一条直线”来解释的现象有( ).A.①②B.①③C.②④D.③④14.如图,某同学家在A处,现在该同学要去位于B处的同学家玩,请帮助他选择一条最近的路线( )A.A C D B →→→B.A C F B →→→C.A C E F B →→→→D.A C M B →→→15.如图,点M 在线段AB 上,则下列条件不能确定M 是AB 的中点的是( )A.12BM AB = B.AM BM AB +=C.AM BM =D.2AB AM =二、解答题16.如图,N 为线段AC 中点,点M 、点B 分别为线段AN NC ,上的点,且满足::1:4:3AM MB BC =(1)若6AN =,求AM 的长;(2)若2NB =,求AC 的长.三、填空题17.把弯曲的河道改直,能够缩短航程.这样做根据的道理是___________________.18.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为_________________.参考答案1.答案:D解析:2.答案:D解析:3.答案:D解析:4.答案:C解析:5.答案:B解析:6.答案:D解析:7.答案:C解析:8.答案:B解析:9.答案:D解析:10.答案:C解析:11.答案:D解析:12.答案:A解析:13.答案:A解析:14.答案:B解析:根据“两点之间,线段最短”可知,C B 两点之间的最短距离是线段CB 的长度,所以最近的一条路线是A C F B →→→.15.答案:B解析:因为点M 在线段AB 上,所以再加下列条件之一,即可确定点M 是AB 的中点:①12BM AB =;②AM BM =;③2AB AM =.而无论点M 在AB 上的什么位置,都有AM BM AB +=,所以选项B 不能确定点M 是AB 的中点. 16.答案:(1)32AM =;(2)16AC = 解析:17.答案:两点之间,线段最短解析:18.答案:两点确定一条直线.解析:。
初中数学北师大版七年级上册第四章2比较线段的长短练习题一、选择题1.如图,下列关于图中线段之间的关系一定正确的是()A. x=2x+2b−cB. c−b=2a−2bC. x+b=2a+c−bD. x+2a=3c+2b2.已知线段AB=10cm,点C在直线AB上,且AC=2cm,则线段BC的长为()A. 12cmB. 8 cmC. 12 cm或8 cmD. 以上均不对3.如图,线段CD在线段AB上,且CD=3,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A. 28B. 29C. 30D. 314.两根木条,一根长10cm,另一根长12cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A. lcmB. 11cmC. 1cm或11cmD. 2cm或11cm5.如图,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A. CD=AC−BDB. BD=AC−CDAB−BDC. AD=CB+BDD. CD=12AB,延长线段BA到D使AD=AC,6.已知线段AB=4cm,延长线段AB到C使BC=12则线段CD的长为()A. 12cmB. 10cmC. 8cmD. 6cm7.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是()A. ①④B. ②③C. ③D. ④8.如果线段AB=6cm,BC=4cm,且点A、B、C在同一直线上,那么A、C间的距离是()A. 10 cmB. 2 cmC. 10 cm或者2 cmD. 5 cm或者2 cm9.如图,从A到B有①,②,③三条路线,最短的路线是①,其理由是()A. 因为它最直B. 两点确定一条直线C. 两点间的距离的概念D. 两点之间,线段最短10.下列说法不正确的是()ABA. 因为M是线段AB的中点,所以AM=MB=12B. 在线段AM延长线上取一点B,如果AB=2AM,那么点M是线段AB的中点C. 因为A,M,B在同一直线上,且AM=MB,所以M是线段AB的中点D. 因为AM=MB,所以点M是AB的中点二、填空题11.如图,已知空间站A与星球B距离为a,信号飞船C在星球B附近沿圆形轨道行驶,B,C之间的距离为b.数据S表示飞船C与空间站A的实时距离,那么S的最小值是________.CB,D、E分别为AC、AB的12.如图,已知点C为AB上一点,AB=25cm,AC=32中点,则DE的长为______13.如图,数轴上A、B两点所表示的数分别是−4和2,点C是线段AB的中点,则点C所表示的数是.14.数轴上有两点M、N,点M到点E的距离为2,点N到点E距离为5,则M、N之间的距离为________________________ 。
