图像空间域处理的综合实验
- 格式:doc
- 大小:281.54 KB
- 文档页数:5
数字图像处理:空间域图像处理数字图像处理:空间域图像处理注:别忘了图⽚的路径改成⾃⼰的⼀、实验⽬的理解和掌握图像的线性变换和直⽅图均衡化的原理和应⽤;了解平滑和锐化处理的算法和⽤途,学习使⽤平滑滤波器和边缘算⼦对图像进⾏平滑和锐化操作。
⼆、实验内容1.图像直⽅图(1)读⼊⼀幅图像,计算并绘制图像的直⽅图。
(2)读⼊⼀幅低对⽐度图像,对图像进⾏直⽅图均衡化处理。
2.编写程序,实现以下功能:(1)读⼊⼀幅图像,利⽤’imnoise’函数,添加⾼斯噪声;(2)通过100次相加求平均的⽅法去除噪声。
3.图像的平滑和锐化滤波(1)读⼊⼀幅图像,分别采⽤均值和⾼斯滤波器对图像进⾏平滑处理。
(提⽰: 图像滤波⾸先使⽤fspecial()函数创建平滑或锐化滤波器,然后调⽤imfilter()函数实现相应的滤波操作)(2)分别采⽤’prewitt’和’sobel’边缘算⼦对图像做边缘增强处理。
实验结果图如下:代码如下:%1.1pic=imread('lena.jpg'); %读⼊图⽚'lena.jpg'figure('name','实验结果1');subplot(2,2,1);imshow(pic);title('原图1');A=imhist(pic); %取直⽅图subplot(2,2,3);bar(0:255,A); %形成256个等级的直⽅图title('灰度图像直⽅图');%1.2pic1=imread('lena1.jpg'); %读⼊图⽚'lena1.jpg'subplot(2,2,2);imshow(pic1);title('原图2');B=imhist(histeq(pic1)); %先进⾏均衡化,再取直⽅图subplot(2,2,4);bar(0:255,B); %形成256个等级的直⽅图title('灰度图像均衡直⽅图');%2.1figure('name','实验结果2');subplot(4,2,1);imshow(pic);title('原图');C=imnoise(pic,'gaussian',0,0.01); %添加均值为0,⽅差为0.01的⾼斯噪声subplot(4,2,3);imshow(C);title('添加均值为0,⽅差为0.01的⾼斯噪声');%2.2[m n]=size(pic) %获取⼤⼩D=zeros(m,n) %创建全0数组for i=0:99 %循环100次C=imnoise(pic,'gaussian',0,0.01); %随机加噪C1=im2double(C); %转成double型进⾏相加D=D+C1;endD=D/100;subplot(4,2,4);imshow(D);title('去除噪声后图像');%3.1E=imfilter(pic,fspecial('average',8)); %⽣成⼀个8x8的均值滤波器F=imfilter(pic,fspecial('gaussian')); %⽣成⾼斯滤波器subplot(4,2,5);imshow(E);title('均值平滑处理后图像');subplot(4,2,6);imshow(F);title('⾼斯滤波器平滑处理后图像');%3.2G=pic-uint8(imfilter(pic,fspecial('prewitt')));%⽣成’prewitt’模板,并对输⼊图像做边缘增强,再加上原图像subplot(4,2,7);imshow(G);title('’prewitt’对图像做边缘增强处理后图像');H=pic-uint8(imfilter(pic,fspecial('sobel')));%⽣成’sobel’模板,并对输⼊图像做边缘增强,再加上原图像subplot(4,2,8);imshow(H);title('’sobel’对图像做边缘增强处理后图像');。
一.实验目的1.掌握图像滤波的基本定义及目的;2.理解空间域滤波的基本原理及方法;3.掌握进行图像的空域滤波的方法。
4.掌握傅立叶变换及逆变换的基本原理方法;5.理解频域滤波的基本原理及方法;6.掌握进行图像的频域滤波的方法。
二.实验结果与分析1.平滑空间滤波:a)读出eight.tif这幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中;(提示:imnoise)b)对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示;(提示:fspecial、imfilter或filter2)c)使用函数imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像采用不同的填充方式,效果略有不同。
