第3章随机过程
- 格式:ppt
- 大小:2.00 MB
- 文档页数:75
第三章随机过程作业1. 设A 、B 是独立同分布N(0,σ2)的随机变量,求随机过程{X t =At +B,t ∈R 1}的均值函数、自相关函数和协方差函数。
2. 设{X t ,t ≥a}是独立增量过程,且X a =0,方差函数为σX t 2。
记随机过程Y t =kX t +c ,k 、c 为常数,c≠0。
(1) 证明Y t 是独立增量随机过程;(2) 求Y t 的方差函数和协方差函数。
3. 设随机过程X t =X +Y ⋅t +Z ⋅t 2,其中X,Y,Z 是相互独立的随机变量且均值为0、方差为1,求{X t }的协方差函数。
4. 设U 是随机变量,随机过程X t =U,−∞ <t <∞ .(1) X t 是严平稳过程吗?为什么?(2) 如果E(U)=μ ,Var(U)=σ2,证明:X t 的自相关函数是常数。
5. 设随机过程X t =U cos t +V sin t,−∞ <t <∞ ,其中U 与V 独立同分布N(0,1)。
(1) X t 是平稳过程吗?为什么?(2) X t 是严平稳过程吗?为什么?6. 设随机变量X 的分布密度为f X ( x), 令 Y( t) = e − X t ( t > 0 ,X > 0), 试求Y( t)的一维概率分布密度及E(Y ( t ))、R X (s,t)。
7. 若从t = 0开始每隔1/2分钟查阅某手机所接收的短信息 , 令X (t )={cos πt ,如t 时手机接收到短信息,2t ,如t 时手机未接收到短信息,试求:X (t )的一维分布函数 F [12;x],F[1;x]8. 设随机过程Y n =∑X k n k=1,Y 0=0, 其中X k ( 1 ≤ k ≤ n) 是相互独立的随机变量 ,且P( X k = 1 ) = p ,P( X k = 0 ) = 1 − p = q , 试求{ Y n } 的均值与协方差函数 .9. 设X( t) = A sin (ωt +Z) ,其中A 、ω为常数 , 随机变量Z ~ U( −π ,π) , 令Y ( t) = X 2 ( t ) , 试求 :EY ( t ) 和R Y ( t,t +τ)。
第三章 随机过程一. 随机过程的基本概念 1.1 随机过程的定义设(Ω,F ,P )为给定的概率空间,T 为一指标集,对于任意t T ∈,都存在定义在(),,P ΩF 上,取值于E 的随机变量()(),X t ωω∈Ω与它相对应,则称依赖于t 的一族随机变量(){},:X t t T ω∈为随机过程,简记(){}t X ω,{}t X 或(){}X t注:随机过程(){}:,t X t T ωω∈Ω∈是时间参数t 和样本点ω的二元函数,对于给定的时间0t ,是0(,)X t ω是概率空间(),,P ΩF 上的随机变量;对于给定样本点0ω∈Ω,0(,)X t ω是定义在T 上的实函数,此时称它为随机过程对应于0ω的一个样本函数,也成为样本轨道或实现。
E 称为随机过程的相空间,也成为状态空间,通常用“t X x =”表示t X 处于状态x1.2随机过程t X 按照时间和状态是连续还是离散可以分为四类:连续型随机过程、离散型随机过程、连续型随机序列、离散型随机序列1.3 有穷维分布函数设随机过程{}t X ,在任意n 个时刻1,,n t t 的取值1,,n t t X X 构成n 维随机向量()1,,nt t X X ,其n 维联合分布函数为:()()11,,11,,,,nnt t n t t n F x x P X x X x =≤≤其n 维联合密度函数记为()1,,1,,nt t n f x x 。
我们称(){}1,,11,,:1,,,nt t n n F x x n t t T ≥∈ 为随机过程{}t X 的有穷维分布函数。
二.随机过程的数字特征 2.1 数学期望对于任何一个时间t T ∈,随机过程{}t X 的数学期望定义为()()tX t t E X xdF x μ+∞-∞==⎰()t E X 是时间t 的函数2.2 方差与矩随机过程{}t X 的二阶中心矩22()[(())],tX t t t Var X E X E X t T σ==-∈称为随机过程{}t X 的方差随机过程{}t X 的二阶原点矩定义为22()()tt E X x dF x +∞-∞=⎰注:2()X t σ是时间t 的函数,它描述了随机过程()X t 的诸样本对于其数学期望t μ的偏移程度2.3 协方差函数和自相关函数随机过程{}t X 对于任意12,t t T ∈,其协方差函数定义为12112212(,)(,)[(())(())]X t t t t t t c t t Cov X X E X E X X E X ==--当12t t t ==时,协方差函数就是方差随机过程{}t X 的自相关函数(相关函数)定义为121212(,)(),t t R t t E X X t t T =∈当12t t t ==时,自相关函数就是二阶原点矩。
周荫清《随机过程理论》第3章随机过程的线性变换随机过程的线性变换是随机过程理论中的重要概念,它在对随机过程进行分析和应用时起到了重要的作用。
本文将对周荫清《随机过程理论》第3章的内容进行详细介绍和解析。
随机过程的线性变换是指将一个随机过程通过线性变换得到另一个随机过程的过程。