七年级数学比较线段长短专项练习题一、解答题1.如图,点C 是AB 的中点,,D E 分别是线段,AC CB 上的点,且23,35AD AC DE AB ==,若24cm AB =,求线段CE 的长.2.如图,P 是线段AB 上一点, 12cm AB =,,C D 两点分别从,P B 出发以1/2/cm s ,cm s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上),运动的时间为t .(1)当1t =时,2PD AC =,请求出AP 的长; (2)当2t =时,2PD AC =,请求出AP 的长;(3)若,C D 运动到任一时刻时,总有2PD AC =,请求出AP 的长;(4)在(3)的条件下,Q 是直线AB 上一点,且AQ BQ PQ -=,求PQ 的长.3.如图,已知,C D 为线段AB 上顺次两点,点,M N 分别为AC 与BD 的中点,若20,8AB CD ==,求线段MN 的长.4.已知点C 是线段AB 上一点,6cm,4cm AC BC ==,若.M N 分别是线段,AC BC 的中点,求线段MN 的长.5.如图,点C 在线段AB 上,3:2AC BC =:,点M 是AB 的中点,点N 是BC 的中点,若3cm MN =,求线段AB 的长.6.已知线段6AB =,在直线AB 上取一点P ,恰好使2AP PB =,点Q 为PB 的中点,求线段AQ 的长.7.如图,N 为线段AC 中点,点M 、点B 分别为线段AN NC ,上的点,且满足::1:4:3AM MB BC =(1)若6AN =,求AM 的长; (2)若2NB =,求AC 的长. 8.读题计算并作答线段3cm AB =,在线段AB 上取一点K ,使AK BK =,在线段AB 的延长线上取一点C ,使3AC BC =,在线段BA 的延长线取一点D ,使12AD AB =. (1)求线段,BC DC 的长? (2)点K 是哪些线段的中点?9..如图,已知,C D 为线段AB 上顺次两点,点M N ,分别为AC 与BD 的中点,若10AB =,4CD =,求线段MN 的长.10.如图,已知点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点.(1)若20,8AB BC ==,求MN 的长; (2)若,8AB a BC ==,求MN 的长; (3)若,AB a BC b ==,求MN 的长;(4)从(1)(2)(3)的结果中能得到什么结论?11.已知点C 在线段AB 上,线段7cm,5cm AC BC ==,点,M N 分别是,AC BC 的中点,求MN 的长度.12.已知线段10cm AB =,直线AB 上有一点,6cm,C BC M =为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.13.如图,,B C 两点把线段AD 分成2:5:3三部分,M 为AD 的中点,6cm BM =,求CM 和AD 的长.14.如图,点C 是线段AB 上一点,点,,M N P 分别是线段,,AC BC AB 的中点.(1)若12cm AB =,求线段MN 的长度; (2)若3cm,1cm AC CP ==,求线段PN 的长度.15.如图,已知线段AB 上有两点,C D ,且AC BD =,,M N 分别是线段,AC AD 的中点,若cm,cm AB a AC BD b ===,且,a b 满足2(10)|4|02ba -+-=.(1)求,AB AC 的长度. (2)求线段MN 的长度.16.如图,已知E 是AB 的中点,F 是CD 的中点,且11,10cm 34BD AB CD EF ===,求AC 的长.17.如图,已知线段65AB =cm ,点M 为AB 的中点,点P 在MB 上,且N 为PB 的中点,若6.5BN =cm ,试求线段MP 的长.18.如图,,M N 两点把线段AB 分成2:3:4三部分,C 是线段AB 的中点,4NB = cm. (1)求CN 的长. (2)求:AM MC .19.如图,点,,,,A B E C D 在同一条直线上,且AC BD =,点E 是BC 的中点,那么点E 是AD 的中点吗?为什么?20.