2019年最新中考数学专题复习:三视图
- 格式:doc
- 大小:444.00 KB
- 文档页数:9
视图、投影与尺规作图检测题一、三视图类型一三视图的判断1.如图所示的几何体的俯视图可能是()2.如图所示的三棱柱的主视图是()3.左下图为某几何体的示意图,则该几何体的主视图应为()4.如图所示的是三通管的立体图,则这个几何体的俯视图是()5.如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()6.如图①放置的一个机器零件,若其主(正)视图如图②所示,则其俯视图是()第6题图7.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()8.如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是()9.下列几何体中,正视图是矩形的是( )10.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是( )11.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()类型二由三视图还原几何体及相关计算1.一个几何体的三视图如图所示,这个几何体是()A. 棱柱B. 圆柱C. 圆锥D. 球第1题图第2题图2.如图,一个简单几何体的三视图的主视图与左视图都为正三角形,其俯视图为正方形,则这个几何体是( )A. 四棱锥B. 正方体C. 四棱柱D. 三棱锥3.下面是一个几何体的三视图,则这个几何体的形状是()第3题图A. 圆柱B. 圆锥C. 圆台D. 三棱柱4.一个几何体的三视图如图所示,那么这个几何体是()第4题图5.小颖同学到学校领来n盒粉笔,整齐地摞在讲桌上,其三视图如图所示,则n 的值是()第5题图A. 6B. 7C. 8D. 96.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有( )第6题图A. 8B. 9C. 10D. 117.由若干个边长为1 cm的正方体堆积成一个几何体,它的三视图如图,则这个几何体的表面积是( )A. 15 2cmcm D. 24 2cm C. 21 2cm B. 18 2第7题图第8题图8.某商品的外包装盒的三视图如图所示,则这个包装盒的体积是()A. 200π3cmcm B. 500π3C. 1000π3cmcm D. 2000π3命题点2 投影1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序排列正确的是()A. (3)(1)(4)(2)B. (3)(2)(1)(4)C. (3)(4)(1)(2)D. (2)(4)(1)(3)命题点3 立体图形的展开与折叠1.在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制作了一个正方体玩具,其展开图如图所示,原正方体与“文”字所在的面相对的面上标的字应是( )A. 全B. 明C. 城D. 国第1题图2.下列四个图形是正方体的平面展开图的是()3.把如图中的三棱柱展开,所得到的展开图是( )第3题图 第4题图4.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12 cm ,底面周长为10 cm ,在容器内壁离容器底部3 cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A. 13 cmB. 261 cmC. 61 cmD. 234 cm命题点4 尺规作图1.如图,在△ABC 中,∠C =90°,∠B =30以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上; ④S △DAC :S △ABC =1∶3.A. 1B. 2C. 3D. 4第1题图2.如图所示,已知线段AB .(1)用尺规作图的方法作出线段AB 的垂直平分线l (保留作图痕迹,不要求写出作法);(2)在(1)中所作的直线l 上任意取两点M 、N (线段AB 的上方),连接AM 、AN 、BM 、BN ,求证:∠MAN =∠MBN .第2题图参考答案命题点1三视图类型一三视图的判断1. C【解析】圆锥的主视图、左视图和俯视图分别为等腰三角形、等腰三角形和带圆心的圆.2. B 【解析】主视图是从几何体正面看得到的图形,该几何体从正面看,是两个具有公共边的长方形组成的图形,只有选项B符合题意.3. A【解析】从前往后看,可得到本题的主视图为五边形.4. A【解析】俯视图指的是从上向下看到的平面图形.圆柱体的俯视图是长方形,圆应该在长方形的中间.5. A【解析】A选项是主视图,B选项是左视图,C选项不是这个正六棱柱形密封罐的视图,D选项是俯视图.6. D【解析】长方体的俯视图是一个长方形,从上面看共有三列,所以这个组合体的俯视图是D.7. B【解析】俯视图即从上面看物体所得的平面图形.观察图形可得,从上往下看,该几何体的小正方体共有三行三列,第一行第二列有1个,第二行每列1个,第三行第一列1个,因此B选项正确.8. C【解析】俯视图是由上往下观察几何体所得到的图形.几何体上半部为正三棱柱,下半部为圆柱,所以其俯视图由圆和其内接等边三角形组成,故选C.9. B×××10. C视图都是圆,故选C.11. D【解析】从正面看共三列,第一列有三个小正方形,第二列有两个小正方形,第三列有三个小正方形,故选D.