d)运用for循环,将加有椒盐噪声的图像进行10次,20次均值滤波,查看其特点,显示均值处理后的图像;(提示:利用fspecial 函数的’average’类型生成均值滤波器)e)对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。
(提示:medfilt2)中值滤波后的图像比均值滤波后的图像更加平滑。
f)自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像;滤波后图像变得平滑。
2.锐化空间滤波a)读出blurry_moon.tif这幅图像,采用3×3的拉普拉斯算子w =[ 1, 1, 1; 1 – 8 1; 1, 1, 1]对其进行滤波;观察原图与拉普拉斯掩模滤波后的图像,滤波后的图像不再那么平滑,使图像产生锐化效果。
b)编写函数w = genlaplacian(n),自动产生任一奇数尺寸n的拉普拉斯算子,如5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]本函数见文件夹下genlaplacian.m文件。
实验报告实验名称图像变换及频域滤波课程名称数字图像处理姓名成绩班级学号日期地点实验一 图像变换及频域滤波一.实验目的(1)编写快速傅里叶变换算法程序,验证二维傅里叶变换的平移性和旋转不变。
; (2)实现图像频域滤波,加深对频域图像增强的理解。
二.实验环境及开发工具Windws XP 、MATALAB7.0、Visual C++、Visual Basic 三.实验方法1.验证二维傅里叶变换的平移性和旋转不变性;a .要验证证其平移特性,就先建立一个二维图象,然后再对其平移,通过观察两者的频谱图来观察平移特性,为了方便起见,我们选择特殊情况来分析,令u0=v0=N/2,使),()1(),(12y x f y x f y x +-= F(u-N/2,v-N/2),达到将原始F(U,V)四周频谱移到中心的效果,及达到频谱中心化。
b .验证旋转不变性可以通过将原始数组的通过移动45度,然后再比较旋转后与旋转前的频谱,得出频谱旋转不变性的结论。
具体步骤:1)产生如图1所示图像),(1y x f (128×128大小,暗处=0,亮处=255) 2)同屏显示原图1f 和)(FFT 1f 的幅度谱图。
3)若令),()1(),(12y x f y x f y x +-=,重复以上过程,比较二者幅度谱的异同。
4)将),(2y x f 顺时针旋转45度得到),(3y x f ,显示)(FFT 3f 的幅度谱,并与)(FFT 2f 的幅度谱进行比较。
图1实验图象f 1(x , y )2.实现图像频域滤波,加深对频域图像增强的理解。
频率域中进行增强是相当直观的,主要步骤有:1)计算需要增强的图象的傅立叶变换;2)将其与一个(根据需要设计的)转移的函数相乘; 3)再将结果反傅立叶变换以得到增强的图象. 为了直观的展示频域增强,可以通过下面任务来展现:对如图2所示的数字图像lena.img (256×256大小、256级灰度)进行频域的理想低通、高通滤波,同屏显示原图、幅度谱图和低通、高通滤波的结果图。
关于图形图像处理实训报告总结【九篇】实训报告总结:图形图像处理实训图形图像处理实训是计算机科学与技术专业的基础课程之一。
通过本次实训课程,我深入了解了图形图像处理的基本概念、方法和技术,并通过实际操作来提升了自己的实践能力。
下面是对本次实训的九篇报告总结:1. 实验一:图像读取与显示本次实验主要是学习如何读取和显示图像,以及使用Matplotlib库进行图像展示。
通过实验,我掌握了图像读取和显示的基本方法,并学会了基本的图像处理操作。
2. 实验二:图像的灰度变换实验二主要是学习图像的灰度变换,包括线性变换和非线性变换。
我学会了如何使用不同的灰度变换函数来调整图像的亮度和对比度,进一步提升图像的质量。
3. 实验三:图像的空间域滤波本次实验主要是学习图像的空间域滤波技术,包括均值滤波、中值滤波和高斯滤波等。
通过实验,我掌握了不同滤波方法的原理和实现方式,并学会了如何选择合适的滤波方法来降噪和模糊图像。
4. 实验四:图像的频域滤波实验四主要是学习图像的频域滤波技术,包括傅里叶变换和频域滤波等。
通过实验,我了解了傅里叶变换的原理和应用,并学会了如何使用频域滤波来实现图像的锐化和平滑。
5. 实验五:图像的形态学处理本次实验主要是学习图像的形态学处理技术,包括腐蚀、膨胀、开运算和闭运算等。
通过实验,我学会了如何使用形态学操作来改变图像的形状和结构,进一步改善图像的质量。