如图,已知111,,,333CB AB AC AD AB AE ===,且2CB =,求CD 的长.21.如图①,已知点M 是线段AB 上一点,点C 在线段AM 上,点D 在线段BM 上,C D 、两点分别从M B 、出发以1cm/s 3cm/s 、的速度沿直线BA 向左运动,运动方向如箭头所示. (1)若10cm AB =,当点C D 、运动了2s ,求AC MD +的值. (2)若点C D 、运动时,总有3MD AC =,则:AM = AB . (3)如图②,若14AM AB =,点N 是直线AB 上一点,且AN BN MN -=,求MNAB的值.22.如图,D 是AB 的中点,E 是BC 的中点,12cm 5BE AC ==,求线段DE 的长.23.画线段3cm MN =,在线段MN 上取一点Q ,使MQ NQ =;延长线段MN 到点A ,使12AN MN =;延长线段NM 到点B ,使3BN BM =. (1)求线段AN 的长; (2)求线段BM 的长;(3)试说明点Q 是哪些线段的中点.24.如图,点C 在线段AB 上,8cm,6cm AC CB ==,点,M N 分别是,AC BC 的中点.(1)求线段MN 的长.(2)若点C 为线段AB 上任意一点,满足cm AC CB a +=,其他条件不变,你能猜想MN 的长度吗?并说明理由.(3)若C 在线段AB 的延长线上,且满足cm AC BC b -=,,M N 分别为,AC BC 的中点,你能猜想MN 的长度吗?并说明理由.参考答案1.答案:10.4cm CE =. 解析:2.答案:(1)4cm ;(2)4cm ;(3)4cm ;(4)4cm 或12cm 解析:3.答案:14MN = 解析:4.答案:线段MN 长5cm . 解析:5.答案:10cm 解析:6.答案:AQ 的长度为5或9. 解析:7.答案:(1)32AM =;(2)16AC = 解析:8.答案:(1) 1.5cm 6cm BC DC ==,; (2)点K 是线段AB 和DC 的中点. 解析: 9.答案:7 解析:10.答案:(1)因为20,8AB BC ==,所以28AC AB BC =+=, 因为点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点, 所以1114,422MC AC NC BC ====, 所以14410MN MC NC =-=-=.(2)根据(1)得111()222MN AC BC AB a =-==.(3)根据(1)得111()222MN AC BC AB a =-==.(4)从(1)(2)(3)的结果中能得到线段MN 的长度始终等于线段AB 的一半,与C 点的位置无关. 解析:11.答案:【解】因为7cm,5cm AC BC ==,点,M N 分别是,AC BC 的中点, 所以113.5cm, 2.5cm 22MC AC CN BC ====. 则 3.5 2.56(cm)MN MC CN =+=+=. 解析:12.答案:【解】第一种情况:若为图(1)情形,因为M 为AB 的中点,所以5cm MB MA ==. 因为N 为BC 的中点,所以3cm NB NC ==. 所以2cm MN MB NB =-=. 第二种情况:若为图(2)情形,因为M 为AB 的中点,所以5cm MB MA ==. 因为N 为BC 的中点,所以3cm NB NC ==.解析:13.答案:【解】设2cm,5cm,3cm AB x BC x CD x ===. 所以10cm AD AB BC CD =++=. 因为M 是AD 的中点, 所以15cm 2AM MD AD x ===. 所以523cm BM AM AB x x x =-=-=. 因为6cm BM =,所以36,2x x ==.故532224(cm)CM MD CD x x x =-=-==⨯=. 1010220(cm)AD x ==⨯-.解析:14.答案:(1)因为,M N 分别是,AC BC 的中点, 所以11,22MC AC CN BC ==. 所以1111()6cm 2222MN MC CN AC BC AC BC AB =+=+=+==. (2)因为3cm,1cm AC CP ==,所以4cm AP AC CP =+=. 因为P 是线段AB 的中点,所以28cm AB AP ==. 所以5cm CB AB AC =-=.因为N 是线段CB 的中点,12.5cm 2CN CB ==.所以 1.5cm PN CN CP =-=.解析:(1)根据,M N 分别是线段,AC BC 的中点及AB 的长度,可求出MN .