图像处理实验报告
- 格式:docx
- 大小:1.92 MB
- 文档页数:16
实验报告课程名称数字图像处理导论专业班级_______________姓名 _______________学号_______________电气与信息学院与谐勤奋求就是创新一.实验目得1.理解图像分割得基本概念;2.理解图像边缘提取得基本概念;3.掌握进行边缘提取得基本方法;4.掌握用阈值法进行图像分割得基本方法.二。
实验内容1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
比较三种算子处理得不同之处;2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明。
3.任选一种阈值法进行图像分割、图1 图2三.实验具体实现1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
比较三种算子处理得不同之处;I=imread(’mri、tif');imshow(I)BW1=edge(I,’roberts’);figure ,imshow(BW1),title(’用Roberts算子’)BW2=edge(I,’sobel’);figure,imshow(BW2),title(’用Sobel算子 ')BW3=edge(I,’log’);figure,imshow(BW3),title(’用拉普拉斯高斯算子’)比较提取边缘得效果可以瞧出,sober算子就是一种微分算子,对边缘得定位较精确,但就是会漏去一些边缘细节.而Laplacian—Gaussian算子就是一种二阶边缘检测方法,它通过寻找图象灰度值中二阶过零点来检测边缘并将边缘提取出来,边缘得细节比较丰富。
通过比较可以瞧出Laplacian-Gaussian算子比sober算子边缘更完整,效果更好。
2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明.i=imread('m83、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图');thread=130/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’);3.任选一种阈值法进行图像分割、i=imread('trees、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图’);thread=100/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’)1、分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
图像处理实验报告图像处理实验报告一、引言图像处理是计算机科学与工程领域的一个重要研究方向,它涉及到对数字图像进行获取、处理、分析和显示等一系列操作。
本实验旨在通过使用图像处理技术,对一幅给定的数字图像进行处理和分析,以探索图像处理的原理和应用。
二、实验目的本实验有以下几个目的:1. 理解图像处理的基本概念和原理;2. 掌握图像处理的常用技术和方法;3. 熟悉图像处理软件的使用。
三、实验步骤1. 图像获取在本实验中,我们选择了一张风景图作为实验对象。
该图像是通过数码相机拍摄得到的,保存在计算机中的文件格式为JPEG。
我们使用图像处理软件将该图像导入到程序中,以便进行后续的处理和分析。
2. 图像预处理在进行图像处理之前,我们需要对图像进行预处理。
预处理的目的是去除图像中的噪声、平滑图像的边缘等。
我们使用了均值滤波和中值滤波两种常用的图像平滑方法。
通过对比两种方法的效果,我们可以选择合适的方法来进行图像预处理。
3. 图像增强图像增强是指通过一系列的操作,使得图像在视觉上更加鲜明、清晰、易于观察。
在本实验中,我们使用了直方图均衡化和灰度拉伸两种图像增强方法。
直方图均衡化通过对图像的像素值进行变换,使得图像的直方图更加均匀,从而增强图像的对比度。
灰度拉伸则是通过对图像的像素值进行线性变换,将图像的灰度范围拉伸到更广的范围内,从而增强图像的细节。
4. 图像分割图像分割是将图像分成若干个互不重叠的区域,每个区域具有一定的意义和特征。
在本实验中,我们使用了阈值分割和边缘检测两种图像分割方法。
阈值分割是指通过设置一个合适的阈值,将图像中的像素分为两个类别。
边缘检测则是通过检测图像中的边缘信息,将图像分割为不同的区域。
5. 图像特征提取图像特征提取是指从图像中提取出具有一定意义和特征的信息。
在本实验中,我们选择了纹理特征和颜色特征两种常用的图像特征提取方法。
纹理特征提取通过对图像的纹理进行分析,提取出图像的纹理特征。
