一元函数积分知识点完整版
- 格式:doc
- 大小:4.23 MB
- 文档页数:18
一、一元函数积分的概念、性质与基本定理1、原函数、不定积分在区间Ⅰ上,如()()x f x F /=,称()x f 为()x F 的导函数,称()x F 为()x f 的原函数,原函数与导函数是一种互逆关系。
如()x F 为()x f 的一个原函数,则()C x F +为()x f 的全体原函数。
记为⎰f(x)dx ,即⎰f(x)dx =()C x F + 不定积积分性质 (1) f(x))f(x)dx (/=⎰或 ()dx x f f(x)dx d =⎰(2) C F(x)(x)dx F /+=⎰ (3) ⎰⎰=f(x)dx k f(x)dx k(4) ⎰⎰⎰±=±g(x)dx f(x)dx g(x))dx f(x) (∵原函数与导函数有互逆关系,∴由导数表可得积分表。
例、P98 例3.1 已知()x F 是xxln 的一个原函数,求:()x sin dF 解:xlnx(x)F /=cosxdx sinxlnsinxdsinx dsinx dF(sinx)dF(sin x)==例、()x f 的导函数是x sin ,则()x f 的原函数21c x c x sin ++-,(1c 、2c 为任意常数)例、在下列等式中,正确的结果是 C A 、()⎰=x f (x)dx f /B 、⎰=f(x)df(x)C 、⎰=f(x)(x)dx f dxdD 、⎰=f(x)(x)dx f d 例、)dx x1(1x x )dx x 1(1x x 241212-⋅=-⎰⎰dx )x -(x 4543⎰-=C 4x x 744147++=-2、计算方法 10 换元法第一类换元法(凑微分法)常用凑微分形式kdx dkx = ()dx c x d =+xxde dx e = dlnx dx x1=x sin d x cos = x1d dx x 12=-x d dx x 21= x tan d xdx sec 2=sin x arc d dx x -112=22x 1d dx x 1x +=+22x 1d dx x -1x --= x sin d dx x 2sin 2=x cos d dx x 2sin 2-=-例、⎰⎰+--=---=-c 2x 3ln 212x)d(32x 3121dx 2x 317、⎰⎰+==c (lnx)32ln x d lnx dx x ln x 238、⎰⎰+==c x sin 41sin x d x sin xdx sin x cos 4339、⎰⎰+-=-=c x 1x -1d 21 x d x-1x22210、⎰⎰+-=-=c e 31d(-x)e 31dx e x 3x -33x -3x -211、⎰⎰+=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+=+c a x tan arc a1a x d a x 11a1dx x a 1222 12、⎰⎰+=+=+c a2xarctan 61d2x (2x)3121 x d 4x 91222 13、⎰⎰+++=++c 1)d(x 41)(x 1x d 5x 2x 122 c 21x arctan 21++=14、⎰+=c a xarcsin x d x-a 122 15、⎰⎰--=+223x)(25dx 9x -2x 11dx 31-=c 53x 2sin arc +- 16、c 1tanx 21)d(tanx 1tan x 11tan x x sec 2++=++=+⎰⎰17、⎰⎰-=dx )1x (sec x tan xdx tan 224dx )1x (sec x tan xd tan 22⎰⎰--=C x x tan x tan 313++-=18、x arcsin d x arcsin dx x 1x arcsin 424⎰⎰=-C x arcsin 515+= 19、⎰⎰++=+)1e (d )1e sin(dx )1e sin(e xxxxC )1e cos(x ++-=20、⎰⎰=x d x cos 2ds xx cosC x sin 2+=21、x d x 1xarctan 2dx x)x 1(x arctan ⎰⎰+=+ ⎰=x arctan d x arctan 2 C x arctan 2+=22、dx e1e e 1dx e 11xxx x ⎰⎰+-+=+⎰+-=dx e1e 1xx()⎰++-=x x e1e 1d x ()C e1ln x x++-=23、⎰⎰⎰+-+=+-)4e (e de 4e de dx 4e 1e x 2x xx 2x x 2xxx 2x x x de 4e e e 1412e arctan 21⎰⎪⎭⎫ ⎝⎛+--=C )4e ln(814x 2e arctan 21x 2x +++-=P100, (9),(10), (14)21x -除了凑微分法外其它常用变量代换 (1)被积函数中含有二次根式22x a -,令t sin a x = 22x a +,令t tan a x = 22a x -,令t sec a x =如是C bx ax 2++配方221212212u a ,a u ,a u --+→例1、dx xx 122⎰- 令tdt cos dx ,t sin x ==解:原式 ⎰⋅=tdt cos tsin tcos 2⎰⎰-==dt )1t (csc tdt cot 22C t t cot +--=C x arcsin xx 12+---=例2、dx 4x x122⎰- P105例4 二种解法(2)被积函数中含一般根式例3、⎰++32x 1dxP106 (6)解:令dt t 3dx 2t x t2x 233=-==+原式⎰⎰++-=+=dt )t111t (3dt t 1t 32()C 2x 1ln 32x 32x 233332+++++-+=例4、⎰+dx x x 132令 dt t 6dx t x 56==原式⎰⎰⎰++-=+=+=dt )t111t (6dt t 1t 6dt t t t 62435 C t 1ln t 2t 62+⎪⎭⎫⎝⎛++-= C x 1ln 6x 6x 3663+++-=例5、⎰+dx 1e x解:令 1t e t1e 2x x-==+dt 1t t2dx )1t ln(x 22-=-= 原式 ⎰⎰⎪⎭⎫ ⎝⎛-+=-⋅=dt 1t 112dt 1t t 2t 22 C 1t 1t lnt 2++-+=C)11e ln()11e ln(1e 2x x x +++--+++=20分部积分<定理> 如()x u 、()x v 均具有连续的导函数,则⎰⎰-=vdu uv dv u例1、⎰⎰=xdsin x dx x xcos⎰=dx sin x -sin x xc x cos sin x x ++=例2、⎰⎰---=xxxde dx xe⎰--+-=dx e xe x xC e xe x x+--=--例3、()⎰⎰⋅-=dx x-11sin x 2arc x sinx arc x dx sin x) (arc 222()⎰+=22x -1sinxd arc 2sinx arc x()⎥⎦⎤⎢⎣⎡-⋅-+=⎰dx x 11x -1-sinx arc x 12sinx arc x 2222()C 2x -sinx arc x 12sinx arc x 22+-+=例4、⎰⎰⎪⎭⎫⎝⎛-=x 1d ln x dx x ln x 2 ⎰+-=dx x 1x lnx 2c x1-x lnx +-=例5、⎰⎰=ln x d ln x ln dx xlnxln ⎰⋅⋅⋅=dx x1ln x 1ln x -ln x ln ln xc ln x -ln x ln ln x +=例6、⎰⎰-=dx )1x (sec x xdx xtan 22⎰-=2x xdtanx 22x dx tan x xtanx 2--=⎰c 2x - x cos ln x tan x 2++=例7、⎰⎰+-+=+xdx arctan x111x dx x 1x arctan x 2222⎰+-=dx )x1xarctan x (arctan 2⎰⎰-=x arctan xd arctan xdx arctan22)x (arctan 21dx x 1x x arctan x -+-=⎰c )x (arctan 21)x 1ln(21x arctan x 22+-+-=例8、⎰⎰++-++=++c x 1dx )x 1xln(x )dx x 1ln(x 222 c x 1)x 1xln(x 22++-++=例9、⎰⎰=x x x 2x dsine e dx cose e⎰-=x x x x de sine sine ec cose sine e x x x ++=例10、⎰⎰-=dx )x 2cos 1(21x xdx sin x 222 ⎰-=dsin2x x 416x 23 ⎰+-=dx 2x xsin 21sin2x x 416x 23 ⎰--=x 2cos xd 41x 2sin 4x 6x 23c x 2sin 81x 2cos x 41sin2x x 416x 23++--=例11、⎰⎰--=-22x 1arcsinxd dx x 1xarcsinxc x arcsinx x 12++--=例12、P109 例3.5友情提示:方案范本是经验性极强的领域,本范文无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用。