(2)先求出AP ,再利用P 是AB 的中点,求出AB .进而利用BC AB AC =-求出BC .根据N 为BC 的中点又可求出12CN BC =.最后利用PN CN CP =-求出结果. 15.答案:解:(1)由题意可知2(10)0,|4|02ba -=-=, 所以10,8ab ==,所以10cm,8cm AB AC ==. (2)因为8cm BD AC ==, 所以2cm AD AB BD =-=.又因为,M N 分别是,AC AD 的中点,所以3cm MN AM AN =-=.解析:若几个非负数之和为0,则这几个非负数均为0. 16.答案:解:设BD x =, 因为1134AB CD BD ==,所以33,44AB BD x CD BD x ====, 因为E 为AB 的中点, 所以1322BE AB x ==. 因为F 为CD 的中点, 所以122DF CD x ==,所以2BF DF BD x x x =-=-=, 所以3522EF BE BF x x x =+=+=. 因为10EF =, 所以5102x =,解得4x =.所以312,416,4AB x CD x DB x ======, 所以16412BC CD BD =-=-=, 所以121224(cm)C AB BC =+=+=.解析:线段,AB CD 与BD 都有倍分关系,故把BD 设为x ,表示出,AB CD 的长. 17.答案:解:因为M 为AB 的中点,且65AB =cm 所以652AM MB ==cm. 又N 为PB 的中点,且 6.5BN =cm, 所以 6.5PN NB ==cm ,所以13PB =cm. 所以65391322MP MB PB =-=-= (cm). 解析:18.答案:解:(1)由题意得::2:3:4AM MN NB =,设 2AM x =,则3,4MN x NB x ==.又4NB =cm ,故2AM =cm,3MN =cm, 因此9AB =cm.又C 为AB 的中点,所以1922CB AB ==cm, 故91422CN CB BN =-=-= (cm) (2)由(1)知15322MC MN CN =-=-=(cm), 故5:2:4:52AM MC ==. 解析:19.答案:解:点E 是AD 的中点.理由如下:因为,,,,A B E C D 在同一条直线上,AC BD = (已知), 所以AC BC BD BC -=- (等式的性质),, 即AB CD = (线段和、差的意义). 因为点E 是BC 的中点(已知), 所以BE CE =(线段中点的定义), 所以AB BE CD CE +=+ (等式的性质), 即AE ED = (线段和、差的意义), 所以点E 是AD 的中点(线段中点的定义). 解析:20.答案:解:因为1,24CB AB CB ==,所以36AB CB ==. 所以4AC AB BC =-=.因为13AC AD =,所以312AD AC ==.所以1248CD AD AC =-=-=. 解析:21.答案:解:(1)当点C D 、运动了2s 时,2cm,6cm CM BD ==10cm,2cm,6cm AB CM BD ===10262cm AC MD AB CM BD ∴+=--=--= (2),C D 两点的速度分别为1cm/s,3cm/s , 3BD CM ∴=. 又3MD AC =,33BD MD CM AC ∴+=+,即3BM AM =,14AM AB ∴=;(3)当点N 在线段AB 上时,如图AN BN MN -=,又AN AM MN -=1142BN AM AB MN AB ∴==∴=,,即12MN AB =. 当点N 在线段AB 的延长线上时,如图AN BN MN -=,又AN BN AB -=MN AB ∴=,即1MNAB=. 综上所述12MN AB =或1. 解析:22.因为E 是BC 的中点,所以24cm BC BE ==. 因为D 是AB 的中点,解析:23.答案:(1)解:如图所示:因为1,3cm 2AN MN MN ==,所以 1.5cm AN => (2)因为3cm,MN MQ NQ ==,所以 1.5cm MQ NQ ==又因为13BM BN =,所以23MN BN =.所以34.5cm 2BN MN == 所以 1.5cm BM BN MN =-=.(3)因为 1.5 1.53(cm)BQ BM MQ =+=+=3cm AQ AN NQ =+=所以BQ AQ = 又MQ NQ =,所以Q 是MN 的中点,也是AB 的中点.