统计学 第2章 线性规划模型
- 格式:ppt
- 大小:339.00 KB
- 文档页数:6
线性规划模型● 知道线性规划模型的一般形式● 知道什么是可行解、可行域、最优解、最优值 ● 会用图解法求解二个变量的线性规划问题● 会利用软件WINQSB 求线性规划问题的最优解、最优值 ● 会建立简单的线性规划问题● 知道什么是缩减成本、影子价格,会利用软件WINQSB 进行灵敏度分析一、基本概念1. 线性规划模型的一般形式可以表示为:目标函数 max (或min )=c l x 1+c 2x 2+ … + c n x n 。
约束条件: ⎪⎪⎩⎪⎪⎨⎧≥=≤+++≥=≤+++≥=≤+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ),(),(),(22112222212111212111或或或 非负条件: x 1≥0, x 2≥0, …, x n ≥0可简写为 max(或min)=∑=n j j j x c 1 约束条件: ∑=n j j ij x a1≤(或=,≥) b i ,i=1,2,…,m非负条件: x j ≥0,j=1,2,…,n目标函数中的系数c i , i=1,2, …,n , 常称为价值系数,它反映某种价值(如利润、收益或效益);约束条件中的右端项bj ,j=1,2, …,m ,右端系数,它反映某种资源的限制(如劳动力、原材料等);约束条件中的a ij 常称为技术系数。
一般,它们都是已知的常数。
2.一个线性规划问题有解,是指能找出一组x j(j=1,2,…,n),使其满足所有的约束条件和非负条件。
称任何一组这样的x j(j=1,2,…,n)是线性规划问题的一个可行解。
通常,线性规划问题含有多个可行解。
称全部可行解的集合为该线性规划问题的可行域。
使目标函数值达到最优的可行解称为该线性规划问题的最优解,最优目标函数值称为该线性规划问题的最优值。
对不存在可行解的线性规划问题,称该线性规划问题无解。
二、两个变量的线性规划问题的图解法图解法的步骤为:第1步:在平面上建立直角坐标系;第2步:图示约束条件和非负条件,找出可行域;第3步:图示目标函数,并寻找最优解。
线性规划模型线性规划(Linear Programming,LP)是一种用于求解线性优化问题的数学建模方法。
线性规划模型是在一组线性约束条件下,通过线性目标函数来寻找最优解的数学模型。
其基本形式如下:最大化或最小化:Z = c₁x₁ + c₂x₂ + … + cₙxₙ(目标函数)约束条件为:a₁₁x₁ + a₁₂x₂ + … + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + … + a₂ₙxₙ ≤ b₂…aₙ₁x₁ + aₙ₂x₂ + … + aₙₙxₙ ≤ bₙx₁, x₂, …, xₙ ≥ 0其中,c₁, c₂, …, cₙ为目标函数中各项的系数;a₁₁,a₁₂, …, aₙₙ为约束条件中各项的系数;b₁, b₂, …, bₙ为约束条件中的常数项;x₁, x₂, …, xₙ为决策变量。
线性规划模型的求解过程分为以下几个步骤:1. 建立数学模型:根据问题的描述,确定决策变量,确定最优化目标,建立目标函数和约束条件。
2. 确定可行解区域:根据约束条件,画出约束条件所确定的可行解区域。
3. 求解最优解:在可行解区域内寻找目标函数最大化或最小化的解。
常用的求解方法有单纯形法和对偶单纯形法。
4. 解释结果:根据最优解,给出对决策变量和目标函数的解释,进一步分析结果的意义。
线性规划模型适用于许多实际问题的求解,如生产计划、资源分配、物流调度等。
通过构建适当的数学模型,可以帮助管理者做出理性决策,最大化或最小化目标函数。
然而,线性规划模型也有其局限性。
首先,线性规划只能处理线性约束条件和线性目标函数,对于非线性问题无法求解。
其次,线性规划假设决策变量是连续的,对于离散的决策问题,线性规划无法适用。
此外,线性规划模型还需要求解算法的支持,对于复杂问题需要较高的计算资源。
总之,线性规划模型是一种常用的数学建模方法,通过线性约束条件和线性目标函数,求解最优解,帮助解决实际问题。
但线性规划模型也有其适用范围和局限性,需要根据具体问题来选择合适的求解方法。
线性规划模型线性规划模型是一种数学模型,用于解决优化问题,确保特定的目标实现而满足一定约束条件。
它是基于线性关系的一类优化模型,其目的是最大化或最小化一个线性函数,同时满足相关的线性约束条件。
线性规划模型涉及了数学、经济、管理、工程等领域,常常被用于优化决策和资源分配。
线性规划模型有五个基本要素:决策变量、目标函数、约束条件、可行解和最优解。
其中,决策变量是待优化的参数或变量;目标函数是一个以决策变量为自变量的线性函数,代表目标的数学表达式;约束条件是必须满足的限制条件,它们也是线性函数形式;可行解是满足所有约束条件的决策变量组合,这些组合可以被用于计算目标函数的值;最优解是在所有可行解中,能够使目标函数取得极值(最大化或最小化)的可行解。
线性规划模型的主要应用在资源优化领域,例如制造、物流、贡献分析和供应链管理。
其中,生产调度和库存管理是常见的应用场景。
生产调度通常涉及如何分配生产设备的时间和资源,以最小化成本并最大化效益。
库存管理通常涉及如何保持合理库存水平以满足需求,同时尽量减少成本和风险。
线性规划模型计算软件广泛应用,其中最广泛的是 Microsoft Excel 中的插件,如Solver。
Solver 可以通过线性规划模型来找到最佳决策组合,以最小化或最大化目标函数。
其他流行的线性规划软件包包括 MATLAB,AMPL 和 Gurobi 等。
然而,线性规划模型有几个限制:一是实际问题往往不是线性的,因此需要更复杂的模型来处理更复杂的问题;二是线性规划模型假设所有参数是确定的,但在许多情况下参数是不确定的,需要采用随机规划模型。
因此,针对问题的实际特点和需求,选择更合适的数学模型和工具是非常重要的。
总之,线性规划模型是优化问题的一个强大工具,可以在许多领域帮助决策者做出最佳决策。
然而,在应用模型过程中要仔细考虑模型的局限性,并尝试更复杂的模型,以获得更好的决策结果。