峰值电流控制优缺点
- 格式:doc
- 大小:27.50 KB
- 文档页数:2
buck电路峰值电流控制
Buck电路是一种降压电路,可以将输入电压降低为较低的输出电压。
在Buck电路中,峰值电流控制是一种控制方法,通过调节开关管的导通时间,从而控制电路中的峰值电流大小。
峰值电流控制可以通过两种主要方式实现:电流模式控制和电压模式控制。
电流模式控制是通过测量和控制电感电流来实现的。
在电流模式控制中,通过对电感电流进行反馈,与参考电流进行比较,并根据比较结果调整开关管的导通时间,以达到控制电路中的峰值电流大小的目的。
这种控制方法可以稳定地控制电路的输出电流。
电压模式控制是通过测量和控制输出电压来实现的。
在电压模式控制中,通过对输出电压进行反馈,与参考电压进行比较,并根据比较结果调整开关管的导通时间,以达到控制电路中的峰值电流大小的目的。
这种控制方法可以稳定地控制电路的输出电压。
无论是电流模式控制还是电压模式控制,峰值电流控制都可以实现Buck电路中峰值电流的精确控制,从而确保电路的工作稳定性和安全性。
1 各种直接电流控制策略1.1 峰值电流控制峰值电流控制的输入电流波形如图1所示,开关管在恒定的时钟周期导通,当输入电流上升到基准电流时,开关管关断。
采样电流来自开关电流或电感电流。
峰值电流控制的优点是实现容易,但其缺点较多:1)电流峰值和平均值之间存在误差,无法满足THD很小的要求;2)电流峰值对噪声敏感;3)占空比>0.5时系统产生次谐波振荡;4)需要在比较器输入端加斜坡补偿器。
故在PFC中,这种控制方法趋于被淘汰。
1.2 滞环电流控制滞环电流控制的输入电流波形如图2所示,开关导通时电感电流上升,上升到上限阈值时,滞环比较器输出低电平,开关管关断,电感电流下降;下降到下限阈值时,滞环比较器输出高电平,开关管导通,电感电流上升,如此周而复始地工作,其中取样电流来自电感电流。
滞环电流控制是一种简单的Bang-hang控制,它将电流控制与PW M调制合为一体。
结构简单,实现容易,且具有很强的鲁棒性和快速动态响应能力。
其缺点是开关频率不固定,滤波器设计困难。
目前,关于滞环电流控制改进方案的研究还很活跃,目的在于实现恒频控制。
将其他控制方法与滞环电流控制相结合是SPW M电流变换器电流控制策略的发展方向之一。
1.3 平均电流控制平均电流控制的输入电流波形如图3所示。
平均电流控制将电感电流信号与锯齿波信号相加。
当两信号之和超过基准电流时,开关管关断,当其和小于基准电流时,开关管导通。
取样电流来自实际输入电流而不是开关电流。
由于电流环有较高的增益带宽、跟踪误差小、瞬态特性较好。
THD(<5%)和EMI小、对噪声不敏感、开关频率固定、适用于大功率应用场合,是目前PFC中应用最多的一种控制方式。
其缺点是参考电流与实际电流的误差随着占空比的变化而变化,能够引起低次电流谐波。
1.4 预测电流控制预测电流控制就是通过对输入、输出电压和输入电流的采样,根据实际电流和参考电流的误差,选择优化的电压矢量(脉冲宽度)作用于下一个周期,使实际电流在一个周期内跟踪卜参考电流,实现稳态无误差。
多相buck变换器峰值电流模控制的补偿摘要:一、引言二、多相buck 变换器的概述三、峰值电流控制及其在多相buck 变换器中的应用四、峰值电流控制的补偿方法五、补偿方法的优缺点分析六、结论正文:一、引言在现代电力电子技术中,多相buck 变换器被广泛应用于电力系统、工业控制、通信设备等领域。
其主要优点在于能够实现高效率的电压调节,以及优秀的输出电压纹波特性。
然而,在实际应用中,由于负载变化、电源电压波动等因素的影响,可能导致多相buck 变换器的输出电压存在一定程度的波动。
为了解决这一问题,峰值电流控制被引入到多相buck 变换器中。
本文将对多相buck 变换器峰值电流模控制的补偿方法进行探讨。
二、多相buck 变换器的概述多相buck变换器是一种DC/DC降压变换器,主要由多个开关管、电感、电容和二极管组成。