具体而言,设X(t)是一个随机过程,A是一个常数矩阵,b是一个常向量,定义随机过程Y(t)=AX(t)+b,则Y(t)是X(t)的线性变换。
首先,本章介绍了随机过程的线性变换的性质。
线性变换保持了从一个状态到另一个状态的概率转移,即P{X(t2)∈B,X(t1)∈A}=P{Y(t2)∈B,Y(t1)∈A},其中B和A是任意集合。
这个性质保证了线性变换后的随机过程依然具有一些重要的性质,如马尔可夫性和平稳性。
接着,本章介绍了线性变换对随机过程的均值和自协方差函数的影响。
对于均值,线性变换后的随机过程的均值等于线性变换前随机过程的均值乘以线性变换矩阵的转置,即E[Y(t)]=AE[X(t)]+b。
对于自协方差函数,线性变换后的随机过程的自协方差函数等于线性变换前随机过程的自协方差函数乘以线性变换矩阵的转置,即R_Y(t1,t2)=AR_X(t1,t2)A^T。
然后,本章介绍了随机过程的线性滤波。
线性滤波是将一个随机过程通过滤波器的作用得到另一个随机过程的过程。
具体而言,设X(t)为一个随机过程,h(t)为一个给定的函数,则线性滤波得到的随机过程Y(t)定义为Y(t) = ∫h(t-s)X(s)ds。
本章介绍了线性滤波的定义和性质,包括线性滤波的线性性质和稳定性。
最后,本章介绍了随机过程的线性变换和线性滤波的应用。
线性变换和线性滤波方法常被用于模拟和预测随机过程以及信号处理等领域。
本章通过实例和应用案例,详细介绍了如何使用线性变换和线性滤波方法进行随机过程的分析和应用,如求解线性滤波器的响应和输出等。
总之,周荫清《随机过程理论》第3章详细介绍了随机过程的线性变换的概念、性质、影响以及应用。
通信原理(第七版)-樊昌信-第三章-随机过程-重要知识点⼀.⼀些必须知道的:1.均值(数学期望)(详情:):2.⽅差:3.协⽅差函数和相关函数:3.1协⽅差函数:3.2相关函数:3.3关系:4.性质:⼆、正题:1.严平稳与⼴义平稳:1.1 严平稳:1.2 ⼴义平稳:1.3 关系:严平稳⼀定是⼴义平稳,反之不⼀定成⽴。
2.各态历经性:平稳⼀定具有各态历经性反之不⼀定成⽴;3.⾃相关函数的性质(重点)4.维纳⾟钦定理(重点):平稳随机过程的⾃相关函数和功率谱密度是⼀对傅⾥叶变换。
(注意:是 R(时域)<---->P(频域))5.⾼斯随机过程:5.1性质:5.2⼀维概率密度函数:5.2.1图像性质5.3误差函数和互补误差函数:5.3.1误差函数:5.3.2互补误差函数:6.平稳随机过程通过线性系统:7.窄带随机过程:7.1 定义:△f << fc7.2 表达式(包络-相位形式):(同向-正交形式):8.两个重要结论:9.⽩噪声:9.1 定义:噪声功率谱密度在所有频率为⼀常数(实际中为噪声功率谱密度范围远⼤于⼯作频带时候)9.2 噪声功率谱密度:单边:Pn(f) = n0; 双边:Pn(f) = n0/2;9.3 带限⽩噪声:9.3.1 低通:9.3.2 带通:9.4 功率: N = n0 * B (BPF的带宽)(或者N = n0/2 * 2*B (BPF的带宽))三、⼀些题⽬和不容易理解以及总结:1.不易理解的:2.离散的怎么算:3.总结:3.1 算平均功率:1) R(0);2)3)3.2 算⽅差:1)E(X²) - E²(X)2)R(0) - R(∞)3)E[ [X-E(X)]² ]。
第三章 随机过程错误!未定义书签。
.设()()()cos 2c Y t X t f t πθ=+,其中()X t 与θ统计独立,()X t 为0均值的平稳随机过程,自相关函数与功率谱密度分别为()X R τ,()X P f 。
(1)若θ在()0,2π均匀分布,求()Y t 的均值、自相关函数和功率谱密度(2)若θ为常数,求()Y t 的均值、自相关函数和功率谱密度 解:无论是(1)还是(2),都有()()()cos 20c E Y t E X t E f t πθ=+=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()()()()()()()()()()()()()()()()cos 2cos 22cos 2cos 221cos 2cos 422211cos 2cos 42222Y c c c c c c X c c c X c X c c R E Y t Y t E X t f t X t f t f E X t X t E f t f t f R E f f t f R f R E f t f ττπθτπθπττπθπθπττπτπθπττπττπθπτ=+⎡⎤⎣⎦=++++⎡⎤⎣⎦=++++⎡⎤⎡⎤⎣⎦⎣⎦=+++⎡⎤⎣⎦=+++⎡⎤⎣⎦在(1)的条件下,θ的概率密度函数为[)10,2()2 0 else p θπθπ⎧∈⎪=⎨⎪⎩于是()()201cos 422cos 42202c c c c E f t f f t f d ππθπτπθπτθπ++=++=⎡⎤⎣⎦⎰因此()()1cos 22Y X c R R f ττπτ=()()()()()22cos 224X c j f j f Y Y X c X c R f P f R e d e d P f f P f f πτπττπττττ∞∞---∞-∞==-++=⎰⎰在(2)的条件下()()()()11cos 2cos 42222Y X c X c c R R f R f t f ττπττπθπτ=+++表明()Y t 是循环平稳过程。