解析几何ppt第4章二次曲面的总结
- 格式:ppt
- 大小:399.50 KB
- 文档页数:8
二次曲面公式总结在数学中,二次曲面是指由二次多项式方程描述的曲面。
它们具有广泛的应用领域,包括几何、物理学和工程学等。
本文将从圆锥曲线、圆柱曲面和二次曲面三个方面来总结二次曲面的公式和特点。
圆锥曲线圆锥曲线是由一个圆锥和一个平面相交得到的曲线。
当平面垂直于圆锥对称轴时,圆锥曲线成为圆。
当平面与圆锥对称轴的夹角小于圆锥侧面的开口角时,圆锥曲线成为椭圆。
当平面与圆锥对称轴的夹角等于圆锥侧面的开口角时,圆锥曲线成为双曲线。
当平面与圆锥对称轴的夹角大于圆锥侧面的开口角时,圆锥曲线成为抛物线。
圆柱曲面圆柱曲面是由一个圆柱和一个平面相交得到的曲面。
当平面与圆柱轴线平行时,圆柱曲面为一条直线。
当平面的截面是一个圆时,圆柱曲面成为一个圆柱体。
当平面和圆柱的轴线夹角不为90度时,圆柱曲面成为一个椭圆柱。
当平面和圆柱的轴线垂直时,圆柱曲面成为一个抛物面或双曲面。
二次曲面二次曲面是由一个具有二次项的多项式方程描述的曲面。
它们被广泛地应用于数学、物理学、工程学等领域。
二次曲面可以分为二维和三维曲面。
在二维情况下,二次曲线的方程为:ax^2 + bxy + cy^2 + dx + ey + f = 0其中,a,b,c,d,e和f是实数或复数。
当b^2 – 4ac > 0时,二次曲线成为椭圆。
当b^2 – 4ac = 0时,二次曲线成为一条抛物线。
当b^2 – 4ac < 0时,二次曲线成为双曲线。
在三维情况下,二次曲面的方程为:ax^2 + by^2 + cz^2 + dxy + exz + fyz + gx + hy + iz + j = 0其中,a,b,c,d,e,f,g,h,i和j是实数或复数。
当方程为一个二次椭球面时,它们的系数可以被正交矩阵矩阵化为标准形式:αx^2 + βy^2 + γz^2 = 1其中,α,β和γ是正实数,代表了椭球面的三个半轴的长度。
椭球面可以是椭球体、椭圆抛物面或双曲面。
总结三类曲面的公式和性质是二次曲面研究的基础,它们在数学和应用领域中有着广泛的应用。
二次曲面部分内容总结归纳在数学中,二次曲面是一类重要的曲线图形,具有广泛的应用。
本文将对二次曲面的定义、性质以及常见的二次曲面进行总结归纳,以帮助读者更好地理解和应用这一内容。
一、二次曲面的定义和特点二次曲面是由二次方程定义的曲面,其一般方程可以表示为Ax² + By² + Cz² + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0,其中A、B、C、D、E、F、G、H、I、J为系数。
1. 定义:二次曲面是在三维空间中满足以上方程的点的集合。
它是由平面或曲线与另外一个平面所构成的立体。
2. 分类:根据系数之间的关系,二次曲面可以分为椭球面、双曲面、抛物面和圆锥曲面等。
3. 对称性:二次曲面通常具有一定的对称性,例如椭球面关于三个坐标轴对称,双曲面关于两个坐标轴对称,抛物面则关于一个坐标轴对称。
二、常见的二次曲面下面将介绍几种常见的二次曲面及其特点:1. 椭球面:椭球面是指A、B、C系数均为正数的二次曲面。
它可以是一个三维椭球,具有三个轴,其中有一个是最大的主轴。
2. 双曲面:双曲面是指A、B、C系数有正有负的二次曲面。
它可以是两个相交的曲面,呈现典型的双曲线形状。
3. 抛物面:抛物面是指A、B系数有一个为零的二次曲面。
它可以是开口向上或向下的形状,对称于坐标轴。
4. 圆锥曲面:圆锥曲面是指除了A、B、C系数外,D、E、F系数都为零的二次曲面。
它可以是圆锥的侧面,或者是圆锥的顶部和底部。
三、二次曲面的应用二次曲面具有广泛的应用,其中一些常见的领域包括:1. 几何学:二次曲面在几何学中的应用非常广泛,如描述平面、曲线和曲面之间的关系,解决几何问题等。
