经典控制理论与汽车控制
- 格式:ppt
- 大小:11.39 MB
- 文档页数:37
自动控制原理简答1、简要论述自动控制理论的分类及其研究基础、研究的方法。
自动控制理论分为“经典控制理论”和“现代控制理论”。
“经典控制理论”以递函数为基础,以时域法、根轨迹法、频域法为基本方法,“现代控制理论”以状态空间法为基础,以频率法和根轨迹法为基本方法。
2、在经典控制理论中用来分析系统性能的常用工程方法有那些?分析内容有那些?常用的工程方法:时域分析法、根轨迹法、频率特性法;分析内容:瞬态性能、稳态性能、稳定性。
3、相比较经典控制理论,在现代控制理论中出现了哪些新的概念?系统的运动分析,能控性,能观性,极点配置,观测器设计,跟踪器等。
4、人闭上眼见很难达到预定的目的试从控制系统的角度进行分析。
人闭上眼睛相当于系统断开反馈,没有反馈就不知道偏差有多大,并给予及时修正。
所以人闭上眼睛很难到达预定目标。
5、试分析汽车行驶原理首先,人要用眼睛连续目测预定的行车路线,并将信息输入大脑(给定值),然后与实际测量的行车路线相比较,获得行驶偏差。
通过手来操作方向盘,调节汽车,使其按照预定行车路线行驶。
6、对飞机与轮船运行原理加以分析飞机和轮船在行驶时,都会发射无线电信号来进行定位,无线电信号通过雷达反射到计算机中央处理器中。
进行对比得出误差,再将误差发射,进入雷达反射到飞机和轮船的接收器中,计算机收到信号后可还原为数据,进而可知偏差而及时修正,这是时刻都进行的。
所以飞机,轮船都能保持预定航向行驶。
7、从元件的功能分类,控制元件主要包括哪些类型的元件?控制元件主要包括放大元件、执行元件、测量元件、补偿元件。
8、线性定常系统的传递函数定义传递函数:传递函数是指在零初始条件下,系统输出量的拉式变换与系统输入量的拉式变换之比。
9、常见的建立数学模型的方法有哪几种?各有什么特点?有以下三种:(1机理分析法:机理明确,应用面广,但需要对象特性清晰(2实验测试法:不需要对象特性清晰,只要有输入输出数据即可,但适用面受限(3以上两种方法的结合:通常是机理分析确定结构,实验测试法确定参数,发挥了各自的优点,克服了相应的缺点10、自动控制系统的数学模型有哪些自动控制系统的数学模型有微分方程、传递函数、频率特性、结构图。
浅析经典控制理论与现代控制理论的异同摘要:主要通过研究与分析经典控制理论与现代控制理论的研究对象和数学建模,了解两种控制理论的异同,有助于选择合适的理论分析与设计系统。
关键词:经典控制理论现代控制理论异同引言随着科学技术的发展,控制理论在人们实践中得到广泛的运用和发展。
其中经典控制理论和现代控制理论作为控制论的两个重要的部分,彼此存在区别与联系。
笔者在这里主要通过分析研究两种理论在研究对象和数学建模等方面介绍它们之间的异同。
1 自动控制理论简介1.1自动控制理论的定义与应用n·维纳曾定义:控制论是“关于动物和机器中的控制和通信的科学”。
也就是说,自动控制就是采用控制装置使被控对象自动地按照给定规律运行,使被控对象的一个或数个物理量能够在一定的精度范围内按照指定的规律变化。
其中控制对象有电压、电流、位置、速度、流量、浓度、成分等。
自动控制系统可以分为调节系统和伺服系统两类。
调节系统要求被控对象状态保持不变,输入一般不做频繁调节;而伺服系统则要求被控对象的状态能自动、连续、精确地随输入信号变化而变化,即随便系统。
自动控制理论广泛应用在生产,可以提高生产率,改善加工工艺,改善产品质量,节约成本。
控制理论也可用于国防建设,促进国防现代化,提高部队战斗力。
自动控制理论在发展空间技术,探索新能源等方面也至关重要。