实验三图像编码一、实验内容:用Matlab语言、C语言或C++语言编制图像处理软件,对某幅图像进行时域和频域的编码压缩。
二、实验目的和意义:1. 掌握哈夫曼编码、香农-范诺编码、行程编码2.了解图像压缩国际标准三、实验原理与主要框架:3.1实验所用编程环境:Visual C++6.0(简称VC)3.2实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:(如图3.1)图3.1 位图的文件结构具体组成图:单色DIB 有2个表项16色DIB 有16个表项或更少 256色DIB 有256个表项或更少 真彩色DIB 没有调色板每个表项长度为4字节(32位) 像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍biSize biWidth biHeight biPlanes biBitCount biCompression biSizeImagebiXPelsPerMeter biYPelsPerMeter biClrUsedbiClrImportantbfType=”BM ” bfSizebfReserved1 bfReserved2 bfOffBits BITMAPFILEHEADER位图文件头 (只用于BMP 文件)BITMAPINFOHEADER位图信息头Palette 调色板DIB Pixels DIB 图像数据3.3 数字图像基本概念数字图像是连续图像(,)f x y 的一种近似表示,通常用由采样点的值所组成的矩阵来表示:(0,0)(0,1)...(0,1)(1,0)(1,1)...(1,1).........(1,0)(1,1)...(1,1)f f f M f f f M f N f N f N M -⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥----⎣⎦每一个采样单元叫做一个像素(pixel ),上式(2.1)中,M 、N 分别为数字图像在横(行)、纵(列)方向上的像素总数。
图像处理实验报告实验⼀基于matlab 的⼈脸识别技术⼀、实验⽬的1.熟悉⼈脸识别的⼀般流程与常见识别⽅法;2.熟悉不同的特征提取⽅法在⼈脸识别的应⽤;3.了解在实际的⼈脸识别中,学习样本数等参数对识别率的影响;4.了解⾮⼈脸学习样本库的构建在⼈脸识别的重要作⽤。
使⽤MATLAB 平台编程,采⽤K-L 变换、特征提取及图像处理技术,实现⼈脸识别⼆、实验内容与实验仪器、设备1.构建⾮⼈脸学习样本库;2.观测不同的特征提取⽅法对⼈脸识别率的影响;3.观测不同的学习样本数对⼈脸识别率的影响;1. PC 机-系统最低配置 512M 内存、P4 CPU ;2. Matlab 仿真软件- 7.0 / 7.1 / 2006a 等版本的Matlab 软件。
3. CBCL ⼈脸样本库三、实验原理1.⼈脸特征提取的算法通过判别图像中所有可能区域是否属于“⼈脸模式”的⽅法来实现⼈脸检测。
这类⽅法有:特征脸法、⼈⼯神经⽹络法、⽀持向量机法;积分图像法。
本次使⽤的是PCA(主成分分析法)其原理是:利⽤K-L 变换抽取⼈脸的主要成分,构成特征脸空间,识别时将测试图像投影到此空间,得到⼀组投影系数,通过与各个⼈脸图像⽐较进⾏识别。
对于⼀幅M*N 的⼈脸图像,将其每列相连构成⼀个⼤⼩为D=M*N 维的列向量。
D 就是⼈脸图像的维数,即是图像空间的维数。
设n 是训练样本的数⽬;X j 表⽰第j 幅⼈脸图像形成的⼈脸向量,则所需样本的协⽅差矩阵为:1()()m Ti i i S x u x u ==--∑ (1)其中U 为训练样本的平均图像向量:11mi i u x n ==∑ (2)令A=[x 1-u,x 2-u,...x n -u],则有S r =AA T ,其维数为D ×D 。
根据K-L 变换原理,需要求得的新坐标系由矩阵AA T 的⾮零特征值所对应的特征向量组成。
直接计算的计算量⽐较⼤,所以采⽤奇异值分解(SVD)定理,通过求解A T A 的特征值和特征向量来获得AA T 的特征值和特征向量。
图像处理美工实验报告1. 实验目的本次实验旨在通过图像处理技术,提升图片的美观度。
通过对图像进行调整、修复、美化等处理,使得图片在色彩、对比度、清晰度等方面表现出更好的效果。
2. 实验环境- 操作系统:Windows 10- 编程语言:Python- 开发环境:Anaconda Navigator- 相关软件:Adobe Photoshop3. 实验过程3.1 图片调整首先,我们使用Adobe Photoshop对原始图片进行调整。
通过调整图片的亮度、对比度、色调等参数,使得图片的整体效果更加明亮、鲜艳。
3.2 图像修复接着,我们使用图像处理库中的算法对图片进行修复。
通过去除噪点、消除瑕疵、修复缺失等操作,使得图片中的细节更加清晰、完整。