一元函数微积分学知识点总结
学习数学能使人们更符合逻辑、更有条理、更严密、更准确、更深入地思考和解决问题,能增强人们的好奇心、想象力和创造性。
导数
微分
不定积分
定积分
变限积分
反常积分
求导数
1.复合函数求导
2.分段函数求导
3.隐函数求导
4.高阶导数求导
求积分
1.凑积分法
2.换元法
3.分部积分法
4.有理函数积分法
5.运用牛顿-莱布尼茨公式
几何应用(数一、数二、数三)
1.导数的几何应用:“三点两性一线”(极值点、最值点、拐点、单调性、凹凸性、渐近线)
2.积分的几何应用:利用定积分计算平面图形的面积、旋转体的体积和函数的平均值
物理应用(数一、数二)
1.变化率问题
2.静水压力
3.抽水作功
4.质点引力
经济应用(数三)
1.边际
2.弹性
3.积分的简单经济应用
中值定理的证明
求方程的根
不等式的证明
等式的证明
【注】整个高数上册就是在讲一元函数微积分,复习这部分要整体把握,先把整个知识框架了熟于心,在复习过程中多总结知识点之间的联系。
由于最近五一集训营和真题大全解的事情比较忙,知识点精讲一直没有更新,真题出来之后五月份我会重点多讲解知识点,把整个一元函数部分每个知识点梳理一遍,希望同学们多多体谅!。
一元函数积分学(1)(第十一周周三)题型•定积分概念(定积分求极限)•定积分性质及其应用(比较定积分大小,估计积分值)•变限定积分函数求导•变限积分函数极限•定积分表示变量的极限•分段求定积分•求解含定积分符号的函数方程•定积分等式与定积分不等式证明3定积分定义求极限其中极限与分点x i 的取法及x i 的取法无关.当函数f (x )在[a , b ]上连续时, 有可用于求某些通项为和式数列的极限,根据积分合式确定被积函数和积分区间→==∑⎰01()d lim ()n b i i a i f x x f x λx ()→∞=--+=∑⎰1lim ()d .n b n a i b a b a f a i f x x n n12lim 1cos 1cos 1cos n n n n n n πππ→+∞++++++11011211cos 1cos 1cos 1cos 1lim 1cos 1cos(n i n n i n i n n nn n n i x dx n nππππππ=→∞=++++++=++=+∑∑⎰()→∞=--+=∑⎰1lim ()d .n b n a i b a b a f a i f x x n n求极限).21(lim 22222nn n n n n n n ++++++∞→ 原式n n 1lim ∞→=∑=+n i ni 12)(11x x d 11102⎰+=4π=()→∞=--+=∑⎰1lim ()d .n b n a i b a b a f a i f x x n n将数列适当放大和缩小,以简化成积分和:11sin k n n k k n π=<<+∑已知11012lim sin sin d ,n n k k x x n n πππ→∞=⋅==∑⎰利用夹逼准则可知2.I π=∑=⋅+n k nn k n n 11sin 1π∑=⋅nk n n k 11sin π11lim =+∞→n n n 求()→∞=--+=∑⎰1lim ()d .n b n a i b a b a f a i f x x n n关于定积分重要性质保号性:()0,f x ≥则有()d 0.ba f x x ≥⎰若f (x )在[a ,b ]上连续, ()0,f x ≥且()0,[,]f x x a b ≡∈/则()d 0.b a f x x >⎰若f (x )在[a , b ]上连续, ≥()0,f x =⎰()d 0,b a f x x 且则()0.f x ≡积分中值定理:若f (x )在[a , b ]上连续, 则至少存在一点(,),a b x ∈使得()d ()().ba f x xb a f x =-⎰第一积分中值定理:若函数f (x ), g (x )在[a , b ]上连续, g (x )在[a , b ]上不变号,则在(a , b )内至少存在一点x , 使=⎰⎰()()d ()()d .b b a af xg x x f g x x x 估值定理:若f (x )在[a , b ]上连续,≤≤(),m f x M -≤≤-⎰()()d ()b am b a f x x M b a令,)(x e x f x-=]0,2[-∈x ,0)(>x f ,0)(02>-∴⎰-dx x e x dx e x ⎰-∴02,02dx x ⎰->于是dx e x ⎰-20.20dx x ⎰-<比较积分值dx e x ⎰-20和dx x ⎰-20的大小.比较定积分大小(积分区间相同,比较函数大小)比较定积分大小(积分区间不同)2222202220cos cos x x x x e dx e dx e xdx e xdx ππππππ---->>⎰⎰⎰⎰22222()2()200cos cos ()cos x u x u x e xdx e u dx e xdx ππππππππ--+-+=-=+=⎰⎰⎰设函数f (x )在[0, 1]上连续, 且单调减少, 试证对任意(0,1),a ∈有≥⎰⎰100()d ()d .a f x x a f x x 证明1:-⎰⎰100()d ()d a f x x a f x x =-⎰⎰00()d ()d a a f x x a f x x -⎰1()d aa f x x=-⎰0(1)()d a a f x x -⎰1()d aa f x x (0,),a α∈(1)()a af α=-(1)()a af β--(,1)a β∈()(1)()()a a f f αβ=--0.≥1100011000()()()01,01()()()()()aa f x dx x at a f at dt a f ax dx a x ax x f ax f x a f x dx a f ax dx f x dx ⇒=⇒=<<<<⇒<⇒≥≤=⎰⎰⎰⎰⎰⎰证明2:12222200sin cos d d .11x x x x x x ππ<++⎰⎰-+⎰220cos sin d 1x x x x π-=+⎰420cos sin d 1x x x x π-++⎰224cos sin d 1x x x x ππ=-+-++⎰⎰42220411(cos sin )d (cos sin )d 11x x x x x x πππx η0=--≥++2211(21)()011x η,sin 31)(3xx f +=],,0[π∈∀x ,1sin 03≤≤x ,31sin 31413≤+≤x ,31sin 31410030dx dx xdx ⎰⎰⎰πππ≤+≤.3sin 31403π≤+≤π∴⎰πdx x 估计积分dx x ⎰π+03sin 31的值. 估计积分值大小证明证:令则令得故变限积分求导2(1)2()sin ,(2)x x x f t dt t f π+==⎰22((1))(23)2(2)cos f x x x x f x xππ++-=15(2)2(2)(2)3x f f f ππ=⇒-=-⇒=-()''()(())(())()(())()g x h x d f t dt f g x g x f h x h x dx =-⎰sin '0()(sin )(),()xF x x t f t dt F x =-⎰求sin 'sin sin 00sin 0()(sin ()())(sin ())()cos ()x x x xd F x xf t tf t dt dx d d x f t tf t dt dx dx x f t dt=-=-=⎰⎰⎰⎰20cos()x d x t dt dx -=⎰2211211x x d x dt dx x t x x -+=++++⎰1x t u+=解:提示:2解:先求定积分,再求导4030sin lim xdt t x x ⎰→求极限00解:此极限为型414sin lim 330==→x x x 原式变限积分函数极限(洛必达,积分中值,等价无穷小)200cos lim x x t dt x →⎰0|sin |limx x t dt x →+∞⎰(1)00|sin ||sin |sin 2,(1)k kt dt t dt tdt x