类型二由三视图还原几何体及相关计算1. B【解析】本题的几何体是常见几何体,从正面看到的是一个矩形,从左面看到的是一个矩形,从上面看到的是一个圆,所以这个几何体为圆柱.2. A【解析】由底面是有对角线的正方形,侧面是正三角形可以推断出它是四棱锥.3. B【解析】选项名称三视图(主视图,左视图,俯视图)正误A圆柱矩形,矩形,圆×B圆锥等腰三角形,等腰三角形,带圆心的圆√C圆台等腰梯形,等腰梯形,无圆心的同心圆×D三棱柱矩形,矩形,三角形×4. C【解析】选项逐项分析正误A 圆锥的主视图和左视图是等腰三角形,俯视图为带圆心的圆×B 这个几何体由圆锥和圆柱两部分构成,因此俯视图应该为带圆心的圆×C 主视图为中间有一条竖线的矩形,左视图为矩形,俯视图为三角形√D主视图、左视图、俯视图均为三角形×5. B【解析】由主视图可得这些粉盒共有3层,由俯视图可得最底层有4盒,由主视图和左视图可得第二层有2盒,第三层有1盒,共有7盒.6. B【解析】由三视图得第一层有4碗,第二层最少有3碗,第三层最少有2碗,所以至少有9碗.7. B【解析】由几何体的三视图得几何体如解图所示,这个几何体是由4个边长为1 cm的小正方体组成,且重叠部分的面积正好为一个小正方体的表面积,则这个几何体的表面积为6×3=18 cm2.第7题解图8. B【解析】由三视图可知该几何体是圆柱,且底面圆半径r=5 cm,高h =20 cm,所以v=πr2h=π×52×20=500πcm3.命题点2投影C【解析】从太阳“东升西落”入手.太阳光在物体上的投影随时间而变化,投影的方向是先朝西,再逐渐转向朝东,且影长的变化经历:长→短→长(中午时刻的影长最短),因此(3)表示的时刻最早,(2)表示的时刻最晚;由于地球绕着太阳运转,物体的投影应从西边开始顺时针向东旋转,所以(4)表示的时间比(1)表示的时间早.故按时间顺序应排列为(3)→(4)→(1)→(2).命题点3立体图形的展开与折叠1. C【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“全”与“明”是相对面;“国”与“市”是相对面;“文”与“城”是相对面.2. B【解析】选项逐项分析正误A折叠后有两个面重合,缺少一个底面×B可以折叠成一个正方体√C 是“凹”字格,故不能折叠成一个正方体×D 是“田”字格,故不能折叠成一个正方体×3. B【解析】根据“两个全等的三角形,在侧面三个长方形的两侧,这样的图形围成的是三棱柱”把图中的三棱柱展开,所得到的展开图是B.4. A【解析】将圆柱沿A所在的高剪开,展平如解图所示.则MM′=NN′=10,作A关于MM′的对称点A′,连接A′B,则线段A′B即蚂蚁走的最短路径.过B作BD⊥A′N于D,则BD=NE=5,A′D=MN+A′M-BE=12+3-3=12,在Rt△A′BD中,由勾股定理得A′B=A′D2+BD2=13.第4题解图命题点4尺规作图1. D【解析】由尺规作图的作法可知,AD是∠BAC的平分线,∴①正确;∵∠BAC=60°,AD又是∠BAC的平分线,则∠CAD=30°,又∵∠C=90°,则∠ADC=60°,∴②正确;∵∠DAB=30°,∠B=30°,则AD=BD,所以点D在AB的中垂线上,∴③正确;设BD=AD=a,因为∠CAD=30°,∠C=90°,则CD=a2,根据勾股定理得:AC=3a2,∴S△ADC=3a28;BC=3a2,S△ABC=33a28,则S△DAC :S△ABC=3a28:33a28=1∶3,∴④正确;正确的共有4个.2. (1)解:如解图:第2题解图①………………………………………………………………………(5分)【作法提示】分别以A、B两点为圆心,以大于12AB为半径画弧,与两弧分别有两个交点,两点确定的直线即为线段AB的垂直平分线l.(2)证明:如解图②,∵直线l是线段AB的垂直平分线,∴MA=MB,∴∠MAB=∠MBA,……………………(6分)同理:∠NAB=∠NBA,∴∠MAB-∠NAB=∠MBA-∠NBA,……………………(8分) 即:∠MAN=∠MBN. ……………………(9分)第2题解图②。
备考2020年中考一轮复习点对点必考题型题型02 简单几何体的三视图考点解析1.简单几何体的三视图(1)画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.(2)常见的几何体的三视图:圆柱的三视图:2.简单组合体的三视图(1)画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.(2)视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.(3)画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.3.由三视图判断几何体(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法.五年中考1.(2019•成都)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( )A.B.C.D.【点拨】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解析】解:从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选:B.2.(2018•成都)如图所示的正六棱柱的主视图是( )A.B.C.D.【点拨】根据主视图是从正面看到的图象判定则可.【解析】解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选:A.3.(2017•成都)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是( )A.B.C.D.【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看一层三个小正方形,故选:C.4.(2016•成都)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )A.B.C.D.