峰值电流模式
- 格式:ppt
- 大小:964.50 KB
- 文档页数:24
峰值电流测试方法
峰值电流测试方法
在电子设计中,峰值电流测试是电路设计的重要步骤之一。
通过峰值
电流测试,我们可以验证电路是否能够承受过度负载产生的峰值电流,以保证电路的稳定性和可靠性。
下面介绍一种简单有效的峰值电流测
试方法。
1. 测试仪器和元器件
测试仪器:数字万用表、示波器。
元器件:电阻、电容、放大器(电压跟踪放大器)。
2. 测试流程
(1)连接测试电路
将待测电路输入信号线分别连接到测试电路的输入端和地端。
待测电
路的电源端连接电源。
(2)设置测试仪器
将示波器设置为AC耦合模式,通道1连接待测电路输入端,通道2连接待测电路地端。
将数字万用表设置为电流测量模式。
(3)测试电路
打开电源,使待测电路工作。
通过示波器可以观察到待测电路的输入波形,通过数字万用表可以实时测量电路的峰值电流。
(4)测试结果处理
根据测试结果,如果电路的峰值电流超过了所规定的范围,说明电路存在过度负载的可能,需要对电路进行优化设计。
如果电路的峰值电流在合理范围内,说明电路设计合理,可以进一步优化性能。
3. 注意事项
(1)在测试过程中,需要避免产生瞬间电流冲击,否则可能会对电路测试结果产生影响。
(2)测试电路中需要搭建保护电路,以避免过载产生的损坏。
(3)测试结束后,需要关闭输出信号,断开测试电路的电源以及电路的输入线。
峰值电流测试是电路设计中不可或缺的一环,依据以上测试方法可简单、有效地测试出电路的峰值电流,从而使电路设计能够在较高负载下稳定运行,保证电路的可靠性和稳定性。
电压、电流的反馈控制模式电压、电流的反馈控制模式现在的高频开关稳压电源主要有五种PWM反馈控制模式。
电源的输入电压、电流等信号在作为取样控制信号时,大多需经过处理。
针对不同的控制模式其处理方式也不同。
下面以由VDMOS开关器件构成的稳压正激型降压斩波器为例,叙述五种PWM反馈控制模式的进展过程、基本工作原理、电路原理暗示图、波形、特点及应用要`氪,以利于挑选应用及仿真建模讨论。
(1)电压反馈控制模式电压反馈控制模式是20世纪60年月后期高频开关稳压电源刚刚开头进展而采纳的一种控制办法。
该办法与一些须要的过电流庇护电路相结合,至今仍然在工业界被广泛应用。
如图1(a)所示为Buck 降压斩波器的电压模式控制原理图。
电压反馈控制模式惟独一个电压反馈闭环,且采纳的是脉冲宽度调制法,即将经电压误差放大器放大的慢变化的直流采样信号与恒定频率的三角波上斜坡信号相比较,经脉冲宽度调制得到一定宽度的脉冲控制信号,电路的各点波形如图1(a)所示。
逐个脉冲的限流庇护电路必需另外附加。
电压反馈控制模式的优点如下。
①PWM三角波幅值较大,脉冲宽度调整时具有较好的抗噪声裕量。
①占空比调整不受限制。
①对于多路输出电源而言,它们之间的交互调整特性较好。
①单一反馈电压闭环的设计、调试比较简单。
①对输出负载的变化有较好的响应调整。
电压反馈控制模式的缺点如下。
①对输入电压的变化动态响应较慢。
当输入电压骤然变小或负载阻抗骤然变小时,由于主电路中的输出电容C及电感L有较大的相移延时作用,输出电压的变小也延时滞后,而输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才干传至PWM比较器将脉宽展宽。
这两个延时滞后作用是动态响应慢的主要缘由。
①补偿网络设计原来就较为复杂,闭环增益随输入电压而变化的现象使其更为复杂。
①输出端的LC滤波器给控制环增强了双极点,在补偿设计误差放大器时,需要将主极点低频衰减,或者增强一个零点举行补偿。