3.3 图像滤镜在调整和修复完成后,我们尝试使用不同的滤镜效果来美化图片。
通过施加不同的滤镜效果,例如模糊、锐化、马赛克等,我们可以给图片加入一些艺术效果,使得图片更加具有视觉冲击力。
3.4 图像细节增强为了使得图片更加饱满、立体,我们可以对图片中的细节部分进行增强处理。
通过增强细节的锐度、增加线条的清晰程度,我们可以使得图片中的物体更加鲜活、立体。
3.5 色彩调整最后,我们对图片的色彩进行调整。
通过调整图片的色相、饱和度、明度等参数,我们可以让图片的色彩更加丰富、鲜艳。
同时,我们可以对不同色彩通道进行调整,使得图片的整体色调更加协调、统一。
4. 实验结果经过一系列的图像处理操作,我们成功提升了图片的美观度。
原始图片与经过处理后的图片相比,色彩更加明亮饱满,细节更加清晰,整体效果更加出色。
同时,通过施加不同的滤镜效果和调整色彩,我们还加入了一些艺术效果,提升了图片的视觉冲击力。
5. 总结通过本次实验,我们了解了图像处理技术在美工方面的应用。
图像处理可以对图片进行调整、修复、美化等操作,提升其美观度和质量。
合理使用图像处理技术,可以使得图片更加生动、吸引人,为设计和美工工作提供了有力的支持。
实验一图像的基本操作和基本统计指标计算一、实验目的熟悉MATLAB图像处理工具箱,在掌握MATLAB基本操作的基础上,本课程主要依靠图像处理工具箱验证和设计图像处理算法。
对于初学者来说,勤学多练、熟悉MATLAB图像处理工具箱也是学号本课程的必经之路。
了解计算图像的统计指标的方法及其在图像处理中的意义。
了解图像的几何操作,如改变图像大小、剪切、旋转等。
二、实验主要仪器设备(1)台式计算机或笔记本电脑(2)MATLAB(安装了图像处理工具箱,即Image Processing Toolbox(IPT))(3)典型的灰度、彩色图像文件三、实验原理(1)将一幅图像视为一个二维矩阵。
(2)利用MATLAB图像处理工具箱读、写和显示图像文件。
①调用imread函数将图像文件读入图像数组(矩阵)。
例如“I=imread(‘tire.tif’);”。
其基本格式为:“A=imread(‘filename.fmt’)”,其中,A为二维矩阵,filename.为文件名,fmt 为图像文件格式的扩展名。
②调用imwrite函数将图像矩阵写入图像文件。
例如“imwrite(A,’test_image.jpg’);”。
其基本格式为“imwrite(a,filename.fmt)”。
③调用imshow函数显示图像。
例如“imshow(‘tire.tif’);”。
其基本格式为:I为图像矩阵,N为显示的灰度级数,默认时为256。
(3)计算图像有关的统计参数。
四、实验内容(1)利用MATLAB图像处理工具箱和Photoshop读、写和显示图像文件。
(2)利用MATLAB计算图像有关的统计参数。
五、实验步骤(1)利用“读图像文件I/O”函数读入图像Italy.jpg。
(2)利用“读图像文件I/O”的iminfo函数了解图像文件的基本信息:主要包括Filename(文件名)、FileModDate(文件修改时间)、Filesize(文件尺寸)、Format(文件格式)、FormatVersion (格式版本)、Width(图像宽度)、Height(图像高度)、BitDepth(每个像素的位深度)、ColorType (彩色类型)、CodingMethod(编码方法)等。
一、实验目的1、熟悉位图文件的文件格式,掌握位图数据读取并在屏幕上显示的方法。
2、掌握在计算机上进行直方图均衡化以及线性增强的方法。
3、通过实验体会一些主要的分割算子对图像处理的效果,以及各种因素对分割效果的影响。
4、熟练掌握应用MATLAB软件编程进行图像处理。
二、实验环境一台pc机,MATLAB软件编程环境。
三、实验内容1、图像的现实和读取:运用MATLAB软件编程,读取指定的256色灰度图像的数据,显示该文件的文件头和信息头数据的值,并在屏幕上显示该图象。
2、直方图的显示和均衡化:运用MATLAB软件编程,实现内容1中图像直方图的显示和均衡化。
3、图像分割:使用Prewitt 算子、Sobel 算子对图像进行边缘检测处理,完成图像分割实验。
4、图像增强:编写线性增强的程序及相应的显示程序,对指定图象进行线性增强,将原始图象及增强后的图象都显示于屏幕上,比较增强的效果。
四、实验步骤1、打开计算机,启动MATLAB程序。
2、图像读取与显示。
MATLAB中从图像文件中读取数据用函数imread(),这个函数的作用就是将图像文件的数据读入矩阵中,用imshow()函数显示出来。
imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg');imshow('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg');title('原图像')3、直方图的显示A=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg'); figure;imhist(A),title('对应直方图')4、直方图均衡化MATLAB提供了histeq函数(自动直方图均衡化)I=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg'); K=histeq(I);figure;imshow(K),title('经直方图均衡化后的图')figure;imhist(K),title('直方图均衡化后的直方图')5、图像的边缘检测用Sobel算子做边缘检测[A,map]=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg'); image=double(A);u=zeros(1,9);k=zeros(1,9);for i=2:255,for j=2:255,u(1)=0*image(i,j);u(2)=2*image(i,j+1);u(3)=1*image(i-1,j+1);u(4)=0*image(i-1,j);u(5)=-1*image(i-1,j-1);u(6)=-2*image(i,j-1);u(7)=-1*image(i+1,j-1);u(8)=0*image(i+1,j);u(9)=1*image(i+1,j+1);rimage1(i,j)=abs(sum(u));k(1)=0*image(i,j);k(2)=0*image(i,j+1);k(3)=1*image(i-1,j+1);k(4)=2*image(i-1,j);k(5)=1*image(i-1,j-1);k(6)=0*image(i,j-1);k(7)=-1*image(i+1,j-1);k(8)=-2*image(i+1,j);k(9)=-1*image(i+1,j+1);rimage2(i,j)=abs(sum(k));xiaoqiu(i,j)=rimage1(i,j)+rimage2(i,j);end,end,figure,imshow(xiaoqiu,map),title('Sobel锐化');用prewitt算子做边缘检测[A,map]=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg'); image=double(A);u=zeros(1,9);k=zeros(1,9);for i=2:255,for j=2:255,u(1)=0*image(i,j);u(2)=1*image(i,j+1);u(3)=1*image(i-1,j+1);u(4)=0*image(i-1,j);u(5)=-1*image(i-1,j-1);u(6)=-1*image(i,j-1);u(7)=-1*image(i+1,j-1);u(8)=0*image(i+1,j);u(9)=1*image(i+1,j+1);rimage1(i,j)=abs(sum(u));k(1)=0*image(i,j);k(2)=0*image(i,j+1);k(3)=-1*image(i-1,j+1);k(4)=1*image(i-1,j);k(5)=1*image(i-1,j-1);k(6)=0*image(i,j-1);k(7)=-1*image(i+1,j-1);k(8)=-1*image(i+1,j);k(9)=-1*image(i+1,j+1); rimage2(i,j)=abs(sum(k));xiaoqiu(i,j)=rimage1(i,j)+rimage2(i,j);end,end,figure,imshow(xiaoqiu,map),title('prewitt边缘检测');7、图像的处理均值滤波I=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg');h=fspecial('average',3);I2=uint8(round(filter2(h,I)));imshow(I2),title('均值滤波')中值滤波I=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg');I3=medfilt2(I,[3,3]);imshow(I3),title('中值滤波')五、实验总结通过本次试验基本掌握了应用MATLAB软件编程进行图像处理的方法,熟悉了位图文件的文件格式,掌握了位图数据读取显示,直方图均衡化以及线性增强的方法,并学会了运用分割算子对图像进行边缘检测和图像分割处理的方法。
实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用与意义;4、观察图像点运算与几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。
