高中数学 第二章 平面解析几何初步章末归纳总结课件 新人教B版必修2
- 格式:ppt
- 大小:1.10 MB
- 文档页数:31
高中数学第二章平面解析几何初步章末小结学案新人教B版必修2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章平面解析几何初步章末小结学案新人教B版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章平面解析几何初步章末小结学案新人教B版必修2的全部内容。
第二章平面解析几何初步知识建构综合应用专题一位置关系问题两条直线的位置关系有相交、平行、重合几种,两直线垂直是相交的一种特殊情况,高考中对平行与垂直的考查是重点,多以选择及填空为主,属于容易题.而直线与圆的位置关系几乎是每年必考内容,有时结合向量,考查形式可以是选择题、填空题,也可以是解答题,属于中低档类题目.圆与圆的位置关系有外离、外切、相交、内切、内含等5种,在高考中单独考查的情况不多.:x+my+6=0,l2:(m-2)x+3y+2m=0,若l1∥l2,则m的值为().应用1已知两直线lA.-1或3 B.-1C.3 D.0提示:利用两直线平行的条件求解.,应用2(2011·福建泉州模拟)若直线3x+y+2n=0与圆x2+y2=n2相切,其中n∈N则n的值等于().A.1 B.2 C.4 D.1或2提示:利用圆心距等于半径列方程求解.:x2+y2-2mx+4y+m2-5=0,圆C2:x2+y2+2x-2my+m2-3=0.试讨论应用3已知圆C两圆的位置关系.提示:随着m取值的不同,也会影响两圆的位置关系,所以需要根据两圆的不同位置关系求出m的不同取值范围.专题二对称问题对称问题是高考中常见的一种题型,解析几何中有关对称问题,可分为点关于点对称;直线关于点对称;曲线关于点对称;点关于直线对称;直线关于直线对称;曲线关于直线对称.但总的来说,就是关于点对称和关于直线对称这两类问题.应用1(2010·湖南高考)若不同两点P,Q的坐标分别为(a,b),(3-b,3-a),则线段PQ的垂直平分线l的斜率为__________;圆(x-2)2+(y-3)2=1关于直线l对称的圆的方程为__________.提示:(1)l1⊥l2⇔k1k2=-1;(2)求出圆心(2,3)关于l的对称点即可.应用2(2011·安徽安庆模拟)从点(2,3)射出的光线沿与直线x-2y=0平行的直线射到y轴上,则经y轴反射的光线所在的直线方程为__________.提示:画出示意图,注意反射光线与入射光线的斜率互为相反数,且反射光线经过点(-2,3).专题三用图示法解题用图示法解题,实质是将抽象的数学语言与直观的图形结合起来,即把代数中的“数”与几何上的“形”结合起来认识问题、理解问题并解决问题的思维方法.数形结合一般包括两个方面,即以“形”助“数”,以“数”解“形”;本章中有关斜率、距离、截距、直线与圆的位置关系等很易转化为形来说明,借助于形分析和求解,往往事半功倍.应用1讨论直线y=x+b与曲线y=错误!的交点的个数.提示:画出y=4-x2的图象,注意等价变形.应用2设点P(x,y)在圆x2+(y-1)2=1上.(1)求错误!的最小值;(2)求错误!的最小值.提示:(1)错误!理解为动点(x,y)到定点(2,0)的距离即可;(2)错误!理解为动点(x,y)与定点(-1,-2)连线的斜率即可.应用3若实数x,y满足x2+y2+8x-6y+16=0,求x+y的最小值.提示:令x+y=b,则y=-x+b,问题即转化为求截距b的最小值问题.专题四轨迹问题轨迹是满足某些特殊几何条件的点所形成的图形,在平面直角坐标系中,求动点的轨迹就是求动点的横坐标、纵坐标满足的等量关系.我们可以借助圆这个几何性质较多的图形,研究一些与之相关的轨迹方程.应用1已知圆C:x2+y2-4x+2y-4=0,求长为2的弦中点的轨迹方程.提示:利用定义法,即动点的运动轨迹满足圆的定义,只需确定圆心和半径,直接写出圆的方程.应用2已知动圆P与定圆C:x2+(y+2)2=1相外切,又与定直线l:y=1相切,求动圆圆心P的轨迹方程.提示:利用直接法,即若动点的运动规律满足一些简单的几何等量关系,可以直接将这个等量关系用动点的坐标表示出来,写出轨迹方程.应用3已知圆C的方程为(x-2)2+y2=1,过点P(1,0)作圆C的任意弦,交圆C于另一点Q,求线段PQ的中点M的轨迹方程.提示:点M的运动受到点Q运动的牵制,而点Q在圆C上,故用“相关动点法”.真题放送1.(2011·四川高考)圆x2+y2-4x+6y=0的圆心坐标是( ).A.(2,3) B.(-2,3)C.(-2,-3) D.(2,-3)2.(2011·安徽高考)若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为().A.-1 B.1 C.3 D.-33.(2011·重庆高考)在圆x2+y2-2x-6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为().A.5错误! B.10错误!C.15 2 D.20错误!4.(2011·大纲全国高考)设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=().A.4 B.4错误! C.8 D.8错误!5.(2011·江西高考)若曲线C1:x2+y2-2x=0与曲线C2:y(y-mx-m)=0有四个不同的交点,则实数m的取值范围是().A.错误!B.错误!∪错误!C.错误!D.错误!∪错误!6.(2011·浙江高考)若直线x-2y+5=0与直线2x+my-6=0互相垂直,则实数m=________.7.(2011·重庆高考)过原点的直线与圆x2+y2-2x-4y+4=0相交所得弦的长为2,则该直线的方程为__________.8.(2011·湖北高考)过点(-1,-2)的直线l被圆x2+y2-2x-2y+1=0截得的弦长为2,则直线l的斜率为______.答案:综合应用专题一应用1:B ∵l1∥l2,∴1×3-m(m-2)=0.∴m=-1或3,经检验m=-1适合.应用2:D 圆心(0,0)到直线的距离为d=错误!=2n-1。