n n x n ππππππ+===∀∃≤<+⎰⎰⎰(1)000(1)0000|sin ||sin |sin |sin |2,sin 2(1)|sin |22(1)(1)|sin |2lim n x n n n x x x t dt t dt tdt t dt n tdt n t dt n n n x n t dt x πππππππ++→+∞≤<==++≤<+=⎰⎰⎰⎰⎰⎰⎰周期性.lim 222dx e x n n x n ⎰+-∞→计算)2(lim lim 22222n n e dx e x n n x n -+=-∞→+-∞→⎰x x x 22lim 2x x x e ∞→=.0=定积分表示变量的极限.01lim 10=+⎰∞→dx x x nn 证明,10n nx xx ≤+≤ dx x dx x x n n ⎰⎰≤+≤∴101010,11+=n ,011lim =+∞→n n 且.01lim 10=+⎰∞→dx x x nn 由夹逼准则可知注意:x x +=+∞→∞→⎰1lim 1lim 10nn n n dx x x (01)x ≤≤.0=错误,可用第一积分中值定理=⎰⎰()()d ()()d .bba a f x g x x f g x x x分段求定积分(含有max,min,取整符号,绝对值,被积函数含参变量)10()|()|F x t t x dt =-⎰101010()()3211()()23x x F x t t x dt x x F x t t x dt ≤⇒=-=-≥⇒=--=-⎰⎰10201()()()11323x x x F x t t x dt t t x dt x x <<⇒=--+-=-+⎰⎰=+⎰21()()1()()设连续,,求f x f x x f x dx f x 求解含定积分符号的函数方程212211()()1()(1)3122()12a f x dx f x ax f x dx ax dx a a a f x x=⇒=+⇒=+⇒=+⇒=-⇒=-⎰⎰⎰令已知函数f (x )满足方程=-⎰120()3()d ,f x x f x x 试求f (x ).解令=⎰120()d ,f x x a 则()f x =-3.x a ⎰120()d f x x a =()=-⎰1203d x a x ()=+-⎰122096d x a ax x =-+233,a a ⇒-+=2430,a a 3a ⇒=或=1,a 故=-()33f x x 或=-()31f x x定积分等式与定积分不等式证明(1) 变上限积分;(2) 积分中值定理;(3) 微分中值定理;(4) 常用不等式(柯西-施瓦茨不等式);(5) 利用Taylor公式;(6) 利用闭区间上连续函数性质.1证明恒等式证:令则因此,)0()(2π<<=x C x f 又4π=故所证等式成立.试证使分析:要证即⎰xaxxg d)(⎰-x a xxf d)(故作辅助函数至少存在一点证明: 令⎰⎰⎰⎰-=ba x ab a x a x x g x x f x x f x x g x F d )(d )(d )(d )()(在上连续,在至少使即0d )()(d )()(=-⎰⎰b a ba x x g f x x f g x x 因在上连续且不为0 ,从而不变号,因此故所证等式成立.故由罗尔定理知,存在一点7设解法1:设且试证:t t f x F x a d )()(⎰=⎰x a t f t )(d 则=')(x F )(2a x --⎰⎢⎣⎡=x a )(t f )(t f t d 2⎥⎦⎤-t t f x f t f x f x a d )()()]()([2⎰-=故F (x ) 单调不减,即②成立.②⎰x a t t f d )(⎰x at f t )(d 2)(a x --8设函数f (x )在[0, 1]上是非负、单调减的连续函数,且0 < a < b < 1, 求证≥⎰⎰0()d ()d .a b a a f x x f x x b ⎰0()d af x x ⎰()d ba f x x 1()f a x =2()()fb a x =-1(0,)a x ∈2(,)ab x ∈(),f a a ≥()()f a b a ≤-(),bf a ≤⎰0()d af x x ()f a a ≥≥⎰()d .ba a f x xb 证明由积分中值定理, 得设f 在[0, π]上连续, 在(0, π)内内可导, 且==⎰⎰00()cos d ()sin d 0,f x x x f x x x ππ证明: 存在(0,),x π∈使得()0.f x '=证明因为在(0, π)内, sin x 0,>又=⎰0()sin d 0,f x x x π故f (x )在(0, π)内必有零点α .若在(0, π)内, f (x )恒正, 则>⎰0()sin d 0;f x x x π若在(0, π)内, f (x )恒负, 则<⎰0()sin d 0;f x x x π零点不唯一:若(0,)απ∈是f (x )的唯一零点, 则,(0,),x x απ≠∈f (x )在x = α的两侧异号. 于是sin()()x f x α-必恒正或恒负,从而-≠⎰0sin()()d 0.x f x x πα39-≠⎰0sin()()d 0.x f x x πα-⎰0sin()()d x f x x πα0()(sin cos f x x πα=⎰-cos sin )d x xα=⎰0cos ()sin d f x x x πα-⎰0sin ()cos d f x x x πα0=与上式矛盾.故f (x )在(0, π)内零点不惟一,Rolle 定理:在(0,),x π∈使得()0.f x '='11,[]()[](){(1)(2)...([])}aa x f x dx a f a f f f a >=-+++⎰证明:1'201[0,1],()()0,()()3x f x f x f x dx f ∈<≤⎰二阶可导,证明:222()[,]()cos ()sin [()]b b b a a a f x a b f x kxdx f x kxdx f x dx ∀+≤⎰⎰⎰在连续且非负,证明:k,满足:[][]sin 2'0()(),()xF x f tx dt F x =⎰222sin 2011()()x x u tx dt du xF x f u du x =⇒==⎰提示:考虑X=0?).2212(lim 12121n n n n n n n n n ++++++∞→()''()(())(())()(())()g x h x d f t dt f g x g x f h x h x dx =-⎰=-⎰()d ()().b af x x b a f x =⎰⎰()()d ()()d .bb aa f x g x x f g x x x 222[()()]()()b b b a a a f x g x dx f x dx g x dx ≤⎰⎰⎰变限积分求导公式:积分中值定理:第一积分中值定理:柯西施瓦茨积分不等式:<<a b x。
第三章 一元函数的积分学§1 不定积分【考试要求】1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式.2.掌握不定积分的换元积分法和分部积分法.3.会求有理函数、三角函数有理式的积分和简单无理函数的积分.一、基本概念1.原函数与不定积分定义若()()F x f x '=,(,)x a b ∈,则称()F x 是()f x 在(,)a b 内的一个原函数.(一般地,“在区间(,)a b 内”几个字常省略).若()F x 是()f x 的一个原函数,则()F x C +也是()f x 的原函数(其中C 为任意常数),()f x 的全体原函数称为()f x 的不定积分,记作()d f x x ⎰.若()F x 是()f x 的一个原函数,则()d ()f x x F x C =+⎰.2.不定积分与原函数的关系(1)不定积分与原函数是两个不同的概念,前者是个集合,后者是该集合中的一个元素,因此()d ()f x x F x ≠⎰.(2)设()F x ,()G x 是()f x 的任意两个原函数,则()()F x G x C =+((,)x a b ∈).(3)原函数的几何意义:称()y F x C =+为()f x 的积分曲线,其上横坐标为x 处的切线互相平行.3.原函数存在定理设()f x 在(,)a b 内连续,则在(,)a b 内必有原函数.4.不定积分的基本性质(1)()d ()d kf x x k f x x =⎰⎰ (k 为常数);(2)[()()]d ()d ()d f x g x x f x x g x x ±=±⎰⎰⎰;(3)求导与求不定积分互为逆运算① (()d )()f x x f x '=⎰ ,d ()d ()d f x x f x x =⎰;② ()d ()f x x f x C '=+⎰,d ()()f x f x C =+⎰;5.