解析:24.答案:(1)解:因为点,M N 分别是,AC BC 的中点,8cm,6cm AC CB == 所以114cm,3cm 22CM AC CN BC ====. 所以437(cm)MN CM CN =+=+= 所以线段MN 的长是7cm .(2)1cm 2MN a =.理由如下:因为点,M N 分别是,AC BC 的中点,cm AC CB a +=, 所以11,22CM AC CN BC ==, 所以1111()cm 2222MN CM CN AC BC AC BC a =+=+=+= 所以线段MN 的长是1cm 2a .(3)如图.1cm 2MN b =.理由如下:因为点,M N 分别是,AC BC 的中点,cm AC CB b -= 所以11,22CM AC CN BC == 所以1111()cm 2222MN CM CN AC BC AC BC b =-=-=-=, 即线段MN 的长是1cm 2b .解析:。
六年级比较线段的长短(0.44)一、单选题(共11题;共22分)1.如图,点B为线段AC上一点,AB=11cm,BC=7cm,D、E分别是AB、AC的中点,则DE的长为()A. 3.5cmB. 4cmC. 4.5cmD. 5cm【答案】A【考点】线段的长短比较与计算2.如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,则只需条件()A. AB=12B. BC=4C. AM=5D. CN=2【答案】A【考点】线段的长短比较与计算,线段的中点3.如图,C、D是线段AB上两点,M、N分别是线段AD、BC的中点,下列结论:①若AD=BM,则AB=3BD;②若AC=BD,则AM=BN;③AC-BD=2(MC-DN);④2MN=AB-CD.其中正确的结论是()A. ①②③B. ③④C. ①②④D. ①②③④【答案】D【考点】线段的长短比较与计算,线段的中点4.点A,B,C在同一直线上,已知AB=3cm,BC=1cm,则线段AC的长是( )A. 2cmB. 3cmC. 4cmD. 2cm或4cm【答案】 D【考点】线段的长短比较与计算5.如图,已知B是线段AC上的一点,M是线段AB的中点,N是线段AC的中点,P为NA的中点,Q是AM 的中点,则MN:PQ等于()A. 1B. 2C. 3D. 4【答案】B【考点】线段的长短比较与计算6.A、B、C中三个不同的点,则()A. AB+BC=ACB. AB+BC>ACC. BC≥AB-ACD. BC=AB-AC【答案】C【考点】线段的长短比较与计算7.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为()A. 3cmB. 4cmC. 5cmD. 6cm【答案】C【考点】线段的长短比较与计算,线段的中点8.如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为()A. 5 cmB. 1 cmC. 5或1 cmD. 无法确定【答案】C【考点】两点间的距离9.已知平面内有A,B,C三点,且线段AB=3.5cm,BC=2.5cm,那么AC两点之间的距离为()A. 1cmB. 6cmC. 1cm或6cmD. 无法确定【答案】D【考点】线段的长短比较与计算10.已知A,B,C三点在同一条直线上,M,N分别为线段AB,BC的中点.且AB=80,BC=60,则MN的长为( )A. 10B. 70C. 10或70D. 30或70【答案】C【考点】线段的长短比较与计算,线段的中点11.如图,长度为12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为( )A. 2cmB. 8cmC. 6cmD. 4cm【答案】B【考点】线段的长短比较与计算,线段的中点二、填空题(共9题;共9分)12.已知直角坐标平面内两点A(−3,1)和B(3,−1),则A、B两点间的距离等于________.【答案】2√10【考点】两点间的距离13.已知点A,B,C都在直线l上,点P是线段AC的中点.设AB=a,PB=b,则线段BC的长为________(用含a,b的代数式表示)【答案】2b-a或2b+a =a-2b【考点】线段的长短比较与计算,线段的中点14.已知A,B,C三点在同一条直线上,且AB=5cm,BC=2cm,则AC=________ cm. 【答案】3或7【考点】线段的长短比较与计算15.如图,已知C、D是AB上两点,且AB=20cm,CD=6cm,M是AD的中点,N是BC的中点,则线段MN 的长为________cm.