通过开关管的控制,实现对输入电压的有效降压,从而得到稳定的输出电压。
多相buck变换器具有电路结构简单、输出电压纹波小、效率高等优点。
三、峰值电流控制及其在多相buck 变换器中的应用峰值电流控制是一种基于电流的控制策略,通过控制开关管的导通时间,使得电流在每一个开关周期内达到峰值,从而实现对输出电压的调节。
在多相buck 变换器中,峰值电流控制可以有效提高系统的稳定性和动态响应速度,同时降低输出电压的纹波。
四、峰值电流控制的补偿方法在实际应用中,由于多相buck 变换器存在电感、电容等元件,可能导致峰值电流控制效果受到一定程度的影响。
为了解决这一问题,需要对峰值电流控制进行补偿。
常见的补偿方法包括:1.增加电感滤波器:通过增加电感滤波器,可以减小输出电压的纹波,提高峰值电流控制的效果。
但是,增加电感滤波器会增加系统的成本和体积。
2.采用数字控制:通过数字控制技术,可以实现对峰值电流控制的精确调节,提高系统的控制精度。
但是,数字控制需要处理大量的数据,可能会导致系统的响应速度降低。
3.使用补偿器:通过使用补偿器,可以在不改变系统结构的前提下,提高峰值电流控制的效果。
峰值电流控制技术的原理峰值电流控制技术是一种用于调节电流的方法,通过控制电流的上升速率和峰值值,可以有效地保护电路和设备。
该技术广泛应用于电力电子设备和电源系统中,如电机驱动器、电动汽车充电器等。
峰值电流控制技术的原理基于电流的稳定性和电路元件的特性。
电路中的电流是由电压施加在电阻、电感、电容等元件上产生的。
在一些情况下,电路中的电流可能会突然增加,导致电路或设备的损坏。
通过控制电流的上升速率和峰值值,峰值电流控制技术可以避免这种情况。
其原理主要包括以下几个方面:首先,峰值电流控制技术通过控制电流上升速率来减小电路的电流冲击。
电流的上升速率是指电流变化的速度,过快的上升速率会导致电感元件中产生过高的感应电压,从而可能导致元件短路、损坏或电源过载。
通过限制电流的上升速率,可以减小电路的电流冲击,提高电路的稳定性。
常用的控制方法包括软启动、阻尼电路等,其原理是通过限制电压或电流的变化速率,减少电路中的电流冲击。
其次,峰值电流控制技术可以通过控制电流的峰值值来保护电路和设备。
峰值电流是电流的最大值,在电路元件或设备能够承受的范围内控制峰值电流可以防止过载、过热和损坏。
通过合理设计电路的参数和选择合适的元件,可以控制电流的峰值值,达到保护电路和设备的目的。
例如,在电动汽车充电器中,可以通过控制充电电流的峰值值来避免设备的过载和损坏。
此外,峰值电流控制技术还可以优化电路的效率和性能。
由于电流的上升速率和峰值值受到限制,峰值电流控制技术可以减小电路中的能量损耗和功率损耗,提高电路的效率。
同时,通过减小电流的峰值值,可以改善电路的波形和稳定性,减小谐波和噪声干扰,提高电路的性能。
总之,峰值电流控制技术是一种重要的电流调节方法,可以通过控制电流的上升速率和峰值值,保护电路和设备,提高电路的稳定性和性能。
这一技术在电力电子设备和电源系统中得到广泛应用,对提高电路的效率和可靠性具有重要意义。
随着技术的不断发展,峰值电流控制技术将进一步完善和应用于更多的领域。
峰值电流控制原理
峰值电流控制原理是一种电力电子技术,通过控制电路中的元件,以实现对电流的准确控制。
峰值电流控制通常用于交流电源和直流-直流变换器中。
峰值电流控制的基本原理是使用电流传感器来测量电路中的电流,并将测量到的电流信号反馈给控制器。
控制器会根据测量到的电流信号和设定的目标电流值,计算出电流控制器所需的控制信号,并发送给相应的开关器件。
在交流电源中,峰值电流控制可以通过改变开关器件的导通角度或频率来实现。
在开关器件导通时,电流会迅速增加并达到峰值,然后在器件关断之前,控制器将控制信号发送给开关器件,使其立即关断。
通过这种方式,峰值电流可以被准确地控制在所需的范围内。
在直流-直流变换器中,峰值电流控制可以通过改变开关器件的占空比来实现。