1.2 自动控制理论的发展任何一种理论的的形成都离不开实践。
早在古代,劳动人民就凭借生产实践积累的经验和对反馈的直接认识,发明了很多闪烁着控制理论的智慧火花的杰作。
例如,北宋水运仪象台就是一个闭环非线性控制系统;1765年,俄国人普洱佐诺夫发明的蒸汽锅炉水位调节器等。
直到1788年,瓦特(j·watt)通过在他发明的蒸汽机上使用离心调速器解决蒸汽机调速问题后,人们才开始重视控制技术,并开始探索改善调速器准确度的方法;1868年,物理学家麦克斯韦(maxwell)从描述系统的微分方程的解中有无增长指数函数项来判断稳定性;随后,劳斯(routh)和赫尔维茨(hurwitz)分别独自建立了通过代数方程系数判别系统稳定性的劳斯判据和赫尔维茨判据;1932年,物理学家奈奎斯特(nyquist)通过频域的角度判断系统稳定性,奠定了频域法的基础;随后伯德(bode)和尼克尔斯(nichols)进一步发展了频域法,形成了经典控制理论的分析法;美国科学家伊万斯(evans)创立的根轨迹法被广泛应用到系统的分析与设计。
1.典范统造表里战新颖统造表里的辨别战通联之阳早格格创做辨别:(1)钻研对付象圆里:典范统造系统普遍限造于单输进单输出,线性定常系统.庄重的道,理念的线性系统正在本质中本去没有存留.本质的物理系统,由于组成系统的非线性元件的存留,不妨道皆利害线性系统.然而是,正在系统非线性没有宽沉的情况时,某些条件下不妨近似成线性.所以,本质中很多的系统皆能用典范统造系统去钻研.所以,典范统造表里正在系统的分解钻研中收挥着巨大的效率.新颖统造表里相对付于典范统造表里,应用的范畴更广.新颖统造表里没有然而适用于单输进单输出系统,还不妨钻研多输进多输出系统;没有然而不妨分解线性系统,还不妨分解非线性系统;没有然而不妨分解定常系统,还不妨分解时变系统.(2)数教修模圆里:微分圆程(适用于连绝系统)战好分圆程(适用于失集系统)是形貌战分解统造系统的基础要收.然而,供解下阶战搀纯的微分战好分圆程较为烦琐,以至易以供出简直的系统表白式.所以,通过其余的数教模型去形貌系统.典范统造表里是频域的要收,主要以根轨迹法战频域分解法为主要的分解、安排工具.果此,典范统造表里是以传播函数(整初初状态下,输出与输进Laplace变更之比)为数教模型.传播函数适用于单输进单输出线性定常系统,能便当的处理那一类系统频次法或者瞬态赞同的分解战安排.然而对付于多旗号、非线性战时变系统,传播函数那种数教模型便无计可施了.传播函数只可反应系统的中部个性,即输进与输出的闭系,而没有克没有及反应系统里里的动向变更个性.新颖统造表里则主要状态空间为形貌系统的模型.状态空间模型是用一阶微分圆程组去形貌系统的要收,不妨反应出系统里里的独力变量的变更闭系,是对付系统的一种真足形貌.状态空间形貌法没有然而不妨形貌单输进单输出线性定常系统,还不妨形貌多输进多输出的非线性时变系统.其余状态空间分解法还不妨用预计机分解系统.(3)应用范畴圆里:由于典范统造表里死长的比较早,相对付而止表里比较老练,而且死爆收计中很多历程皆可近似瞅为线性定常系统,所以典范统造表里应用的比较广大.新颖统造表里是正在典范统造表里前提上死长而去的,对付于钻研搀纯系统较为便当.而且新颖统造表里不妨借帮预计机分解战安排系统,所以有其特殊的劣良性.通联:(1)虽然新颖统造表里的适用范畴更多,然而本去没有克没有及定性的道新颖统造表里更劣于典范统造表里.咱们要根据简直钻研对付象,采用符合的表里举止分解,那样才搞是分解的更烦琐,处事量较小(2)二种统造表里正在工业死产、环境呵护、航空航天等范畴收挥着巨大的效率.