基本积分公式(熟练掌握)(1)d k x kx C =+⎰;(2)11d 1x x x C μμμ+=++⎰; (3)1d ln ||x x C x=+⎰; (4)d ln x x a a x C a=+⎰; (5)e d e x x x C =+⎰;(6)sin d cos x x x C =-+⎰;(7) cos d sin x x x C =+⎰;(8) 2sec d tan x x x C =+⎰;(9)2csc d cot x x x C =-+⎰;;(10)sec tan d sec x x x x C ⋅=+⎰;(11)csc cot d csc x x x x C ⋅=-+⎰;(12)d arcsin xx C =+⎰;(13)2d arc ta n 1x x C x=++⎰; (14)tan d ln |cos |x x x C =-+⎰;(15)cot d ln |sin |x x x C =+⎰;(16)d arcsin xx C a =+⎰; (17)22d 1arctan x x C a x a a=++⎰; (18)sec d ln |sec tan |x x x x C =++⎰;(19)csc d ln |csc cot |x x x x C =-+⎰;(20)22d 1ln 2x a x C a x a a x +=+--⎰;(21)d ln x x C =++⎰; (22)21arcsin 22a x x C a =++⎰. 6.初等函数的原函数初等函数在其定义区间内必有原函数,但它的原函数不一定是初等函数.不能用初等函数来表示(积不出来)的不定积分如下:2e d x x ⎰, 2e d x x -⎰, sin d x x x ⎰, cos d x x x⎰, 2sin d x x ⎰, 2cos d x x ⎰, d ln x x ⎰,e d x x x⎰,e ln d x x x ⎰,ln |sin |d x x ⎰等.二、不定积分的积分法1.公式法 将被积函数变形,直接利用公式.2.换元法 引入新的变量,再积分.第一类换元法(凑微分法)设()f u 的原函数为()F u ,()u x ϕ=有连续的导数,则[()]()d f x x x ϕϕ'⋅⎰ [()]d ()f x x ϕϕ=⎰()u x ϕ=()()d [()][()]u x f u u F u C F x C ϕϕ==+=+⎰凑微分 换元 积分 变量还原常见的凑微分公式(1)1()d ()d()f ax b x f ax b ax b a+=++⎰⎰,0a ≠;(2)11()d ()d()n n n n f x x x f x x n -=⎰⎰; (3)(e )e d (e )d(e )x x x x f x f =⎰⎰;(4)d 1(ln )(ln )d(ln )x f x f x x x n =⎰⎰;(5)21111()d ()d()f x f x x x x=-⎰⎰; (6)12f x f =⎰⎰; (7)(sin )cos d (sin )d(sin )f x x x f x x =⎰⎰;(8)(cos )sin d (cos )d(cos )f x x x f x x =-⎰⎰;(9)2(tan )sec d (tan )d(tan )f x x x f x x =⎰⎰;(10)2(cot )csc d (cot )d(cot )f x x x f x x =-⎰⎰;(11)21(arctan )d (arc tan )d(arc tan )1f x x f x x x ⋅=+⎰⎰; (12)1(arcsin )d (arcsin )d(arcsin )f x x f x x ⋅=⎰⎰; (13)d xf x f ⋅=⎰⎰;(14)()d ()d ln |()|()()f x f x x f x C f x f x '==+⎰⎰. 第二类换元法设()x t ϕ=单调,有连续的导数,且()0t ϕ'≠,如果[()]()d ()f t t t F t C ϕϕ'=+⎰,则()d f x x =⎰ ()x x ϕ=[()]()d f t t t ϕϕ'⎰1()[()]t x F t C ϕ-==+1[()]F x C ϕ-=+.换元 积分 变量还原3.分部积分法 设()u u x =,()v v x =具有连续的导数,则d d uv x uv u v x ''=-⎰⎰ 或 d d u v uv v u=-⎰⎰称为分部积分公式.4.特殊函数类的积分有理函数:先化为多项式与简单分式,再逐项积分.三角函数有理式:令tan 2x u =,化为有理函数的积分.简单无理函数:引入代换去掉根号,化为有理函数的积分.常用的分项公式如下:(1)111(1)1x x x x=-++; (2)111(1)1x x x x=+--; (3)2211(1)1x x x x x=-++; (4)22211111(1)(1)(1)1(1)x x x x x x x x x =-=--+++++; (5)2222111(1)1x x x x=-++. 常用的三角公式如下:(1)21cos 2cos 2x x +=;(2)21cos 2sin 2x x -=;(3)21sin (sin cos )22x x x ±=±三、典型例题题型1 直接积分法 (即将被积函数分解为几个简单函数的代数和再分项积分)例1 求下列不定积分(1) 231d 5x xx x ++⎰; (2)10d (2)x x x +⎰;(3) 42d x x x +⎰; 解 原式2222d 111d arctan (1)1x x x C x x xx x ⎡⎤==-=--+⎢⎥++⎣⎦⎰⎰.(4)2222+sin sec d 1x x x x x ⋅+⎰; 解 原式精品文档()()2222221+sin 11sec d sec d d 11xx x x x x xx x +-=⋅=-++⎰⎰⎰tan arctan x x C =-+.题型2 换元积分法(第一类和第二类)例1 求下列不定积分(1)2sin cos d 1sin x xx x ⋅+⎰; (2)d x⎰解原式ln dln d u x x u ========⎰⎰⎰11d()2arcsin arc 12u u C --==+=⎰ .(3)3xx ⎰;解原式23221122u x x x x x u========⎰⎰⎰32111(1(1)d(1)222u u u u =+-=++-⎰⎰⎰535222212211[(1)(1)](1)(125353u u C x =+-++=+-+ . (4)sin 222esin d exxxx ⋅⎰; 解 原式sin 222sin 22sin11esin d e d(sin 22)e44x xx x x x x x --=⋅=--=-⎰⎰(5)1d (1e )xxx x x ++⎰; (6)ln(tan )d sin cos x x x x ⋅⎰.例2 求x ⎰.解:原式2[ln()3x x =+=+⎰例3 求 342e ed e 2e 1x xx xx +-+⎰. 解:原式2222e (e e )d(e e )1d e (e e )(e e )e ex x x x x x x x x x x x x C -----+-===-+---⎰⎰ 例4 求 241d 1x x x ++⎰.解:原式22221111d()1d arctan 11()2x x x x x C x x x x+--===++-+⎰⎰例5 求下列不定积分(1)xx ⎰;(2)3d x x ⎰; 解 令π323sec ,0,d sec tan d 22x t t x t t t ⎛⎫=<<=⋅ ⎪⎝⎭ ,原式23233tan 34tan 4sec tan d d sin 23sec 33sec 2t t t t t t t t =⋅⋅==⎛⎫ ⎪⎝⎭⎰⎰⎰241231sin 2arccos 324322t t C x x ⎛⎫=-+=- ⎪⎝⎭.(3)d x ⎰.解 令2tan ,d sec d x t x t t ==,原式2222sec d cos d dsin arcta (2tan 1)sec 1sin 1sin t t t t tt t t t ====+++⎰⎰⎰arctanx C =+.注 1ο,令s i n x a t = 或 cos x a t =;2ο,令sec x a t = 或 csc x a t =或 ch x a t =;3ο,令tan x a t = 或 cot x a t =或 sh x a t =;4ο三角代换变量还原时利用辅助三角形. 例6 求下列不定积分(1)d x⎰;解 原式()d31d13xx-==⎰⎰1ln|31|3x C=-++.(2)21d446xx x-+⎰.解原式()()2111212d21arctan221xx C x-=-=⋅+ -+⎰.