6. 实验六:图像的边缘检测实验六主要是学习图像的边缘检测技术,包括Sobel算子、Laplacian算子和Canny算子等。
通过实验,我了解了不同边缘检测方法的原理和应用,并学会了如何使用边缘检测来提取图像的轮廓和特征。
7. 实验七:图像的分割与聚类本次实验主要是学习图像的分割与聚类技术,包括阈值分割、区域生长和K均值聚类等。
通过实验,我掌握了不同分割与聚类方法的原理和应用,并学会了如何使用分割与聚类来识别和分析图像中的目标和区域。
8. 实验八:图像的特征提取与描述子实验八主要是学习图像的特征提取和描述子技术,包括尺度不变特征变换(SIFT)和方向梯度直方图(HOG)等。
《数字图像处理》实验报告学院:专业:班级:姓名:学号:实验一实验名称:图像增强实验目的:1.熟悉图像在Matlab下的读入,输出及显示;2.熟悉直方图均衡化;3.熟悉图像的线性指数等;4.熟悉图像的算术运算及几何变换.实验仪器:计算机,Matlab软件实验原理:图像增强是为了使受到噪声等污染图像在视觉感知或某种准则下尽量的恢复到原始图像的水平之外,还需要有目的性地加强图像中的某些信息而抑制另一些信息,以便更好地利用图像。
图像增强分频域处理和空间域处理,这里主要用空间域的方法进行增强。
空间域的增强主要有:灰度变换和图像的空间滤波。
图像的直方图实际上就是图像的各像素点强度概率密度分布图,是一幅图像所有像素集合的最基本统计规律,均衡化是指在每个灰度级上都有相同的像素点过程。
实验内容如下:I=imread('E:\cs.jpg');%读取图像subplot(2,2,1),imshow(I),title('源图像')J=rgb2gray(I)%灰度处理subplot(2,2,2),imshow(J) %输出图像title('灰度图像') %在原始图像中加标题subplot(2,2,3),imhist(J) %输出原图直方图title('原始图像直方图')0100200几何运算:I=imread('E:\cs.jpg');%subplot(1,2,1),imshow(I); theta = 30;K = imrotate(I,theta); subplot(1,2,2),imshow(K)对数运算:I=imread('E:\dog.jpg');subplot(2,2,1),imshow(I),title('源图像') J=rgb2gray(I)%灰度处理subplot(2,2,2),imshow(J),title('灰度变换后图像') J1=log(1+double(J));subplot(2,2,3),imshow(J1,[]),title('对数变换后') 指数运算:I=imread('E:\dog.jpg'); f=double(I); g=(2^2*(f-1))-1 f=uint8(f); g=uint8(g);subplot(1,2,1);subimage(f),title('变换一') subplot(1,2,2);subimage(g),title('变换二')加法运算:clc;clear all;close all; i = imread('E:\dog.jpg');j = imnoise(i,'gaussian',0,0.02);subplot(1,3,1),imshow(i),title('图一') subplot(1,3,2),imshow(j),title('图二') k=zeros(242,308); for p=1:100j = imnoise(i,'gaussian',0,0.02); j1 = im2double(j); k = k + j1; end k=k/100;subplot(1,3,3),imshow(k),title('图三')变换一200400600100200300400500变换二200400600100200300400500实验二实验名称:图像变换实验目的:(1)进一步对matlab的了解和使用;(2)学习如何在matlab中对数字图像的处理;实验原理:图像和其他信号一样,既能在空间域处理,也能在频率域处理。
《数字图像处理》实验报告学院:专业:班级:姓名:学号:实验一实验名称:图像增强实验目的:1.熟悉图像在Matlab下的读入,输出及显示;2.熟悉直方图均衡化;3.熟悉图像的线性指数等;4.熟悉图像的算术运算及几何变换.实验仪器:计算机,Matlab软件实验原理:图像增强是为了使受到噪声等污染图像在视觉感知或某种准则下尽量的恢复到原始图像的水平之外,还需要有目的性地加强图像中的某些信息而抑制另一些信息,以便更好地利用图像。
图像增强分频域处理和空间域处理,这里主要用空间域的方法进行增强。