(3)二种表里有其各自的个性,所以正在对付系统举止分解与安排时,要根据系统的个性采用战是的表里.(4)所以死识二种表里,简直的问题简直分解,采用符合的表里钻研分歧的系统.随着社会的死长,二种表里对付科技的先进收挥着巨大的推动效率.正在试验中,二种表里也会得到死长战完备,而且促进新的表里的产死,智能统造表里便是个很佳的例子.2.典范统造表里战新颖统造表里所波及的真质典范统造表里:主要钻研系统的动向本能,正在时间战频域内去钻研系统的“宁静性、准确性、赶快性”.所谓宁静性是指系统正在搞扰旗号的效率下,偏偏离本去的仄稳位子,当搞扰与消之后,随着时间的推移,系统回复到本去仄稳状态的本收.准确性是指正在过分历程中断后输出量与给定的输进量的偏偏好.所谓赶快性是指当系统的输进量战给定的输进量之间爆收的偏偏好时,与消那种偏偏好的快缓程度.新颖统造表里:线性系统表里、最劣统造、随机系统表里战最劣预计、系统辨识、自符合统造、非线性系统表里、鲁棒性分解战鲁棒统造、分集参数统造、失集事变统造、智能统造.。
自动控制的故事——经典控制部分2013年12月08日17:16:30 阅读数:3969更多个人分类:娱乐小记(在网上看到一个牛人写的“自动控制的故事”,非常的有趣,给每段加了个小标题,虽然不能全部看懂,但收藏在这里,也算是给自己以后的工作学习一个指引,即便对没有学习过自动控制的人,也可以从此篇文章中了解到不少知识,品味出不同的趣味。
)自动控制的故事西西河社区找到一个很专业的自控人--“晨枫”写完聚乙烯的故事,就有写自动控制的故事的念头,但一直没有动笔。
这个题目太大了,大得都不知道从何说起。
既然大家看聚乙烯的故事还有一点意思,四一在催,马鹿要“一”什么的,那就接着写自动控制的故事吧。
反正是故事,别太当真,看着好玩就接着看,看着枯燥就拍桌子,看着有错就提个醒,看着糊涂的尽管问,看着不耐烦了呢,也言语一声,我好闭上嘴不再烦人。
哈哈。
(一)经典控制理论的由来小时候喜欢看杂书,没什么东西看,不正在文化大革命嘛?不过看进去了两个“化”:机械化和自动化。
打小就没有弄明白,这机械化和自动化到底有什么差别,机器不是自己就会动的吗?长大了,总算稍微明白了一点,这机械化是力气活,用机器代替人的体力劳动,但还是要人管着的,不然机器是不知道该干什么不该干什么的;这自动化嘛,就是代替人的重复脑力劳动,是用来管机器的。
也就是说,自动化是管着机械化的,或者说学自动化的是管着学机械的……啊,不对,不对,哪是哪啊!有人考证古代就有自动化的实例,但现代意义上的自动控制开始于瓦特的蒸汽机。
据说纽考门比瓦特先发明蒸汽机,但是蒸汽机的转速控制问题没有解决,弄不好转速飞升,机器损坏不说,还可能说大事故。
瓦特在蒸汽机的转轴上安了一个小棍,棍的一端和放汽阀连着,放气阀松开来就关闭,转速增加;按下去阀就打开,转速降低;棍的另一端是一个小重锤,棍中间某个地方通过支点和转轴连接。
转轴转起来的时候,小棍由于离心力的缘故挥起来。
转速太高了,小棍挥会挥得很高,放汽阀就被按下去打开,转速下降;转速太低了,小棍挥不起来,放汽阀就被松开来关闭,转速回升。
控制理论发展历史综述一:20世纪40年代末-50年代的经典控制理论时期,着重解决单输入单输出系统的控制问题,主要数学工具是微分方程、拉氏变换、传递函数;主要方法是时域法、频域法、根轨迹法;主要问题是系统的稳、准、快。
二:20世纪60年代的现代控制理论时期,着重解决多输入多输出系统的控制问题,主要数学工具是以此为峰方程组、矩阵论、状态空间法主要方法是变分法、极大值原理、动态规划理论;重点是最优控制、随即控制、自适应控制;核心控制装置是电子计算机。