【答案】7【考点】两点间的距离16.如图,已知C,D两点在线段AB上,AB=10cm,CD=6cm,M,N分别是线段AC,BD的中点,则MN=________cm.【答案】8【考点】两点间的距离17.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是________ .【答案】两点之间线段最短【考点】线段的性质:两点之间线段最短18.一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k=1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼________米处.【答案】150【考点】线段的长短比较与计算19.如图,在数轴上,点A,B分别表示-15,9,点P,Q分别从点A,B同时开始沿数轴正方向运动,点P 的速度是每秒3个单位,点Q的速度是每秒1个单位,运动时间为t秒.在运动过程中,当点P,点Q和原点O这三点中的一点恰好是另外两点为端点的线段的中点时,t的值是________.【答案】或或33【考点】线段的长短比较与计算,线段的中点20.如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________.【答案】4【考点】两点间的距离三、解答题(共24题;共127分)21.如图,已知线段AD=6cm,线段AC=BD=4cm,E,F分别是线段AB,CD的中点,求EF的长度.【答案】解:∵AD=6cm,AC=BD=4cm,∴AB=AD-BD=6-4=2(cm),CD=AD-AC=6-4=2(cm),∵E是线段AB的中点,∴AE= 12AB= 12×2=1(cm),∵F是线段CD的中点,∴DF= 12CD= 12×2=1(cm),∴EF=AD-AE-DF=6-1-1=4(cm).【考点】线段的长短比较与计算,线段的中点22.如图B、C两点把线段AD分成2:3:4三部分,M是AD的中点,CD=8,求MC的长.【答案】解:设AB为2x,则CD=4x=8,得出x=2,再利用MC=MD﹣CD求解.解:设AB=2x,BC=3x,CD=4x,∴AD=9x,MD= 92x,则CD=4x=8,x=2,MC=MD﹣CD= 92x﹣4x= 12x= 12×2=1.【考点】线段的长短比较与计算,线段的中点23.线段AB=20cm,线段AB上有一点C,BC:AC=1:4,点D是线段AB的中点,点E是线段AC的中点,求线段DE的长度.【答案】解:如图,∵AB=20cm,BC:AC=1:4,并且点C在线段AB上∴BC=15AB=4cm,AC=45AB=16cm又∵点D是AB的中点,点E是AC的中点∴BD=12AB=10cm,EC=12AC=8cm∴DC=BD−BC=10cm−4cm=6cm∴DE=EC−DC=8cm−6cm=2cm故线段DE的长度为2cm.【考点】线段的长短比较与计算,线段的中点24.如图,C是线段AB的中点,D是线段AC上一点,AD-DC=2cm,已知AB=12cm,求DC的长度.【答案】解:∵C是线段AB的中点,AB=12cm,∴AC="12"AB=6cm,即AD+DC=6cm,又∵AD-DC=2cm,∴DC=2cm.【考点】线段的长短比较与计算25.如图所示,线段AB=6cm,点C是线段AB上任意一点,点M是线段AC的中点,点N是线段BC的中点,求线段MN的长.【答案】解:∵点M是AC中点,点N是BC中点,∴MC= 12AC,CN= 12BC,∴MN=MC+CN= 12(AC+BC)= 12AB= 12×6=3(cm)【考点】两点间的距离26.如图,已知AB=40,点C是线段AB的中点,点D为线段CB上的一点,点E为线段DB的中点,EB=6,求线段CD的长.【答案】解:∵点C是AB的中点,AB=40,∴CB= 12AB=20,又∵点E是DB的中点,EB=6,∴DB=2EB=12,∴CD=CB-DB=20-12=8,【考点】线段的长短比较与计算27.如图,P是线段AB上一点,M,N分别是线段AB,AP的中点,若AB=16,BP=6,求线段MN的长.【答案】解:∵AB=16,BP=6,∴AP=AB-BP=16-6=10,∵N为AP中点,∴AN=1AP=5,2又∵M为AB中点,AB=16,∴AM=1AB=8,2∴MN=AM-AN=8-5=3.【考点】线段的长短比较与计算28.已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段AC的中点,求AM的长.