三、实验原理1、图像灰度直方图、点运算与几何变换的基本原理及编程实现步骤图像灰度直方图就是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。
图像点运算就是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。
点运算可以瞧作就是“从象素到象素”的复制操作,而这种复制操作就是通过灰度变换函数实现的。
如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值与输出灰度值之间的转换关系。
一旦灰度变换函数确定,该点运算就完全确定下来了。
另外,点运算处理将改变图像的灰度直方图分布。
点运算又被称为对比度增强、对比度拉伸或灰度变换。
点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸与均衡等。
图像几何变换就是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放与图像旋转等,其理论基础主要就是一些矩阵运算,详细原理可以参考有关书籍。
实验系统提供了图像灰度直方图、点运算与几何变换相关内容的文字说明,用户在操作过程中可以参考。
下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法与频域法,点运算与几何变换属于空域法。
大学新闻与传播学院实验教学中心实验报告实验名称图像处理指导教师洪杰文华滢年级08 学号23 成绩一、预习部分1、实验目的2、实验基本原理3、主要仪器设备(含必要的元器件、工具)1、实验目的:(1)熟悉和掌握数字图像的基本概念和技术指标,掌握色彩模式、图像分辨率、图像深度、图像文件格式与图像的显示效果、文件容量的关系。
(2)了解和掌握数字图像压缩的概念,观察不同的压缩比对图像的影响。
(3)了解和掌握图像中色彩的确定及选取方法,掌握前景色和背景色的概念及调整方法,掌握色彩填充的基本概念及应用。
(4)了解和掌握图像处理软件Photoshop的基本功能和基本使用方法,熟练掌握图层与选择区的基本使用方法。
(5)通过创造性的构图和对布局及色彩等的巧妙处理,一幅好的图画可以将一个主题以含蓄而又深刻的方式予以提示,并往往具有比单纯的语言文字更强的表现力。
在掌握图像处理基本概念和Photoshop基本使用方法的基础上,对已有的数字图像做一些基本的创意设计和编辑处理。
2、实验基本原理:基于photoshop软件的图像处理。
3、主要仪器设备(含必要的元器件、工具):Adobe Photoshop二、实验操作部分1、实验操作过程2、实验数据、观察到的实验现象1、实验操作过程:1.图像的基本变换(1)自选一幅不小于400×400pixel的彩色数字图像。
在Photoshop中打开该图像,记录其技术参数:文件格式、文件容量,图像尺寸(pixel和cm)、分辨率、色彩模式等。
文件格式:JPEG 图像;文件容量:59.7kb;图像尺寸(pixel和cm):600×600pixel;分辨率:72像素/英寸;色彩模式:RGB模式。
(2)对该图像重采样,要求采样后的图像分辨率为150dpi,图像尺寸为300×300pixel。
色彩模式分别变换成灰度、Indexed和RGB模式,按BMP格式分别保存成不同名称的图像文件;重新打开并观察变换后的显示效果,并记录各个文件的容量。
图像后期处理实验报告图像后期处理是指通过对图像进行一系列的处理操作,改变图像的颜色、亮度、对比度等,使得图像达到更好的显示效果或符合特定需求。
本实验使用Photoshop软件进行图像后期处理,并对其原理和效果进行研究和实验。
一、实验目的1. 熟悉图像后期处理的基本原理和方法;2. 掌握Photoshop软件的基本操作和功能;3. 实验通过对图像进行后期处理,提高图像的质量和观感。
二、实验步骤1. 图像灰度化:打开一幅彩色图像,将其转换为灰度图像。
采用图像--模式--灰度,即可完成灰度化操作。
2. 图像调整:使用调整图层,可以对图像的亮度、对比度、饱和度等进行调整。
通过调整滑块的数值,可以改变图像的明暗程度、色彩饱和度。
3. 图像滤镜:通过应用不同的滤镜,可以改变图像的外观效果。
例如,模糊滤镜可以在一定程度上减少图像的噪点和细节,而锐化滤镜可以增强图像的清晰度和边缘。
4. 图像修饰:通过添加各种修饰效果,可以让图像更加生动、有趣。
例如,可以添加文本、图标、边框等元素,或者进行剪裁、缩放、旋转等操作。
5. 图像输出:最后,将处理后的图像保存为所需格式,并进行合理的命名和存储。
三、实验效果1. 灰度化处理:将一幅彩色图像转换为灰度图像后,图像的色彩信息消失,只保留亮度信息。