空间域的增强主要有:灰度变换和图像的空间滤波。
图像的直方图实际上就是图像的各像素点强度概率密度分布图,是一幅图像所有像素集合的最基本统计规律,均衡化是指在每个灰度级上都有相同的像素点过程。
实验容如下:I=imread('E:\cs.jpg');%读取图像subplot(2,2,1),imshow(I),title('源图像')J=rgb2gray(I)%灰度处理subplot(2,2,2),imshow(J) %输出图像title('灰度图像') %在原始图像中加标题subplot(2,2,3),imhist(J) %输出原图直方图title('原始图像直方图')I=imread('E:\cs.jpg');%读取图像subplot(1,2,1),imshow(I);theta = 30;K = imrotate(I,theta);subplot(1,2,2),imshow(K)对数运算:I=imread('E:\dog.jpg');subplot(2,2,1),imshow(I),title('源图像')J=rgb2gray(I)%灰度处理subplot(2,2,2),imshow(J),title('灰度变换后图像') J1=log(1+double(J));subplot(2,2,3),imshow(J1,[]),title('对数变换后')指数运算:I=imread('E:\dog.jpg');f=double(I);g=(2^2*(f-1))-1f=uint8(f); g=uint8(g);subplot(1,2,1);subimage(f),title('变换一') subplot(1,2,2);subimage(g),title('变换二')加法运算:clc;clear all;close all; i = imread('E:\dog.jpg');j = imnoise(i,'gaussian',0,0.02);subplot(1,3,1),imshow(i),title('图一') subplot(1,3,2),imshow(j),title('图二') k=zeros(242,308); for p=1:100j = imnoise(i,'gaussian',0,0.02); j1 = im2double(j); k = k + j1; end k=k/100;subplot(1,3,3),imshow(k),title('图三')变换一200400600100200300400500变换二200400600100200300400500实验二实验名称:图像变换实验目的:(1)进一步对matlab的了解和使用;(2)学习如何在matlab中对数字图像的处理;实验原理:图像和其他信号一样,既能在空间域处理,也能在频率域处理。
实验三、四数字图像的空间域滤波和频域滤波1.实验目的1.掌握图像滤波的基本定义及目的。
2.理解空间域滤波的基本原理及方法。
3.掌握进行图像的空域滤波的方法。
4.掌握傅立叶变换及逆变换的基本原理方法。
5.理解频域滤波的基本原理及方法。
6.掌握进行图像的频域滤波的方法。
2.实验基本原理1.空间域增强空间域滤波是在图像空间中借助模板对图像进行领域操作,处理图像每一个像素的取值都是根据模板对输入像素相应领域内的像素值进行计算得到的。
空域滤波基本上是让图像在频域空间内某个范围的分量受到抑制,同时保证其他分量不变,从而改变输出图像的频率分布,达到增强图像的目的。
空域滤波一般分为线性滤波和非线性滤波两类。
线性滤波器的设计常基于对傅立叶变换的分析,非线性空域滤波器则一般直接对领域进行操作。
各种空域滤波器根据功能主要分为平滑滤波器和锐化滤波器。
平滑可用低通来实现,平滑的目的可分为两类:一类是模糊,目的是在提取较大的目标前去除太小的细节或将目标内的小肩端连接起来;另一类是消除噪声。
锐化可用高通滤波来实现,锐化的目的是为了增强被模糊的细节。
结合这两种分类方法,可将空间滤波增强分为四类:线性平滑滤波器(低通)非线性平滑滤波器(低通)线性锐化滤波器(高通)非线性锐化滤波器(高通)空间滤波器都是基于模板卷积,其主要工作步骤是:1)将模板在图中移动,并将模板中心与图中某个像素位置重合;2)将模板上的系数与模板下对应的像素相乘;3)将所有乘积相加;4)将和(模板的输出响应)赋给图中对应模板中心位置的像素。
2.平滑滤波器1)线性平滑滤波器线性低通平滑滤波器也称为均值滤波器,这种滤波器的所有系数都是正数,对3×3的模板来说,最简单的是取所有系数为1,为了保持输出图像任然在原来图像的灰度值范围内,模板与象素邻域的乘积都要除以9。