2. 物理学:在物理学中,二次曲面可以用来描述电磁场、电荷分布和光学等现象。
3. 工程学:二次曲面在工程学中常用于描述悬索桥、天线接收器的覆盖范围等。
4. 经济学:二次曲面可以用于描述经济模型中的供需曲线、成本函数等。
学习必备欢迎下载第四章柱面、锥面、旋转曲面与二次曲面§4.1 柱面2、设柱面的准线为x y 2z2x2z,母线垂直于准线所在的平面,求这柱面的方程。
解:由题意知:母线平行于矢量1,0, 2任取准线上一点M 0 ( x0 , y0 , z0 ) ,过 M 0的母线方程为:x x0t x0x ty y0y0 yz z02t z0z2t而 M 0在准线上,所以:x t y2( z 2t )2x t2( z2t )消去 t ,得到:4x225 y 2z24xz20x10z 0此即为所求的方程。
3、求过三条平行直线x y z, x1y z1, 与x1y 1 z 2 的圆柱面方程。
解:过原点且垂直于已知三直线的平面为 x y z 0 :它与已知直线的交点为0, 0,0 ,(1, 0, 1), (114,这三点所定的在平面 x y z 0 上的圆的圆心为,,)333M 0 ( 2 ,11,13) ,圆的方程为:151515( x 2 )2( y11)2( z13)29815151575x y z0此即为欲求的圆柱面的准线。
又过准线上一点M 1 ( x1 , y1 , z1 ) ,且方向为 1, 1,1的直线方程为:x x1t x1x ty y1t y1y tz z1t z1z t 将此式代入准线方程,并消去t 得到:5( x 2y2z 2xy yz zx) 2x 11y 13z0§4.2 锥面2、已知锥面的顶点为(3 , 1 , 2) ,准线为 x 2y 2z21, x y z0,试求它的方程。
解:设 M ( x, y, z) 为要求的锥面上任一点,它与顶点的连线为:X3Y1Z2x3y1z2令它与准线交于 ( X 0,Y0 ,Z0 ) ,即存在t ,使X 03( x3)tY01( y!)tZ02( z2)t将它们代入准线方程,并消去t 得:3x25y27z 26xy 2 yz10 xz4x 4 y 4z 4 0此为要求的锥面方程。
第四章一般二次曲线与二次曲面这一章讨论用一般方程给出的二次曲线,在适当选取的坐标系中可以把它们的一般方程化成标准方程,从而达到判断一般方程所表示的曲线的类型与位置的目的。
其次用不变量对二次曲线与二次曲面进行分类。
§4.1直角坐标变换平面上的一般坐标变换可以看成是平移与旋转两种变换连续进行的结果。
因此下面先分别介绍这两种变换,再研究一般的坐标变换。
4.1.1平面直角坐标平移设Oxy 和O x y '''是同一个平面上的两个直角坐标系,它们的轴的方向和度量单位相同,只是原点位置不同(图4-1-1),那么平面上任意一点P 在坐标系Oxy 中的坐标(,)x y 和在坐标系O x y '''中的坐标(,)x y ''有什么联系呢?设O '在Oxy 中的坐标为00(,)x y ,从点P 向各坐标轴作平行线,从图4-1-1中容易看出:x x x y y y '=+⎧⎨'=+⎩ (4.1.1) 这就是将原点O 平移到00(,)O x y '的坐标变换,其中(,)x y 和(,)x y ''分别是平面上同一点P 在旧坐标系Oxy 和新坐标系O x y '''中的坐标。
这种坐标变换叫做平移。
如果用旧坐标表示新坐标,那么有x x x y y y '=-⎧⎨'=-⎩ (4.1.2) (4.1.1)和(4.1.2)都是平移公式。
x'x图4-1-1例1 用平移化简22490x x y --+=,并画出它的图形。
解 原方程可以移项、配方成 2(1)4(2)x y -=-将原点O 移到(1,2)O ',即作平移:12x x y y '=-⎧⎨'=-⎩那么,在新坐标系O x y '''中,方程简化成24x y ''=。