这样更便于观察图像中的细节和纹理。
2. 亮度对比度调整:通过调整图像的亮度和对比度,可以改变整个图像的明暗程度和色彩饱和度。
例如,增加亮度可以使图像更加明亮,而减小对比度可以降低图像的清晰度。
3. 滤镜效果:通过应用不同的滤镜,可以改变图像的外观。
例如,应用模糊滤镜后,图像的细节会变得模糊化,而应用锐化滤镜后,图像的边缘会更加清晰。
四、实验结论图像后期处理是一种通过对图像进行处理和调整,改变图像的外观、色彩和质量的技术。
本实验通过使用Photoshop软件进行图像后期处理,并对其原理和效果进行研究和实验,掌握了图像后期处理的基本方法和操作技巧。
直方图均衡化的实现一.实验目的:通过本次实验,加深对直方图均衡化的基本原理的理解,加强学生的算法设计和编程实现的能力。
二.实验内容:理解直方图均衡化,调试程序,加深理解深度。
三.实验过程分析:直方图均衡化处理后,图像的直方图较为平直,各灰度级的值相对均匀。
由于灰度级具有均匀的概率分布,图像看起来更清晰了。
下面是灰度变换曲线:Matlab 中有对直方图均衡化的命令(histeq),若直接使用非常方便,但仍然不知道具体过程是如何完成的。
我们采用的直方图均衡化处理是以累积分布函数变换法为基础的直方图修正法。
可以证明,用累积分布函数作为变换函数,可产生一幅灰度级分布具有均匀概率密度的图像。
实现直方图均衡化一般有以下几个步骤:首先计算原始图像直方图各灰度级的频数,计算累积分布函数,按相应公式计算映射后的输出图像的灰度级,计算变换后每个灰度级出现的概率,修改原始图像的灰度级,从而获得直方图近似为均匀分布的输出图像。
四.实验小结:本次实验是专门为学习直方图均衡化而设计的,通过编写实验程序,最终实现了图像的直方图均衡化。
在这个学习的过程中,弄懂了直方图均衡化的原理以及整个实现过程。
FFT的物理意义一.实验目的:通过本次实验,理解FFT的物理意义,认识幅度特性和相位特性。
二.实验内容:对原始模拟信号进行FFT变换,并由变换的结果还原原始信号。
三.实验过程假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、相位为90度、幅度为1.5V的交流信号。
其数学表达式即为S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)。
实验以256Hz的采样率对这个信号进行采样,总共采样256点。
原始信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。
实际情况如何呢?我们来看看FFT 的结果的模值如下图所示。
从图中我们可以看到,在第1点、第51点、和第76点附近有比较大的值。
现在分别将这三个点附近的数据拿上来细看:1点:512+0i2点:-2.6195E-14 - 1.4162E-13i3点:-2.8586E-14 - 1.1898E-13i50点:-6.2076E-13 - 2.1713E-12i51点:332.55 - 192i52点:-1.6707E-12 - 1.5241E-12i75点:-2.2199E-13 -1.0076E-12i76点:3.4315E-12 + 192i77点:-3.0263E-14 +7.5609E-13i很明显,1点、51点、76点的值都比较大,它附近的点值都很小,可以认为是0,即在那些频率点上的信号幅度为0。
接着,我们来计算各点的幅度值。
分别计算这三个点的模值,结果如下:1点:51251点:38476点:192按照公式,可以计算出直流分量为:512/N=512/256=2;50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的幅度为192/(N/2)=192/(256/2)=1.5。
可见,从频谱分析出来的幅度是正确的。
然后再来计算相位信息。
直流信号没有相位可言,不用管它。
先计算50Hz信号的相位,atan (-192, 332.55)=-0.5236,结果是弧度,换算为角度就是180*(-0.5236)/pi=-30.0001。
再计算75Hz信号的相位,atan(192, .4315E-12)=1.5708弧度,换算成角度就是180*1.5708/pi=90.0002。
可见,相位也是对的。
根据FFT 结果以及上面的分析计算,我们就可以写出信号的表达式了,它就是我们开始提供的信号。
四.实验小结:假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以N);该点的相位即是对应该频率下的信号的相位。
相位的计算可用函数atan(b,a)计算。
arctan(b,a)是求坐标为(a,b)点的角度值,范围从-pi到pi。
要精确到xHz,则需要采样长度为1/x秒的信号,并做FFT。