MATLAB 提供了fspecial 函数生成滤波时所用的模板,并提供filter2 函数用指定的滤波器模板对图像进行运算。
一、实验名称遥感图像空间域增强处理二、实验目的对图像数据采用各种图形增强算法,提高图像的目视效果,方便人工目视解译、图像分类中的样本选取等,方便以后的图像解译。
学会使用ENVI软件对遥感影像进行分析增强处理,初步掌握各种图像增强方法,并对其结果进行比较,观察增强效果。
三、实验原理空间域增强处理是通过直接改变图像中的单个像元及相邻像元的灰度值来增强图像,包括直方图增强及邻域增强。
直方图增强主要有图像拉伸、图像均衡化以及直方图规定化。
拉伸是最基本的图像处理方法,主要用于改善图像显示的对比度。
如果拉伸后的图像不理想,可以通过直方图均衡化做适当修改。
邻域增强主要通过定义卷积模板对图像进行滤波处理。
卷积滤波是通过消除特定的空间频率来增强图像,可分为低通率波、带通滤波和高通滤波,还有增强图像某些方向特征的方向滤波等。
四、数据来源本次实验所用数据来自于国际数据服务平台;landsat4-5波段30米分辨率TM影像,投影为WGS-84,影像主要为山西省大同市恒山地区,中心纬度:38.90407 中心经度:113.11840。
五、实验过程1、灰度拉伸1)打开并显示TM影像文件,从ENVI 主菜单中,选择File →Open Image File选择影像,点击Load Band 在主窗口加载影像。
2)在图像的主菜单上单击ENHANCE菜单,在下拉菜单中选择INTERECTIVE STRETCHING 菜单,在弹出的对话框的主菜单上单击STRETCH_TYPE菜单。
3)线性拉伸:单击linear,再在STRETCH对应的两个文本框中输入需要拉伸的范围,然后单击对话框上的APPLY按钮,图像显示为线性拉伸后的效果。
如图所示:4) 分段线性拉伸:单击Piecewise linear通过使用鼠标在输入直方图中放置几个点交互地限定,各点之间的部分采用线性拉伸。
如图所示:5)高斯拉伸:选择Stretch_Type>Gaussian.输入拉伸的最小和最大值,要手动地输入所需要的标准差值,选择Options > SetGaussian Stdv。
《数字图像处理与分析》
实验报告
实验项目图像空间域处理的综合实验
教师评语:
一、实验目的与要求
实验目的:
1、通过本实验理解图像空间域处理的主要算法思想及其用途;
2、理解实际的图像处理过程实际上是一个多种方法综合应用达到预期效果
的过程。
实验要求:
1、综合应用学过的图像空间域处理方法,对图像库中的Fig3.46(a).jpg实现增强,主要步骤参考教材的P103—P105(即:图3.43的过程),达到教材最后的实验结果;
2、分析上述实验过程各个步骤所应注意的问题及解决途径。
二、实验方案
1.
i=imread('C:\Users\Change\Desktop\数字图像处理
\images_chapter_03\Fig3.46(a).jpg','jpg');
z=double(i);
y=fspecial('laplacian',0.5);
x=imfilter(z,y);
subplot(241)
imshow(i)
title('(a)原图')
subplot(242)
imshow(x,[])
title('(b)拉普拉斯操作后')
x1=z+x;
subplot(243)
imshow(x1,[])
title('(c)原图与拉普拉斯操作相加后')
y2=fspecial('sobel');
t=y2';
h=imfilter(i,y2);
k=imfilter(i,t);
x2=abs(h)+abs(k);
subplot(244)
imshow(x2)
title('(d)经sobel处理后')
y3=ones(5,5)/25;
x3=imfilter(x2,y3);
subplot(245)
imshow(x3)
title('(e)经均值滤波平滑后的sobel图') w=double(x3);
x4=x1.*w;
subplot(246)
imshow(x4,[])
title('(f)有(c)和(e)相乘')
x5=x4+z;
subplot(247)
imshow(x5,[])
title('(g)由(a)和(f)相加')
x6=x5.^0.5;
subplot(248)
imshow(x6,[])
title('(h)对(g)幂律变换')
2.
(1)进行拉普拉斯操作时,要注意进行图片的标定;(2)进行sobel处理时,要对算法进行转置,并用原来的算法与转置后的算法分别对图像处理,然后将处理结果的绝对值相加;
(3)根据图片的情况选择合适的滤波器,算法增强图像。
三、实验结果和数据处理
1.。