通过调节开关器件的导通和关断时间比例,可以控制电流的峰值。
控制器根据测量到的电流信号和设定的目标电流值,计算出所需的占空比,并发送给开关器件。
峰值电流控制的优点是可以提供更精确的电流控制,并减小电路中的功率损耗。
它被广泛应用于高效能电源、直流马达和照明系统等领域。
峰值电流模式控制在移相全桥变换器中的应用峰值电流模式控制(Peak Current Mode Control)是一种常见的控制技术,广泛应用于各种DC-DC变换器和AC-DC变换器中,包括移相全桥变换器。
本文将重点讨论峰值电流模式控制在移相全桥变换器中的应用。
移相全桥变换器是一种常用的高性能直流-交流转换器,广泛应用于电力电子领域,常用于从直流电源到交流负载的电力转换。
移相全桥变换器的基本原理是使用四个功率开关构成一个H桥,通过对开关的控制来实现对输出电压的调节。
峰值电流模式控制是一种电流反馈控制技术,通过对输出电流的监测和反馈,实现对输出电压的稳定控制。
在移相全桥变换器中,峰值电流模式控制主要应用于输出电流的限制和电压调节。
首先,峰值电流模式控制可以通过调节开关的占空比来限制输出电流的最大值,确保电流在设定边界内运行。
对于高功率应用,限制输出电流可以有效地提高系统的可靠性和稳定性。
其次,峰值电流模式控制还可以用于输出电压的调节。
通过对输出电流的实时监测和反馈,控制器可以根据负载变化以及输入电压变化来调整开关的占空比,从而实现对输出电压的精确控制。
这种控制方式对于电流快速变化和负载变化范围广泛的应用非常有效。
峰值电流模式控制在移相全桥变换器中的应用还包括保护功能。
通过监测电流的波形和幅值,控制器可以检测到过流、过载和短路等故障情况,并及时采取相应的措施,如关闭开关,避免系统的损坏。
这种保护功能对于提高系统的可靠性和安全性非常重要。
此外,峰值电流模式控制还可以应用于电磁干扰(EMI)的抑制。
通过控制开关的频率和占空比,可以有效地降低系统中产生的高频噪声和电磁辐射,减少对周围电子设备的干扰。
这对于电力电子系统的实施和电磁兼容性非常重要。
总的来说,峰值电流模式控制在移相全桥变换器中具有广泛的应用前景。
通过对输出电流的监测和反馈,可以实现对输出电压的稳定控制、输出电流的限制、保护功能和EMI的抑制。
这些应用可以显著提高系统的可靠性、稳定性和性能,适用于各种高性能直流-交流转换器的应用场景。
电压、电流的反馈控制模式电压、电流的反馈控制模式现在的高频开关稳压电源主要有五种PWM反馈控制模式。
电源的输入电压、电流等信号在作为取样控制信号时,大多需经过处理。
针对不同的控制模式其处理方式也不同。
下面以由VDMOS开关器件构成的稳压正激型降压斩波器为例,叙述五种PWM反馈控制模式的进展过程、基本工作原理、电路原理暗示图、波形、特点及应用要`氪,以利于挑选应用及仿真建模讨论。
(1)电压反馈控制模式电压反馈控制模式是20世纪60年月后期高频开关稳压电源刚刚开头进展而采纳的一种控制办法。
该办法与一些须要的过电流庇护电路相结合,至今仍然在工业界被广泛应用。
如图1(a)所示为Buck 降压斩波器的电压模式控制原理图。
电压反馈控制模式惟独一个电压反馈闭环,且采纳的是脉冲宽度调制法,即将经电压误差放大器放大的慢变化的直流采样信号与恒定频率的三角波上斜坡信号相比较,经脉冲宽度调制得到一定宽度的脉冲控制信号,电路的各点波形如图1(a)所示。
逐个脉冲的限流庇护电路必需另外附加。
电压反馈控制模式的优点如下。
①PWM三角波幅值较大,脉冲宽度调整时具有较好的抗噪声裕量。
①占空比调整不受限制。
①对于多路输出电源而言,它们之间的交互调整特性较好。
①单一反馈电压闭环的设计、调试比较简单。
①对输出负载的变化有较好的响应调整。
电压反馈控制模式的缺点如下。
①对输入电压的变化动态响应较慢。
当输入电压骤然变小或负载阻抗骤然变小时,由于主电路中的输出电容C及电感L有较大的相移延时作用,输出电压的变小也延时滞后,而输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才干传至PWM比较器将脉宽展宽。