(注对二次三项式2ax bx c++或其平方根,配方后使用公式).例7求下列不定积分(1)d x⎰(2)21lnd(ln)xxx x--⎰.(注1xt=称为倒代换,当分母的次数高于分子的次数时,可考虑用此代换).例8 求e (1e )d x xx +⎰(注 可考虑指数代换e xu =或e sin xt =).例9 求d x x⎰,(令:t =)解令t =,22tan 1tan d 2tan sec d .t x t x t t t =⇒=+⇒=⋅原式(2222arctan 2sec tan d 2tan d 2sec 1tan t t t t t t t t t t t ⋅=⋅⋅=⋅=⋅+⎰⎰⎰()222sec 1d 2d(tan )2tan tt t t t t t t t =⋅-=-=⋅-⎰⎰⎰22tan 2ln |cos |t t t t C =⋅+-+212ln ||arctan x=⋅+-+22ln ||arctanx =⋅--+.题型3 分部积分法关键:正确地选择u 和v ,选择u ,v 的原则:1οv 好求; 2οd v u ⎰要比d u v ⎰简单.例1 求下列不定积分(1)2(22)e d xx x x +-⎰; (2)2(1)ln d xx x +⎰;(3)e cos d xx x x ⎰; (4)sin ln d x x ⎰ 解 原式1sinln dsinln sinln cosln d x x x x x x x x xx=-=-⋅⋅⎰⎰sinln cosln d sinln cox x x x x x x ⎡=-=-⋅⎣⎰()()1sinln cosln sinln d x x x x x xx=-+-⎰()sinln cosln sinln d x x x x x =--⎰所以 原式()sinln cosln 2xx x C =-+.(5)22arctan d (1)xx x x +⎰; 解 原式22arctan arctan 1d d arctan d(-)arctan d 1x x x x x x x x x =-=-+⎰⎰⎰⎰()221111arctan d arctan 12x x x x x x =-+⋅-+⎰()()22221111arctan d arctan 221x x x x x x =-+-+⎰ 22211111arctan d 212x x x x x ⎛⎫=-+-- ⎪+⎝⎭⎰()()22111arctan ln ln 122x x x x =-+-+-()22111arctan ln arctan 212x x x x x =-+-+.(6)ln(x x x +⎰.解原式ln(x x x =+⋅⎰dln(x =⋅+-⋅⎰ln(d x x =⋅+-=⎰.例2 求 22sin d (cos sin )xx x x x -⎰. 解 原式2sin sin sin 1d d (cos sin )cos sin x x x x x x x x x x x x x ⎛⎫=⋅= ⎪--⎝⎭⎰⎰sin 11cos sin cos sin x x x x x x x x ⎛⎫=⋅-⋅ ⎪--⎝⎭⎰2sin 11s d cos sin (cos x x x x x x x x x ⎛⎫=⋅-=⎪-⎝⎭⎰.例3 求ed xx x ⎰.(先换元,后分部积分) 解: 原式222222d d 12ln(1)d 2[ln(1)2d ]1tt x t t ttt t t t t =++=+-+⎰⎰24arctan C =-++.题型4 分项--分部积分法(将积分分成两项(或多项)的积分和,然后利用分部积分抵消不可积部分)例1 求 2ln 1d ln x x x-⎰; 例2求 22e (tan 1)d x x x +⎰. 题型5 有理函数积分例1 求25d 613x x x x +-+⎰; 例2 求221d (1)x x x +⎰.题型6 三角有理函数积分例1 求 d sin 22sin xx x+⎰ 例2 求d 1sin cos xx x --⎰题型7 简单无理函数积分例1求d x⎰; 例2 求d x⎰.例3求d x⎰(0,0)a b x <<>.解:原式2=⎰2arcsin C =+;题型8 分段函数的积分例1 求|1|ed x x -⎰.例2 求2()max(1,)x x ϕ=的一个原函数()F x ,且(0)1F =.题型9 含有抽象函数的不定积分例1设()d arcsin xf x x x C =+⎰,求1d ()x f x ⎰.例2设()f x 为非负连续函数,当0x ≥时,有20()()d e 1xxf x f x t t ⋅-=-⎰,求()d f x x ⎰. 解 方程化为20()()d ()()d =e 1xxxf x f x t t f x f x t t ⋅-=--⎰⎰,()d ()d u x txxf x t t f u u =--====⎰⎰,代入原方程得()20()d e 1xxf x f u u ⋅=-⎰,令()()()()()20()d exxF x f u u F x f x F x F x ''=⇒=⇒⋅=⎰,两边积分()()()2d e 1d xF x F x x x '⋅=-⎰⎰,得()2211e 22xF x x C =-+, 又()()22100,e 212xF C F x x =⇒=-∴=--,()()(F x F x ∴=≥.()()d f x x F x C =+=⎰.例3设(,)f x y 可微,且(,)ff x y x∂=-∂,e cos xf y y-∂=∂,(0,0)0f =,求(,)d f x x x ⎰. 例4设()f x 在[0,)+∞上可导,(0)1f =,且满足01()()()d 01xf x f x f t t x '-+=+⎰,求[()()]e d xf x f x x -'''-⎰.四、不定积分常用的计算技巧总结(考生自看)1.加减常数法例1 求 cos d 1cos xx x-⎰. 解:原式2cos 111()d (1)d 1cos 1cos 2sin (/2)x x x x x x x -=+=-+=----⎰⎰.2.加减函数法例2 求 21d 1exx +⎰. 解:原式2222221e e e 1d (1)d ln(1e )1e 1e 2x x xx x xx x x C +-==-=-++++⎰⎰.例3 求 d (1)nxx x +⎰. 解:原式1111d d d ln ||ln |1(1)1nnn n n nx x x x x x x x x x x x n -+-==-=-+++⎰⎰⎰.3.乘除函数法例4 求 d e ex x x-+⎰.解:原式22e d de arctane 1(e )1(e )x xxx x x C ===+++⎰⎰. 4.分母整体化法例5 求 2100d (1)xx x +⎰. 解:原式2219899100100100(1)(1)d d (2)d u xu u u u u u u uu u=+-----=====-+⎰⎰⎰9798991212979899u u u C ---=-+-+.例6 求 2sin d (sin cos )xx x x +⎰.解:原式π4222πsin()sin csin 114d d π2sin 2sin ()4u x u x u x x u u x =+-=====+⎰⎰⎰2d d(sin )()[l n |csc(4sin sin 4u u x u u =-=+⎰⎰.5.依分母分解法例7 求 3cos 4sin d cos 2sin x xx x x-+⎰. 解:因为cos x 与sin x 的导数互相转化,所以 可设3cos 4sin (cos 2sin )(cos 2s x x A x x B x -=+++(2)cos (2)sin A B x A B x =++- 故得:231,224A B A B A B +=⎧⇒=-=⎨-=-⎩. 原式cos 2sin (cos 2sin )d 2d cos 2sin cos 2sin x x x x x x x x x x '++=-+=-++⎰⎰.6.还原法例8 求 11(1)ed x xx x x++-⎰.解:11121ed (1)ed ed d(ex x x x xxx x x x x x+++=+-=+⎰⎰⎰⎰1111ed eed ex x x x xxxxx x x x C ++++=+-=+⎰⎰.7.待定函数法 例9 (上例)解:因为被积函数是一个函数与1ex x+的乘积,它的一个原函数必定也是某一个函数与1e x x+的乘积.令 111(1)ed ()ex x xxx x F x C x +++-=+⎰,其中()F x 为待定函数, 两边求导数11211(1)e[()()(1)]ex x xxx F x F x xx++'+-=+-,22111(1)()()(1)()x F x F x F x x x'∴+-=+-⇒=, 故 原式1ex xx C +=+.8.