要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成分析。
解决这个问题的方法有频率细分法,比较简单的方法是采样比较短时间的信号,然后在后面补充一定数量的0,使其长度达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。
图像增强设计实验一.实验目的:掌握基本的图象增强方法,观察图象增强的效果,加深对灰度直方图的理解。
二.实验内容:对比度增强,灰度变换,直方图均衡化,图象平滑,图象锐化。
三.实验过程:(一)对比度增强原始图像增加对比度减少对比度[分析]增加对比度后图像直方图变宽变扁,各灰度级拉开,相反,减少对比度后,图像直方图变窄变高,点的灰度级集中在某一小区域内,图像对照不明显。
直方图分别如上所示。
(二)灰度变换原始图像灰度反向后的图像调节域值色阶(128)灰度变换曲线[分析]灰度反向就是把原来灰度级为x(x<256)的点的出现频率变为灰度级为256-x 的点的出现频率,故变换后的直方图与原来的直方图呈镜面对称。
在调节域值色阶时,将其二值化,灰度级大于128 的点变成黑色,小于128 的点变成白色,其它灰度级的点出现频率为0,从而直方图如上图所示。
(三)直方图均衡化原始图像直方图均衡化[分析]直方图均衡化处理后,图像的直方图较为平直,各灰度级的值相对均匀。
由于灰度级具有均匀的概率分布,图像看起来更清晰了。
(四)图像平滑原始图像进一步模糊高斯模糊(Radius:5.0Pixcels)Matlab 中的实验图片:1.中值滤波器(Median Filter)抑制椒盐噪声(Salt&Pepper)2.Averaging Filter 抑制高斯噪声(Gaussian)。
3 Adaptive Filter 抑制斑点噪声(Speckle)。
4 Adaptive Filter 抑制高斯噪声(Gaussian)。
[分析] 经过以上实验,可以总结出以下结论:1. 邻域(neighbourhood)越小,图像越清晰,但是抑制噪声效果越差。
2. 中值滤波器(Median Filter)对抑制椒盐噪声(Salt&Pepper)更有效。
3. Adaptive Filter 对抑制高斯噪声(Gaussian)更有效。
4. Averaging Filter 对抑制斑点噪声(Speckle)更有效(五)图像锐化原始图像进一步锐化USM 锐化[分析]进一步锐化和USM锐化后的直方图变换并不明显。
查找边缘照亮边缘(边缘宽度:4,边缘亮度:6,平滑度:7)[分析]在照亮边缘中,有一些参数设置,边缘是白色的,被勾亮出来,故直方图灰度级高的点出现频率较小,大片的黑色使灰度级较低的点的频率出现较大,直方图如上所示。
四.实验小结:本次实验通过多种手段进行图像增强,通过对于变换前后的直方图对比,使我更清楚地看到各种处理方法对于图像的作用,此外在实验中用到了Photoshop 软件,其功能很强大,可以对图像进行多种操作,这位以后的图像处理学习提供了另外一种手段。
图像分割设计实验一.实验目的:掌握基本的图象分割方法,观察图象增强的效果。
二.实验内容:边缘检测,模板匹配,区域生长。
三.实验过程:(1)Matlab图像边界检查工具箱Sobel算子(阈值自动选择) Sobel算子(阈值较大)Prewitt算子(阈值自动选择) Prewitt算子(阈值较小)Roberts 算子检测Laplacian of Gaussian算子检测分析:Roberts算子:Roberts算子利用局部差分算子寻找边缘,边缘定位精度较高,但容易丢失一部分边缘,同时由于图像没经过平滑处理,因此不具备抑制噪声的能力。
该算子对具有陡峭边缘且含噪声少的图像效果较好。
Sobel算子和Prewitt算子:都是对图像先做加权平滑处理,然后再做微分运算,所不同的是平滑部分的权值有些差异,因此对噪声具有一定的抑制能力,但不能完全排除检测结果中出现的虚假边缘。
虽然这两个算子边缘定位效果不错,但检测出的边缘容易出现多像素宽度。
Laplacian算子:是不依赖于边缘方向的二阶微分算子算子,对图像中的阶跃型边缘点定位准确,该算子对噪声非常敏感,它使噪声成分得到加强,这两个特性使得该算子容易丢失一部分边缘的方向信息,造成一些不连续的检测边缘,同时抗噪声能力比较差。
(2)模板匹配原图 3*3模板线模板(水平方向) 线模板(垂直方向)分析:进行边缘检测时,模板匹配就是高通滤波器,相当于点检测。
线模板属于对边缘的先检测,通过比较典型模板的计算值,确定一个点是否在某个方向的线上。
四.实验小结:图像分割是将图像划分成若干个互不相交的小区域的过程,小区域是某种意义下具有共同属性的像素的连通集合。
最常见的是边缘检测,这很有实际应用价值。
通过实验,明白了图像分割的基本方法与相关的基本概念,为进一步学习打下了基础。