【答案】解:①当点C在点B的左边,如图1所示:∵AB=10cm,BC=4cm,∴AC=AB-BC=10-4=6cm;又∵M是线段AC的中点,∴AM=1AC=3cm;2②当点C在点B的右边,如图2所示:∵AB=10cm,BC=4cm,∴AC=AB+BC=10+4=14cm;又∵M是线段AC的中点,∴AM=1AC=7cm;2综上所述:AM的长为3cm或7cm.【考点】线段的长短比较与计算,线段的中点29.知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.情景二:A 、B 是河流l 两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P 的位置,并说明你的理由:你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?【答案】 解:情景一:因为教学楼和图书馆处于同一条直线上,两点之间的所有连线中,线段最短;情景二:(需画出图形,并标明P 点位置)理由:两点之间的所有连线中,线段最短.赞同情景二中运用知识的做法.【考点】线段的性质:两点之间线段最短30.如图,已知B 是线段AC 上的一点,M 是线段AB 的中点,N 是AC 的中点,P 是线段NA 的中点,Q 是线段MA 的中点,求MN :PQ 的值.【答案】解:∵M 是线段AB 的中点∴AM=BM=12AB.∵Q 是MA 的中点,∴AQ=QM=12AM=14AB.∵N 是AC 的中点,∴AN=CN=12AC.∵P 是NA 的中点,∴AP=NP=12NA=14AC ,∴MN=AN−AM=12AC−12AB=AC−AB 2, PQ=AP−AQ=14AC−14AB=AC−AB 4, ∴MN:PQ=AC−AB 2:AC−AB 4=2:1.∴MN :PQ=2【考点】线段的长短比较与计算,线段的中点31.景区大楼AB段上有四处居民小区A,B,C,D,且有AC=CD=DB,为改善居民购物的环境,要在AB路建一家超市,每个小区的居民各执一词,难以确定超市的位置,如果由你出任超市负责人,以便民、获利的角度考虑,你将把超市建在哪儿?【答案】以便民、获利的角度考虑,将把超市的位置建在线段CD上的任意一点.【考点】线段的长短比较与计算AC,D、E分别为AC、AB的中点,求DE的长.32.如图已知点C为AB上一点,AC=18cm,CB=23AC,【答案】解:∵AC=18cm,CB=23∴BC=2×18=12cm,3则AB=AC+BC=30cm,∵D、E分别为AC、AB的中点,∴AD=12AC=9cm,AE=12AB=15cm,∴DE=AE﹣AD=15﹣9=6cm,答:DE的长是6cm。
《比较线段的长短》基础训练知识点1 用尺规作一条线段等于已知线段1.尺规作图的工具是( )A.刻度尺和圆规B.三角尺和圆规C.直尺和圆规D.没有刻度的直尺和圆规2.已知:线段a ,b.求作:线段AB ,使得2AB a b =+.小明给出了四个步骤:①在射线AM 上画线段AP a =;②则线段2AB a b =+;③在射线PM 上画PQ b QB b ==,;④画射线AM.你认为正确的顺序是( )A.①②③④ B ④①③②C.④③①②D.④②①③3.如图,已知线段a b ,,作一条线段使它等于2a b +.(要求:不写作法,保留作图痕迹)知识点2 线段的长短比较及和差4.如图所示,比较线段a 和线段b 的长度,结果正确的是( )A.a b >B.a b <C.a b =D.无法比较5.七年级(1)班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条较长的绳子,请你为他们选择一种合适的方法( )A.把两条大绳的一端对齐,然后同一方向上拉直两条大绳,另一端在外面的即为长绳B.把两条绳子接在一起C.把两条绳子重合,观察另一端情况D.没有办法挑选6.如图,在三角形ABC 中,比较线段AC 和AB 长短的方法可行的有( )①凭感觉估计;②用直尺度量出AB 和AC 的长度;③用圆规将线段AB 叠放到线段AC 上,观察点B 的位置;④沿点A 折叠,使AB 和AC 重合,观察点B 的位置.A.1个B.2个C.3D.4个知识点3 线段的中点及等分点7.如图,点B 在线段AC 上,下列式子中:①12AB AC =;②AB BC =;③2AC AB =;④AB BC AC +=,其中能表示点B 是线段AC 的中点的有( )A.1个B.2个C.3个D.4个8.