相关积分法例10 求 221e sin d x I x x =⎰,221e cos d xI x x =⎰.解:221222211e d e ,21e cos2d e (cos2sin 2),4xx x x I I x C I I x x x x C ⎧+==+⎪⎪⎨⎪-==++⎪⎩⎰⎰ 1I ∴=22111e e (cos2sin 2)224x x x x C⎡⎤-++⎢⎥⎣⎦2211e e (cos2sin 2)48x xx x C =-++; 2I =22111e e (cos2sin 2)224x x x x C⎡⎤+++⎢⎥⎣⎦2211e e (cos2sin 2)48x xx x C =+++.五、练习题31-1.若()f x 的导函数是e cos xx -+,则()f x 的一个原函数为( ).(A) e cos xx -- (B) esin x x --+ (C)ecos xx --- (D) esin xx -+2.若()f x '为连续函数,则(2)d f x x '=⎰( ).(A) (2)f x C + (B) ()f x C + (C)1(2)2f x C + (D) 2(2)f x C + 3.若()f x 是以l 为周期的连续函数,则其原函数( ).(A) 是以l 为周期的连续函数 (B)是周期函数,但周期不是l(C) 不是周期函数 (D)不一定是周期函数4.设cos x x 是()f x 的一个原函数,求()d xf x x '⎰. 5.2222221sin cos d d sin cos sin cos x x x x x x x x +=⋅⋅⎰⎰. 6. 22e 1e (1)d (e )d sin sin xxxx x x x--=-⎰⎰.7.11e ed d 1e 1e xxx xx x +-=++⎰⎰. 8.45422sincos d sin (1sin )dsin x x x x x x =⋅-⎰⎰.9.1515sin cos d (sin cos )d(sin cos )(sin cos )x xx x x x x x x +=---⎰⎰.10.21111d d d(1)111n n n nnn n n x x x x x x x x x x --⋅+-==++++⎰⎰⎰. 11.cos sin d(sin cos )d cos sin cos sin x x x x x x x x x-+=++⎰⎰.12.321()arctan d arctan d()33x x x x x x x ++=⎰⎰. 13.2d x x⎰. 14.d 1d(3)3xx =⎰⎰ 15.22222d 2ln 2d d 2d 1d 12(14)2(12)ln 2(1)ln 2xxxu x x x x u x x x u u u =========+++⎰⎰⎰.16.22sin d x x x ⎰.17.arcsin 2arcsin x =-⎰⎰.18.2arctan tan 3d sec d 22ed sin d (1)xx ttx t tx x e t t x ==+====⎰⎰. 19.241d 1x x x -+⎰. 20.421d (1)x x x +⎰21. 1183848282821d d d (1)(1)4(1)x x x x x x x x x x ⋅==+++⎰⎰⎰42221d 4(1)x tt t t =+===⎰2tan 24d sec d 1tan sec d 4sec t u t u u u u u u ======⎰.22. 112d d x x x x +-+=⎰⎰22112d[(1)3]2x =-++⎰⎰.23. 2d d d x xx x x =+⎰⎰⎰.24.313(1)4d d x x x x +-+=⎰⎰.25.d 4sin 3cos 5x x x ++⎰(可令tan 2xt =);26. 3sin 2cos d 2sin 3cos x x x x x ++⎰(可令tan 2xt =或依分母分解法);27.设(cos )sin f x x '=(0)x π<<,求()f x . 28.设()F x 是()f x 的一个原函数,且当0x ≥时,有2e()()2(1)xx f x F x x ⋅=+,又(0)1F =, ()0F x >, 求()f x .29.()d ()f x x F x C =+⎰,且当0x ≥时,有2()()sin 2f x F x x ⋅=,又(0)1F =,()0F x ≥,求()f x .30.求2[ln ()ln ()][()()()]d f x f x f x f x f x x ''''++⎰.31.设ln(1)(ln )x f x x +=,计算()d f x x ⎰.32.2()(1)()d exxf x x f x x x '-+⎰. 33.1e (ln )d x x x x +⎰.3-1参考答案1.A2.C3.D 4.2cos sin xx C x--+. 5.tan cot x x C -+.6.e cot xx C ++. 7.ln(1e )xx C -++.8.579111sin sin sin 579x x x C -++9.455(sin cos )4x x C -+.10.1[(1)ln |1|]n nx x C n+-++.11.ln|cos sin|x x C++.12.32arctan36x x xx C+-+.13.arcsin x Cx--+14.1ln|3|3x C++. 15.11(arctan2)ln22xxC-++.16.321sin2cos2sin26448x x xx x x C --++.17.arcsin C-++.18arctan1e+xxC-.1ln C+. 20.311arctan 3x C x x-+++. 21. 44811arctan 881x x C x-⋅++. 22. 2ln |1|x C +-++.23. 1arcsin 22x x C --+. 244ln |1|x C +-++.25. 1tan 22C x -++. 26.125ln |2sin 3cos |1313x x x C -++.27. 1()arcsin 22x f x x C =++. 28.232e()2(1)xx f x x =+.29.2sin 2()xf x =.30.()()[ln ()()1]f x f x f x f x C ''-+. 31.e ln(1e )ln(1e )xxxx C --++-++.32.()ex f x C x +. 33.e ln xx C +.§2 定 积分【考试要求】 1.理解定积分的概念,掌握定积分的基本性质及定积分中值定理.2.掌握定积分的换元积分法和分部积分法.3.理解积分上限函数,会求它的导数,掌握牛顿 –莱布尼茨公式.4.了解反常(广义)积分的概念,会计算反常(广义)积分.一、基本概念 1.定积分定义设()f x 在[,]a b 上有定义且有界,做下述四步:(1)分割:用1n -个分点分割区间[,]a b011i ia x x x x -=<<<<;(2)作乘积:()i i f x ξ∆,其中1[,]i i i x x ξ-∈,1i i i x x x -∆=-;(3)求和:1()ni i i f x ξ=∆∑;(4)取极限:01lim ()ni i i f x λξ→=∆∑,其中1max ||i i nx λ≤≤=∆,如果上述极限存在,则称()f x 在[,]a b 上可积,并称上述极限为()f x 在[,]a b 上的定积分,记作1lim ()()d nbi i ai f x f x x λξ→=∆=∑⎰.注 ()d baf x x ⎰的值与对区间[,]a b 的分法无关,与i ξ的取法无关,与积分变量用什么字母表示无关;与[,]a b 有关,与()f x 有关, 即()d ()d bbaaf x x f t t =⎰⎰.2.定积分的存在性定理设()f x 在[,]a b 上连续,或在[,]a b 上有界且只有有限个第一类间断点,则()d ba f x x ⎰一定存在.3.几何意义定积分()d baf x x ⎰表示由曲线()y f x =,,x a x b ==及x 轴所围平面图形面积的代数和.4.定积分的运算性质:(1)()d ()d a abbf x x f x x =-⎰⎰. (4)[()()]d ()d ()d bb baaaf xg x x f x x g x x ±=±⎰⎰⎰.(2)()d 0aaf x x =⎰. (5)()d ()d b baakf x x k f x x =⎰⎰.(3)d bax b a =-⎰. (6)()d ()d ()d bc baacf x x f x x f x x =+⎰⎰⎰.5.