①在控制磁芯饱和故障状态方面较为棘手和复杂。
一、引言PWM开关稳压或稳流电源基本工作原理就是在输入电压变化、内部参数变化、外接负载变化的情况下,控制电路通过被控制信号与基准信号的差值进行闭环反馈,调节主电路开关器件的导通脉冲宽度,使得开关电源的输出电压或电流等被控制信号稳定。
PWM的开关频率一般为恒定,控制取样信号有:输出电压、输入电压、输出电流、输出电感电压、开关器件峰值电流。
由这些信号可以构成单环、双环或多环反馈系统,实现稳压、稳流及恒定功率的目的,同时可以实现一些附带的过流保护、抗偏磁、均流等功能。
对于定频调宽的PWM闭环反馈控制系统,主要有五种PWM反馈控制模式。
下面以VDMOS开关器件构成的稳压正激型降压斩波器为例说明五种PWM反馈控制模式的发展过程、基本工作原理、详细电路原理示意图、波形、特点及应用要点,以利于选择应用及仿真建模研究。
二、开关电源PWM的五种反馈控制模式1. 电压模式控制PWM (VOLTAGE-MODE CONTROL PWM):如图1所示为BUCK降压斩波器的电压模式控制PWM反馈系统原理图。
电压模式控制PWM是六十年代后期开关稳压电源刚刚开始发展起就采用的第一种控制方法。
该方法与一些必要的过电流保护电路相结合,至今仍然在工业界很好地被广泛应用。
电压模式控制只有一个电压反馈闭环,采用脉冲宽度调制法,即将电压误差放大器采样放大的慢变化的直流信号与恒定频率的三角波上斜波相比较,通过脉冲宽度调制原理,得到当时的脉冲宽度,见图1A中波形所示。
逐个脉冲的限流保护电路必须另外附加。
主要缺点是暂态响应慢。
当输入电压突然变小或负载阻抗突然变小时,因为有较大的输出电容C及电感L相移延时作用,输出电压的变小也延时滞后,输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才能传至PWM比较器将脉宽展宽。
这两个延时滞后作用是暂态响应慢的主要原因。
图1A电压误差运算放大器(E/A)的作用有三:①将输出电压与给定电压的差值进行放大及反馈,保证稳态时的稳压精度。
峰值、谷值和模拟电流模式控制的建模(下)作者:美国国家半导体公司主任应用工程师RobertSheehan时间:2007-08-06 来源:电子产品世界在本文第1部分中,对稳压器的电流模式控制的基本工作原理作了介绍。
在这一部分中中,将引入通用增益参数的统一模型,但仍使用简化的设计方程。
对理论分析进行探讨,并实现电流模式控制理论的建模。
前言本文为固定频率的连续导通模式工作的稳压器提供模型和解决方案。
目前对于降压稳压器的分析及相关的模型和结果已有详细的介绍。
为了避免重复,这里选用图1所示的升压稳压器作为实例。
图1 升压稳压器开关模型采样增益电流模式的稳压器开关稳压器是一种数据采样系统,其带宽受到开关频率的限制。
当频率范围超过开关频率的一半后,电感电流对于控制电压变化的响应就不能被精确的复现。
为了在现行模型中对这一效应进行量化,使用He(s)项对控制端到输出端的传递函数进行精确的建模。
图2(a)显示了模型的统一形式,其中K为前馈项。
图2(b)中的Kn为连续时间模型中的直流音频扰动衰减率系数。
图中所示的线性模型采样增益项定义为:Ke是H(s)闭环表达式的推导过程中出现的新项。
推导中采用了斜率补偿项,而不是典型峰值或谷值电流模式中的固定斜坡。
目前为止,还没有找到能成功地将Ke加入到Hp(s)开环表达式的方法。
Hp(s)仅限于在具有固定斜率的补偿斜坡的峰值或谷值电流模式中使用。
图2 具有采样增益的降压稳压器为了将采样增益项放入线性模型中:Fm(s) = Fm · Hp(s) Gi(s) = Gi ·H(s)通过将Q与调制器电压增益Km和前馈项K进行比较,就能确定对采样增益项的精确限制。