如图,点O 是线段AB 的中点,点C 在线段OB 上,63AC CB ==,,则OC 的长等于( )A.0.5B.1C.1.5D.29.如图,点C 在线段AB 上,点D 是线段AC 的中点,点C 是线段BD 的四等分点.若2CB =,则线段AB 的长为( )A.6B.10C.14D.1810.如图,点C是线段AB上的点,点D是线段BC的中点.(1)若106,,求CD的长;AB AC==(2)若3010,,求AB的长.==AC BD易错点由于点的位置不确定而出现漏解11.已知A B CBC=cm,点D是AC的中点,AC=cm,6,,是直线MN上的点,若8则BD的长等于_______________.参考答案1.D2.B3.解:略.4.B5.A6.C7.C8.C9.C10解:(1)因为点D是线段BC的中点,所以12CD BC=.因为106AB AC==,,所以1064BC AB AC=-=-=.所以122CD BC==.(2)因为点D是线段BC的中点,所以2BC BD=.因为=10BD.所以210=20BC=?.因为AB AC BC=+,所以302050AB=+=.11.10cm或2cm。
4.2比较线段的长短
1.下列说法正确的是( )
A. 两点之间的连线中,直线最短
B.若P 是线段AB 的中点,则AP=BP
C. 若AP=BP, 则P 是线段AB 的中点
D. 两点之间的线段叫做者两点之间的距离
2.如果线段AB=5cm,线段BC=4cm,那么A,C 两点之间的距离是( )
A. 9cm
B.1cm
C.1cm 或9cm
D.以上答案都不对
3.在直线L 上依次取三点M,N,P, 已知MN=5,NP=3, Q 是线段的中点,则线段QN 的长度是( )
A. 1
B. 1.5
C. 2.5
D. 4
4.已知点C 是线段AB 上的一点,M,N 分别是线段AC,BC 的中点,则下列结论正确的是(
) A. MC=21
AB B. NC=21
AB C.MN=21AB D.AM=21
AB
5. 已知线段AB=6cm,C 是AB 的中点,C 是AC 的中点,则DB 等于( )
A. 1.5cm
B. 4.5 cm C3 cm. D.3.5 cm
6.把两条线段AB 和CD 放在同一条直线上比较长短时,下列说法错误的是( )
A. 如果线段AB 的两个端点均落在线段CD 的内部,那么AB<CD
B. 如果A,C 重合,B 落在线段CD 的内部,那么AB<CD
C. 如果线段AB 的一个端点在线段CD 的内部,另一个端点在线段CD 的外部,那么
AB 〉CD
D. 如果B ,D 重合,A ,C 位于点B 的同侧,且落在线段CD 的外部,则AB 〉CD
7.如图,量一量线段AB,BC,CA 的长度,
就能得到结论( )
A. AB=BC+CA
B. AB<BC+CA
C. AB < BC CA -
D. AB=BC CA -
8. 如图,四条线段中,最短和最长的一条分别
是( )
A. a c
B. b d
C. a d
D. b c
9. 如图,BC=4 cm,BD=7 cm , D 是AC 的中点,则AC= cm , AB= cm
10. 如图,三条线段中,最长的是线段 ,最短的是线段 。
第10题图 第11题图
11. 如图,从甲地到乙地有四条道路,其中最短的路线是 ,最长的路线是 。
12. 如图,D,E 分别是线段AB,AC 的中点,量一量线段DE 和BC 的长度,
得到DE= B C (填一个数)
第12题图 第13题图
13. 如图,AC=CD=DE=EB,则点C 是线段 的中点,点D 是线段 的中点,如果AB=8 cm ,
则AD= cm,AE= cm 。
14. 如图,是一个长方形,分别取线段AB.BC.CD.DA 的中点E,F,G ,H 并顺次连接成四条线段通过度量可以得到:①EF= ·AC,②GH= ·AC, ③FG= ·BD, ④ EH= ·BD (填一个数)
第14题图 第15题图
15. 如图,AB=8cm,O 为线段AB 上的任意一点, C 为AO 的中点,D 为OB 的中点,你能求出线段CD 的长吗?并说明理由。
答案:
1.B
2.D 3A 4.C 5.B 6.C 7.B 8.B 9. 6 10 10. BC AC 11.从甲经A
道C 从甲经D 道C 12.
21 13.AD AB 4 6 14. 21,21 21 2
1 15.能。
因为CO=21·AO,OD=21·OB,所以CD=CO+OD=21·AO+21·OB=2
1(AO+OB)= 21·AB=21·8=4cm。