定理定理1 (定积分的比较定理)若在[,]a b 上恒有()()f x g x ≤,则()d ()d bbaaf x xg x x ≤⎰⎰.推论1 若()f x 与()g x 在[,]a b 上连续,()()f x g x ≤,且至少有一点0[,]x a b ∈,使00()()f x g x <,则()d ()d bbaaf x xg x x<⎰⎰.推论2 若在[,]a b 上恒有()0f x ≥,则()d 0baf x x ≥⎰.推论3 ()d ()d bbaaf x x f x x ≤⎰⎰. 定理2(估值定理)若在[,]a b 上,()m f x M ≤≤,则()()d ()ba mba f x x Mb a -≤≤-⎰.定理3(积分中值定理)(1)若()f x 在[,]a b 上连续,则[,]a b ξ∃∈,使()d ()()baf x x f b a ξ=-⎰.(2)若()f x 在[,]a b 上连续,()g x 在[,]a b 上不变号,且在[,]a b 上可积,则[,]a b ξ∃∈,使()()d ()baf xg x x f ξ=⎰⎰.定理4(变上限积分函数及其导数) 设()f x 在[,]a b 上连续,()()d xa F x f t t =⎰称为变上限积分函数,则导数为d ()()d ()()d xt x aF x f t t f t f x x ='===⎰.推论1 设()()()d x aF x f t t ϕ=⎰,则()d ()()d [()]()d x aF x f t t f x x x ϕϕϕ''==⋅⎰.推论2 设21()()()()d x x F x f t t ϕϕ=⎰,则21()2211()d ()()d [()]()[()](d x x F x f t t f x x f x x x ϕϕϕϕϕϕ'''==⋅-⋅⎰.推论3 设()()()()d x aF x f t g x t ϕ=⎰,则()()()()d x a F x g x f t t ϕ'⎡⎤'=⎢⎥⎣⎦⎰()()()d ()[()](x ag x f t t g x f x ϕϕϕ''=+⎰.定理5(变上限积分函数与不定积分的关系) 设()f x 在[,]a b 上连续,则变上限积分函数()()d xaF x f t t =⎰是()f x 的一个原函数, 即()d ()d xaf x x f t t C =+⎰⎰.注:不定积分()d f x x ⎰只能作为运算符号,不能表示一个具体的原函数,特别当()f x 为一个抽象的函数时,无法用()d f x x ⎰来讨论它的某一原函数的性质;而()d xa f t t ⎰为某一确定的原函数,可以用它来讨论此原函数的性质.定理6(牛顿-莱布尼兹公式)设()f x 在[,]a b 上连续,()F x 是()f x 的一个原函数,则()d ()()()bb aaf x x F x F b F a ==-⎰. 6.定积分的计算方法(1) 换元法:设()f x 在[,]a b 上连续,()x t ϕ=在[,]αβ上有连续的导数,且当t 从α变到β时,()t ϕ从()a ϕα=单调地变到()b ϕβ=,则()d [baf x x f βαϕ=⎰⎰要点:换元要换限,变量不还原,不换元则不换限.(2)分部积分法:设()u x ,()v x 在[,]a b 上有连续的导数,则d d bbb aaauv x uv u v x ''=-⎰⎰或 d d b b b aaau v uv v u =-⎰⎰.注:求不定积分时适用的积分法,相应地也适用定积分的求法.7.广义积分的概念与计算 (1)无穷限的广义积分ο1 设()f x 在[,)a +∞上连续,则()d lim()d baab f x x f x x +∞→+∞=⎰⎰;ο2 设()f x 在(,]b -∞上连续,则()d lim()d b baa f x x f x x -∞→-∞=⎰⎰;ο3 设()f x 在(,)-∞+∞上连续,则()d lim()d lim ()d bbaaa b f x x f x x f x x +∞-∞→-∞→+∞=+⎰⎰⎰.仅当等式右边的两个极限都存在时,左边的无穷限广义积分收敛,否则发散.注意: ο3式中等式右边的两个极限若有一个不存在,则()d f x x +∞-∞⎰发散.(2)无界函数的广义积分(瑕积分) ο1 设()f x 在(,]a b 上连续,lim ()x af x +→=∞, 则()d lim ()d bbaa f x x f x x εε++→=⎰⎰,x a =称为瑕点.ο2 设()f x 在[,)a b 上连续,lim ()x bf x -→=∞, 则0()d lim ()d bb aaf x x f x x εε+-→=⎰⎰,x b =称为瑕点.ο3 设()f x 在[,]a b 上除点c 外均连续,lim ()x cf x →=∞,则()d ()d ()d bc baacf x x f x x f x x=+⎰⎰⎰12120lim ()d lim ()d c bac f x x f x x εεεε++-+→→=+⎰⎰.x c =称为瑕点.仅当等式右边的极限存在时,瑕积分收敛,否则发散.注意:ο3式中等式右边的两个极限若有一个不存在,则瑕积分()d ba f x x ⎰发散.二、重要结论(1)利用定积分定义求n 项和的极限 设()f x 连续,则ο1 1()d lim ()nban k b a b af x x f a k n n →∞=--=+⋅∑⎰.ο2 111()d lim ()nn k k f x x f n n →∞==⋅∑⎰.(2)奇、偶函数的积分ο1 设()f x 连续,若()f x 为偶函数,则()d xf t t ⎰为奇函数;若()f x 为奇函数,则对任意a ,()d xaf t t ⎰为偶函数.ο2 设()f x 在[,]a a -上连续,则()d [()()]d aaaf x x f x f a x-=+-⎰⎰(3)周期函数的积分设()f x 在(,)-∞+∞上连续,且以T 为周期,则ο1 202()d ()d ()d T a TTT af x x f x x f x x +-==⎰⎰⎰;ο2 0()d ()d nTT a f x x n f x x =⎰⎰;ο3 0()d ()d a nT Taf x x n f x x +=⎰⎰.即:周期函数在每个周期长度区间上的积分均相等,与起点无关.(4)常用结论ο1 ππ22(sin )d (cos )d f x x f x x =⎰⎰, 令π2x t =-;ο2 ππ00π(sin )d (sin )d 2xf x x f x x =⎰⎰, 令πx t =-;ο3 ππ2(sin )d 2(sin )d f x x f x x =⎰⎰,。
第四部分 一元函数微积分第11章 函数极限与连续[内容提要]一、函数:(138-141页)1、函数的定义:对应法则、定义域的确定、函数值计算、简单函数图形描绘。
2、函数分类:基本初等函数(幂函数、指数函数、对数函数、三角函数、反三角函数的统称);复合函数([()]y f x ϕ=);初等函数(由常数和基本初等函数构成的,且只能用一个式子表达的函数);分段函数;隐函数;幂指函数(()()g x y f x =);反函数。
3、函数的特性:奇偶性;单调性;周期性;有界性.二、极限:1、极限的概念:(141-142页)定义1:(数列极限)给定数列{}n x ,如果当n 无限增大时,其通项n x 无限趋向于某一个常数a ,即a x n -无限趋近于零,则称数列{}n x 以a 的极限,或称数列{}n x 收敛于a ,记为a x n n =∞→lim ,若{}n x 没有极限,则称数列{}n x 发散。
定义2:(0x x →时函数)(x f 的极限)设函数)(x f 在点0x 的某一去心邻域0(,)U x δo内有定义,当x 无限趋向于0x (0x x ≠)时,函数)(x f 的值无限趋向于A ,则称0x x →时, )(x f 以A 为极限,记作A x f x x =→)(lim 0。
左极限:设函数)(x f 在点0x 的左邻域00(,)x x δ-内有定义,当0x x <且无限趋向于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的左极限为A ,记作00(0)lim ()x x f x f x A -→-==。
右极限:设函数)(x f 在点0x 的右邻域00(,)x x δ+内有定义,当0x x >且无限趋向于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的右极限为A ,记作00(0)lim ()x x f x f x A +→+==。
一元函数积分学精讲在微积分学中,积分是导数的逆运算。
一元函数积分学是微积分学中的一个重要内容,它研究的是单变量函数的积分。