Q 直接与斜率补偿要求相关。
从理想的稳态调制器增益开始进行推导,原因是在开关频率下,相对的斜率对于周期T是固定的。
这样控制电压的变化就与平均电感电流的变化相关。
任何在正向直流增益路径中与Km相关的传递函数,在开关频率的一半以下的频率范围内都能与开关模型很好地符合。
峰值电流模式次谐波
峰值电流模式次谐波是指在峰值电流控制模式下,电流波形存在次谐波成分。
峰值电流模式是一种电流控制模式,它通过控制电流波形的峰值,来实现对电流的控制。
在正常情况下,电流波形应该是纯正弦波形,但是在实际应用中,由于各种因素的影响,电流波形可能会出现一些不完全的正弦波成分,即次谐波。
次谐波是指频率低于基波频率但高于谐波频率的谐波成分。
在峰值电流模式下,次谐波可能会导致电流波形的畸变,从而影响系统的稳定性和性能。
为了减小次谐波的影响,可以采取以下措施:
1. 优化电源和电路设计,减少电流波形的畸变;
2. 使用合适的滤波器来滤除次谐波成分;
3. 调整控制参数,优化控制策略,降低次谐波的产生。
通过以上措施,可以有效降低峰值电流模式下次谐波的影响,提高系统的稳定性和性能。
峰值电流模式斜坡补偿哎,今天咱们聊聊一个听上去有点复杂的东西,名字也挺高大上的——峰值电流模式斜坡补偿。
别被这些专业术语吓到,其实它就是电源设计中的一个小窍门,能让咱们的电器在高负载的时候更稳当、更给力。
想想吧,电器就像人,有时候需要一点儿“心理安慰”,才能更好地发挥。
就拿咱们平时用的电源来说,如果没了这个斜坡补偿,电流的波动可就大了,可能会导致设备不稳定,就像是开车遇到坑洼的路,颠得你脑袋晕。
想象一下,有一天你在厨房里忙活,突然电饭煲和微波炉一起开了,那可真是个“热闹”的场面。
电流瞬间上升,设备可能会因为过载而停机。
这时候,峰值电流模式斜坡补偿就像个贴心的朋友,默默在后面给你加油,让电流上升得慢一点,给电器一点时间,别让它们一下子就“上火”。
这就好比你在爬山,突然碰上个陡坡,得喘口气再继续往上走,才不会摔个大跟头。
啥是斜坡补偿呢?这简单来说,就是给电流一个缓冲时间,让它逐渐上升,而不是一下子就冲到最高。
这么做的好处可多着呢,能让电源的响应更平稳,避免电流的剧烈波动。
别忘了,电流在运行过程中,如果瞬间变化太大,设备可受不了,可能会出现故障,甚至烧掉。
所以,斜坡补偿的设计就显得尤为重要。
咱们再说说,这个斜坡补偿是怎么实现的。
简单来说,设计师会在电源控制电路里加入一些聪明的“调节器”。
这些小家伙就像是电流的“调音师”,可以根据电流的状态,智能调整电压,让电流上升得慢一点。
就像调音师在演出前调试乐器,确保每一个音符都能和谐响起。
你能想象,要是没有这些“调音师”,那场演出可就乱成一锅粥,观众们可能早就打瞌睡了。
斜坡补偿不仅仅是为了防止设备受伤害,更是为了延长它们的使用寿命。
你看,设备一旦遭遇过大的冲击,元器件的损耗速度就会加快,长期以往,那就不是几百块的问题了,可能几千块都得砸下去。
斜坡补偿就像是个保护罩,让电器在工作的时候感觉舒适,从而工作更持久。
就像人一样,工作累了也得休息休息,才能保持最佳状态。
这种技术还可以提高系统的稳定性。
深圳新视纪-高清视频专家主页:论坛:/forum关于我们:作为视频处理的资深专家,我们总是习惯于推出业界第一的产品,为消费者带来更好的图像和使用便利。
虽然在我们推出产品后,市场上不断有跟风之作,但是我们总是可以继续推出更新更好更强大的视频处理产品。
这一切都是源于我们在视频领域深厚的功力和对消费者需求的了解。