这两个延时滞后作用是动态响应慢的主要缘由。
①补偿网络设计原来就较为复杂,闭环增益随输入电压而变化的现象使其更为复杂。
①输出端的LC滤波器给控制环增强了双极点,在补偿设计误差放大器时,需要将主极点低频衰减,或者增强一个零点举行补偿。
①在控制磁芯饱和故障状态方面较为棘手和复杂。
开关电源峰值电流模式控制PWM的优缺点近年来电流模式控制面临着改善性能后的电压模式控制的挑战,因为这种改善性能的电压模式控制加有输入电压前馈功能,并有完善的多重电流保护等功能,在控制功能上已具备大部分电流模式控制的优点,而在实现上难度不大,技术较为成熟。
由输出电压VOUT 与基准信号VREF的差值经过运放(E/A)放大得到的误差电压信号VE 送至PWM比较器后,并不是象电压模式那样与振荡电路产生的固定三角波状电压斜波比较,而是与一个变化的其峰值代表输出电感电流峰值的三角状波形或梯形尖角状合成波形信号VΣ比较,然后得到PWM脉冲关断时刻。
因此(峰值)电流模式控制不是用电压误差信号直接控制PWM脉冲宽度,而是直接控制峰值输出侧的电感电流大小,然后间接地控制PWM脉冲宽度。
电流模式控制是一种固定时钟开启、峰值电流关断的控制方法。
因为峰值电感电流容易传感,而且在逻辑上与平均电感电流大小变化相一致。
但是,峰值电感电流的大小不能与平均电感电流大小一一对应,因为在占空比不同的情况下,相同的峰值电感电流的大小可以对应不同的平均电感电流大小。
而平均电感电流大小才是唯一决定输出电压大小的因素。
电感电流下斜波斜率的至少一半以上斜率加在实际检测电流的上斜波上,可以去除不同占空比对平均电感电流大小的扰动作用,使得所控制的峰值电感电流最后收敛于平均电感电流。
因而合成波形信号VΣ要有斜坡补偿信号与实际电感电流信号两部分合成构成。
当外加补偿斜坡信号的斜率增加到一定程度,峰值电流模式控制就会转化为电压模式控制。
因为若将斜坡补偿信号完全用振荡电路的三角波代替,就成为电压模式控制,只不过此时的电流信号可以认为是一种电流前馈信号。
当输出电流减小,峰值电流模式控制就从原理上趋向于变为电压模式控制。
当处于空载状态,输出电流为零并且斜坡补偿信号幅值比较大的话,峰值电流模式控制就实际上变为电压模式控制了。
峰值电流模式控制PWM是双闭环控制系统,电压外环控制电流内环。
一、引言PWM开关稳压或稳流电源基本工作原理就是在输入电压变化、内部参数变化、外接负载变化的情况下,控制电路通过被控制信号与基准信号的差值进行闭环反馈,调节主电路开关器件的导通脉冲宽度,使得开关电源的输出电压或电流等被控制信号稳定。
PWM的开关频率一般为恒定,控制取样信号有:输出电压、输入电压、输出电流、输出电感电压、开关器件峰值电流。
由这些信号可以构成单环、双环或多环反馈系统,实现稳压、稳流及恒定功率的目的,同时可以实现一些附带的过流保护、抗偏磁、均流等功能。
对于定频调宽的PWM闭环反馈控制系统,主要有五种PWM反馈控制模式。
下面以VDMOS开关器件构成的稳压正激型降压斩波器为例说明五种PWM反馈控制模式的发展过程、基本工作原理、详细电路原理示意图、波形、特点及应用要点,以利于选择应用及仿真建模研究。
二、开关电源PWM的五种反馈控制模式1. 电压模式控制PWM (VOLTAGE-MODE CONTROL PWM):如图1所示为BUCK降压斩波器的电压模式控制PWM反馈系统原理图。
电压模式控制PWM是六十年代后期开关稳压电源刚刚开始发展起就采用的第一种控制方法。
该方法与一些必要的过电流保护电路相结合,至今仍然在工业界很好地被广泛应用。
电压模式控制只有一个电压反馈闭环,采用脉冲宽度调制法,即将电压误差放大器采样放大的慢变化的直流信号与恒定频率的三角波上斜波相比较,通过脉冲宽度调制原理,得到当时的脉冲宽度,见图1A中波形所示。
逐个脉冲的限流保护电路必须另外附加。
主要缺点是暂态响应慢。