通过学习一元函数积分学,我们可以更好地理解函数与曲线的关系,解决曲线下面积等实际问题。
本文将系统介绍一元函数积分学的基本概念、性质和计算方法。
一、不定积分1. 定义不定积分是对函数的积分常见形式之一,表示为$\\int f(x)dx$,其中f(x)是被积函数,dx表示积分变量。
不定积分的本质是求函数的一个原函数。
具体地,若F(x)是f(x)的原函数,则$\\int f(x)dx = F(x) + C$,其中C为常数。
2. 基本积分公式常数积分公式: $\\int kdx = kx + C$,其中k为常数。
幂函数积分公式: $\\int x^n dx = \\frac{1}{n+1}x^{n+1} + C$,其中n eq−1,n为常数。
二、定积分1. 定义定积分是积分学另一重要形式,表示为$\\int_{a}^{b} f(x)dx$,表示对f(x)从a到b的积分。
定积分可以看做是曲线下面积的计算,是实际问题中常用的工具。
2. 定积分性质•定积分线性性质:$\\int_{a}^{b} [f(x) + g(x)]dx = \\int_{a}^{b} f(x)dx + \\int_{a}^{b} g(x)dx$•定积分区域性质:$\\int_{a}^{b} f(x)dx = -\\int_{b}^{a} f(x)dx$三、积分的应用一元函数积分学在各个领域有着广泛的应用,主要包括但不限于以下几个方面:•曲线下面积的计算•物理学中的功与能量计算•统计学中的概率密度函数与累积分布函数•工程学中的中心质心和惯性矩计算四、积分计算技巧与方法积分计算是一门深奥的学问,有许多技巧和方法可以简化计算过程,常见的包括:•换元积分法•分部积分法•三角代换法•分式分解法细致理解这些计算方法对提高积分计算效率至关重要。
不定积分一、 不定积分性质与概念1 原函数定义:如果在区间I 上,可导函数F(x)的导数为f(x),即对任一x ∈I 都有 F ’(x )=f(x)或者dF(x)=f(x)dx那么函数F(x)就称为f(x)在区间I 上的原函数连续函数一定有原函数(连续则可导,可导即有原函数)2 积分定义:在区间I 上,函数f(x)的带有任意常数项的原函数称为f(x)在区间I 上的不定积分,记作⎰dx x f )(若F(x)为f(x)的一个原函数,则⎰+=C x F dx x f )()( C 为常数 (切记 不要忘记常数C ) 3 原函数与不定积分的关系:互为逆运算例⎰dx x 2 由于2'3)3(x x =,所以233x x 是的一个原函数,因此C x dx x +=⎰332 基本积分表(一定要记熟)⎰+=C kx kxdxC x dx x ++=+⎰11αααC x dx x +=⎰||ln 1⎰+=C a a dx a xxln (a>0 ,a ≠1) ⎰+=C e dx e x x⎰+=C x xdx sin cos⎰+-=C x xdx cos sinC x xdx +=⎰tan sec 2⎰+-=C x dx x cot csc 2 ⎰+=C x xdx x sec tan sec⎰+-=C x xdx x csc cot csc⎰+=-C x dx x arcsin 112C x dx x +=+⎰arctan 112⎰+=C chx shxdx⎰+=C shx chxdx4 不定积分的性质性质1 设函数f(x)及g(x)的原函数存在,则[]⎰⎰⎰±=±dx x g dx x f dx x g x f )()()()(性质2设函数f(x)的原函数存在,k 为非零常数,则⎰⎰=dx x f k dx x kf )()((两条性质记住,你在做题的时候对于性质掌握不好,做题的时候不要忘记性质有时候可简化计算)例⎰⎰⎰⎰⎰⎰+-=-=-=-=-C x x dx x dx x dx x dx x dx x x x dx x x 23272525223107255)5()5( 二、 不定积分计算1换元积分法(第一类换元和第二类换元)2分部积分法(记住基本类型,做题时看属于哪类,套用方法)第一类换元对于第一类换元法,总结可归纳为将dx 凑成被积函数的变量,再套用基本公式 例Cx x xd xdx+==⎰⎰2sin 22cos 2cos 2分析:被积函数是个多项式2cos2x ,变量是2x ,想办法把dx 变成d2x ,而d2x=2dxC x x d xdxx ++=++=+⎰⎰|23|ln 21)23(23121231 分析:有公式C x dx x +=⎰||ln 1,所以可以把3+2x 看成一个整体,dx 变成d(3+2x),但d(3+2x)= 2dx ,所以原式前要加21()C x x x C u u du u du u du u du u u u uu u du u u duu d dx u x x u dxx x ++-+++=+-+=+-=+-=+-=-==-=-=+=+--------⎰⎰⎰⎰⎰⎰⎰221321321323232)2(224|2|ln 2u ln 44)44(442)2(,222)(原式则令分析:被积函数出现两个变量,考虑换元,一般带根号的,带多项式几次幂的会考虑换元的问题,换元以后问题会变得简单Ce dx e dx xe x x x +==⎰⎰22222分析:被积函数22x xe ,由2x 和2x e 组成,观察得到dx 2=2xdx ,所以可以将2x 拿到d 后面,令x 2=u ,C e du e u u +=⎰最后把x 2代入得到C x C x x d x dx x x +--=++--=---=-+⎰⎰2321212222)1(31121)1(21)1(1211分析:被积函数中有x ,而考虑到dx 2=2xdx ,进一步可得d (1-x 2)=-2xdx ,积分符号前提取出-21,便可利用基本公式求解(还有些三角,反三角的不定积分求解的问题PPT 上有,可以看看。
一元函数积分学、不定积分、定积分、常数
项级数和幂级数
一元函数积分学包括不定积分、定积分、常数项级数和幂级数等内容。
1. 不定积分:一元函数的不定积分是指求出该函数在某个区间内的原函数,也就是求出一个原函数F(x),使得F(x)在x轴上的积分等于f(x),即∫f(x)dx=F(x)+C,其中C为任意常数。
不定积分也称为原函数或不定积分函数。
2. 定积分:一元函数的定积分是指求出该函数在某个区间内的面积或曲线长度,也就是求出一个定积分值,表示为∫a b f(x)dx,其中a和b为积分区间的端点,f(x)为被积函数。
定积分也称为面积或曲线长度函数。
3. 常数项级数:常数项级数是指由若干个常数项相加组成的级数,一般形式为,其中c n表示第n项,n为自然数。
常数项级数在数学分析中有广泛应用,例如求解定积分的近似值、求解函数的极限等等。
4. 幂级数:幂级数是一类可以表示函数的无穷级数,一般形式为f(x) =,其中a_n为幂级数的系数,x为变量。
幂级数在数学分析中有广泛应用,例如求解函数的泰勒级数展开、逼近函数、函数的插值等等。
特岗教师招聘资料2一元函数积分学一元函数积分学是高等数学中的一个重要内容,它主要研究一元函数的积分与微分的关系。
在特岗教师招聘考试中,一元函数积分学也是一个常考的知识点,下面是关于一元函数积分学的一些资料,供考生参考。
一、函数的积分定义和基本性质1.定积分的定义:设函数f(x)在区间[a,b]上有界,则存在一个数I,使得对于任意给定的正数ε,都存在一个正数δ,对于区间[a,b]的任意一个分法P,只要他的分割细细到使得每个小区间的长度都小于δ时,就满足∣∣∣S(f,P)−I∣∣∣<ε。
2. 不定积分的定义:设函数F(x)是f(x)的一个原函数,即F′(x)=f(x),则称F(x)为方程f(x)dx的一个不定积分,记作∫f(x)dx=F(x)。
3. 定积分与不定积分的关系:若f(x)在[a,b]上连续,则f(x)在[a,b]上的定积分等于f(x)的一个原函数在区间[a,b]上的增量,即∫abf(x)dx=F(b)−F(a)。
4. 基本性质:(1)线性性质:∫[a,b](αf(x)+βg(x))dx=α∫[a,b]f(x)dx+β∫[a,b]g(x)dx,其中α,β为常数。
(2)换元积分法:设F′(x)=f(u(x))u′(x),则∫f(u)u′(x)dx=∫f(u)du,其中u=u(x)。
(3)分部积分法:设f(x)g′(x)+g(x)f′(x),则∫f(x)g′(x)dx=f(x)g(x)−∫g(x)f′(x)dx,即∫u(x)v′(x)dx=u(x)v(x)−∫u′(x)v(x)dx。
二、常见的一元函数积分公式1. 幂函数积分:∫xndx=(n+1)xn+1+C,其中n≠−12. 指数函数积分:∫exdx=ex+C。
3. 对数函数积分:∫1xdx=ln,x,+C。
4. 三角函数积分:(1)∫sinxdx=−cosx+C,∫cosxdx=sinx+C。
(2)∫sec2xdx=tanx+C,∫csc2xdx=−cotx+C。