同时,我们也非常欢迎您访问我们的论坛,给我们提意见,给我们提您想要的产品。
从C300、完美色差VGA,到完美三枪VGA,再到完美投影HDMI 我们的足迹:1、2002年初,推出C300(本产品已停产)中国大陆推出的第一款为游戏机设计的色差转VGA产品。
纯模拟转换确保最高图像质量。
输入:一组色差,输出:一组VGA2、2002年初,推出C200(本产品已停产)目前所看到的唯一一款纯模拟转换产品,图像质量是数字处理scale无法比拟的产品。
输入:VGA,输出:高清色差3、2007年4月,推出完美色差VGA(本产品已停产)特别为多种游戏机设计的色差转换VGA产品,第一次在游戏机产品中引入了1:1完美不变形显示概念。
输入:色差,480i到1080p。
对用所有游戏机,DVD,卫星接收机等设备。
输出:800x600, 1024x768, 1280x1024, 1600x1200, 1440x900, 1920x1200, 1680x1050显示方式:在输入480i/p和576i/p的时候,以4:3方式显示:在4:3的屏上满屏完美不变形显示;在5:4的屏上加上下黑边完美不变形显示在16:10的屏上加左右黑边完美不变形显示在输入720p,1080i, 1080p的时候,以16:9方式显示:在4:3的屏上加上下黑边完美不变形显示;在5:4的屏上加上下黑边完美不变形显示在16:10的屏上加上下黑边完美不变形显示4、2008年9月,推出完美三枪VGA特别为三枪投影机、高端显像管显示器、带VGA输入大尺寸逐行电视机和无HDMI产品之平板电视而设计的产品。
峰值电流模式控制ic峰值电流模式控制IC(Peak Current Mode Control IC)是一种常用于开关电源控制的集成电路。
它能够根据负载需求自动调整开关管的工作状态,以提供稳定的输出电压。
本文将介绍峰值电流模式控制IC的工作原理、优势以及应用领域。
一、工作原理峰值电流模式控制IC采用了一种反馈控制的策略,即通过测量输出电流的峰值来调节开关管的工作状态。
其基本原理如下:1.1 参考电压生成峰值电流模式控制IC内部通常会集成一个参考电压电路,它会生成一个稳定的参考电压作为基准。
这个参考电压一般是固定的,用于与输出电流进行比较。
1.2 输出电流检测峰值电流模式控制IC会通过一个电流传感器或电阻来检测输出电流的大小。
输出电流的峰值与开关管的导通时间和输出电压有关。
1.3 比较与控制将参考电压与输出电流的峰值进行比较,可以确定开关管的工作状态。
当输出电流达到峰值时,控制IC会发出一个关断信号,使开关管停止导通;当输出电流低于峰值时,控制IC会发出一个启动信号,使开关管重新导通。
1.4 脉宽调制控制IC会根据输出电流的峰值调整开关管的导通时间,从而控制输出电压的稳定性。
当输出电流较大时,导通时间会相应增加;当输出电流较小时,导通时间会相应减少。
二、优势峰值电流模式控制IC相比于其他控制方式具有以下优势:2.1 快速响应能力峰值电流模式控制IC能够实时监测输出电流的峰值,并根据需求调节开关管的工作状态,从而能够快速响应负载变化。
这种快速响应能力有助于提高系统的动态性能和稳定性。
2.2 抗干扰能力强峰值电流模式控制IC采用了电流反馈控制策略,具有较强的抗干扰能力。
它能够自动调整开关管的工作状态,使输出电压稳定在设定值附近,从而减小外部环境变化对系统性能的影响。
2.3 系统可靠性高峰值电流模式控制IC具有过流保护和过压保护等功能,能够有效保护开关管和负载器件,提高系统的可靠性和稳定性。
三、应用领域峰值电流模式控制IC广泛应用于各种开关电源系统中,包括电视机、电脑、通信设备、工业控制等领域。