三:20世纪70年代之后的先进控制理时期,先进控制理论是现代控制理论的发展和延伸。
先进控制理论内容丰富、涵盖面最广,包括自适应控制、鲁棒控制、模糊控制、人工神经网络控制等。
经典控制理论经典控制理论适用于单输入、单输出的线性定常(参数不随时间而变)系统。
发展过程1.原始阶段中国,两千年前我国发明的指南车:一种开环自动调节系统,它利用差速齿轮原理,利用齿轮传动系统,根据车轮的转动,由车上木人指示方向。
不论车子转向何方,木人的手始终指向南方,“车虽回运而手常指南”。
2.起步阶段人类社会发展,有一个点把人类社会的发展分成两大部分,那就是工业革命。
18世纪中叶之前,不管你什么怎么划分人类社会也好(农业牧业手工业),社会的发展始终离不开人力,就是必须得有人亲自去做。
18世纪中叶之后,机器的出现,使得以机器取代了人力,所以称之为革命。
然后机器的出现变革了人类的整个历史,直至现代社会文明的如此进步。
工业革命的开始的标志为哈格里夫斯发明的珍妮纺纱机,而工业革命的标志是瓦特改良蒸汽机,为什么扯这么多?如果机器不能控制,那和工具又有什么区别?所以工业革命的标志是瓦特改良蒸汽机。
钱学森也在最新一版的工程控制论中提到技术革命。
1769年,控制思想首次应用于工业控制的是瓦特,发明用来控制蒸汽机转速的飞球离心控制器。
以后人们曾经试图改善调速器的准确性,却常常导致系统产生振荡。
1868年以前,这一百年来,自动控制装置的设计还出于“直觉”阶段,没有系统的理论指导,因此在控制系统的各项性能(稳、准、快)的协调方面经常出现问题。
现代控制理论在汽车领域的应用现代控制理论发展于20 世纪50 年代末,它以状态空间方法为主,研究控制系统状态的运动规律,通过反馈系统解决某些非线性和时变系统的控制问题,用于多输入多输出反馈控制系统,可以实现最优控制规律。
作为一名车辆工程专业的研究生,现代控制理论在我所学的领域上也有很多应用。
比如说现代控制理论在内燃机振动主动控制中的应用、在汽车防抱死制动系统中的应用、在汽车悬架控制中的应用等等,下面我将根据自己查阅的资料对这三种应用进行简单介绍。
已有文献阐明了现代控制理论在内燃机振动主动控制领域的应用现状,阐述了各种控制理论与内燃机振动系统的关系。
以现代控制理论中有代表性的最优控制、自适应控制、鲁棒控制为重点分析了现代智能控制理论在振动系统控制中应用的可能性与发展,指出了内燃机振动主动控制领域今后一段时间内的研究重点与方向。
内燃机的振动是有害的,对于有害的振动,人们总是在想方设法将其消减甚至消除。
消减振动一般从两个方面着眼:一是耗散振动能,二是抑制激振力。
耗能的方法有加装阻尼摩擦片、附带质量冲击块;抑制激振力的方法有提高系统刚度、加装动力减振器或是主动对振动系统施加同频反向的抑振力。
通过控制系统对振动主体主动施加抑振力即振动的动态控制(也称有源控制、主动控制)。
该控制系统一般由振动体(内燃机振动系统如曲轴)、振动信息采集器(对于旋转振动系统多用涡流传感器和光电传感器,对于整机多用弹簧质量加速度传感器)、变送器、处理器、控制器、执行器、显示与调节器等部件组成。
其中控制器是系统的核心,控制器的设计应依据振动体即被控对象的特性进行。
本文将依据内燃机的振动的特性探讨控制器设计中运用的各种控制理论问题以及在振动动态控制上各种现代控制理论应用的可能性。
汽车防抱制动系统(简称ABS)实质上是一种制动力自动调节装置。
这种装置使汽车制动系统的结构发生了质的变化,它不仅能充分发挥制动器的制动性能,提高制动减速度和缩短制动距离,而且能有效地提高汽车制动时的方向稳定性,大大改善汽车的行驶安全性。