当输入电压突然变小或负载阻抗突然变小时,因为有较大的输出电容C及电感L相移延时作用,输出电压的变小也延时滞后,输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才能传至PWM比较器将脉宽展宽。
这两个延时滞后作用是暂态响应慢的主要原因。
图1A电压误差运算放大器(E/A)的作用有三:①将输出电压与给定电压的差值进行放大及反馈,保证稳态时的稳压精度。
开关电源峰值电流模式控制PWM的优缺点
近年来电流模式控制面临着改善性能后的电压模式控制的挑战,因为这种改善性能的电压模式控制加有输入电压前馈功能,并有完善的多重电流保护等功能,在控制功能上已具备大部分电流模式控制的优点,而在实现上难度不大,技术较为成熟。
由输出电压VOUT 与基准信号VREF的差值经过运放(E/A)放大得到的误差电压信号 VE 送至PWM比较器后,并不是象电压模式那样与振荡电路产生的固定三角波状电压斜波比较,而是与一个变化的其峰值代表输出电感电流峰值的三角状波形或梯形尖角状合成波形信号
VΣ比较,然后得到PWM脉冲关断时刻。
因此(峰值)电流模式控制不是用电压误差信号直接控制PWM脉冲宽度,而是直接控制峰值输出侧的电感电流大小,然后间接地控制PWM脉冲宽度。
电流模式控制是一种固定时钟开启、峰值电流关断的控制方法。
因为峰值电感电流容易传感,而且在逻辑上与平均电感电流大小变化相一致。
但是,峰值电感电流的大小不能与平均电感电流大小一一对应,因为在占空比不同的情况下,相同的峰值电感电流的大小可以对应不同的平均电感电流大小。
而平均电感电流大小才是唯一决定输出电压大小的因素。
电感电流下斜波斜率的至少一半以上斜率加在实际检测电流的上斜波上,可以去除不同占空比对平均电感电流大小的扰动作用,使得所控制的峰值电感电流最后收敛于平均电感电流。
因而合成波形信号VΣ要有斜坡补偿信号与实际电感电流信号两部分合成构成。
当外加补偿斜坡信号的斜率增加到一定程度,峰值电流模式控制就会转化为电压模式控制。
因为若将斜坡补偿信号完全用振荡电路的三角波代替,就成为电压模式控制,只不过此时的电流信号可以认为是一种电流前馈信号。
当输出电流减小,峰值电流模式控制就从原理上趋向于变为电压模式控制。
当处于空载状态,输出电流为零并且斜坡补偿信号幅值比较大的话,峰值电流模式控制就实际上变为电压模式控制了。
峰值电流模式控制PWM是双闭环控制系统,电压外环控制电流内环。
电流内环是瞬时快速的,是按照逐个脉冲工作的。
功率级是由电流内环控制的电流源,而电压外环控制此功率级电流源。
在该双环控制中,电流内环只负责输出电感的动态变化,因而电压外环仅需控制输出电容,不必控制LC 储能电路。
峰值电流模式控制PWM具有比起电压模式控制大得多的带宽。
以下是开关电源峰值电流模式控制PWM的优缺点:
峰值电流模式控制PWM的优点是:
①暂态闭环响应较快,对输入电压的变化和输出负载的变化的瞬态响应均快;
②控制环易于设计;
③输入电压的调整可与电压模式控制的输入电压前馈技术相妣美;
④简单自动的磁通平衡功能;
⑤瞬时峰值电流限流功能,内在固有的逐个脉冲限流功能;
⑥自动均流并联功能。
峰值电流模式控制PWM的缺点是:
①占空比大于50%的开环不稳定性,存在难以校正的峰值电流与平均电流的误差。
②闭环响应不如平均电流模式控制理想。
③容易发生次谐波振荡,即使占空比小于50%,也有发生高频次谐波振荡的可能性。
因而需要斜坡补偿。
④对噪声敏感,抗噪声性差。
因为电感处于连续储能电流状态,与控制电压编程决定的电流电平相比较,开关器件的电流信号的上斜波通常较小,电流信号上的较小的噪声就很容易使得开关器件改变关断时刻,使系统进入次谐波振荡。
⑤电路拓扑受限制。
⑥对多路输出电源的交互调节性能不好。
峰值电流模式控制PWM最主要的应用障碍是容易振荡及抗噪声性差。
振荡可以来源于:器件开启时的反向恢复引起的电流尖刺,噪声干扰,斜波补偿瞬态幅值不足等。
峰值电流模式控制的开关电源容易在开机启动及电压或负载突然较大变化时发生振荡。