【点拨】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解析】解:从上面看易得横着的“”字,故选:C.5.(2015•成都)如图所示的三视图是主视图是( )A.B.C.D.【点拨】根据原图形得出其主视图,解答即可.【解析】解:A、是左视图,错误;B、是主视图,正确;C、是俯视图,错误;D、不是主视图,错误;故选:B.一年模拟1.(2019·锦江一诊)有一透明实物如图,它的主视图是( )A.B.C.D.【点拨】细心观察图中几何体摆放的位置和形状,根据主视图是从正面看到的图象判定则可.【解析】解:正面看,它是中间小两头大的一个图形,里面有两条虚线,表示看不到的轮廓线.故选:B.2.(2019·成华一诊)如图所示的几何体,它的左视图是( )A .B .C .D .【点拨】根据左视图即从物体的左面观察得到的视图,进而得出答案.【解析】解:如图所示的几何体的左视图为:.故选:D .3.(2019·武侯一诊)如图所示的支架(一种小零件)的两个台阶的高度和宽度分别相等,则它的主视图为( )A .B .C .D .【点拨】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解析】解:从正面看去,是两个有公共边的矩形,如图所示:故选:D .4.(2019·成华二诊)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A.主视图B.左视图C.俯视图D.主视图和左视图【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看是一个十字,“十”字是中心对称图形,故选:C.5.(2019·青羊一诊)观察下列几何体,主视图、左视图和俯视图都是矩形的是( )A.B.C.D.【点拨】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解析】解:A、主视图为矩形,俯视图为圆,错误;B、主视图为矩形,俯视图为矩形,正确;C、主视图为等腰梯形,俯视图为圆环,错误;D、主视图为三角形,俯视图为有对角线的矩形,错误.故选:B.6.(2019·青羊二诊)图中三视图对应的正三棱柱是( )A.B.C.D.【点拨】利用俯视图可淘汰C、D选项,根据主视图的侧棱为实线可淘汰B,从而判断A选项正确.【解析】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选:A.7.(2019·武侯二诊)下面四个立体图形,从正面、左面、上面观察都不可能看到长方形的是( )A.B.C.D.【点拨】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依此找到从正面、左面、上面观察都不可能看到长方形的图形.【解析】解:A、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;C、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.故选:C.8.(2019·锦江二诊)如图,该立体图形的俯视图是( )A.B.C.D.【点拨】根据几何体的三视图,即可解答.【解析】解:如图所示的立体图形的俯视图是C.故选:C.9.(2019·高新一诊)如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是( )A.B.C.D.【点拨】根据从左边看得到的图形是左视图,可得答案.【解析】解:根据该几何体中小正方体的分布知,其左视图共2列,第1列有1个正方形,第2列有3个正方形,故选:B.10.(2019·武侯二诊)如图所示的几何体的左视图是( )A.B.C.D.【点拨】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解析】解:从左面看,得到的视图是A.故选:A.精准预测1.如图所示几何体的左视图正确的是( )A.B.C.D.【点拨】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解析】解:从几何体的左面看所得到的图形是:故选:A.2.下列立体图形中,主视图是三角形的是( )A.B.C.D.【点拨】根据从正面看得到的图形是主视图,可得图形的主视图.【解析】解:A、C、D主视图是矩形,故A、C、D不符合题意;B、主视图是三角形,故B正确;故选:B.3.如图是某兴趣社制作的模型,则它的俯视图是( )A .B .C .D .【点拨】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【解析】解:该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选:B .4.如图所示几何体,从左面看是( )A .B .C .D .【点拨】从左面看到的是左面位置上下两个正方形,右面的下方一个正方形,由此得出答案即可.【解析】解:左面位置上下两个正方形,右面的下方一个正方形的图形是.故选:B .5.下列几何体中,从正面看(主视图)是长方形的是( )A .B .C .D .【点拨】主视图是分别从物体正面看,所得到的图形.【解析】解:圆锥的主视图是等腰三角形,圆柱的主视图是长方形,圆台的主视图是梯形,球的主视图是圆形,故选:B .6.学校超市的货架上摆放着某品牌方便面,从三个不同的方向看可以看到下图所示的形状图,则货架上的方便面至多有( )A.7盒B.8盒C.9盒D.10盒【点拨】由从三个不同的方向看到的形状,可以在俯视图上,标出相应的摆放的最多数量,进而求出答案,做出选择.【解析】解:由从三个不同的方向看到的形状,可以在俯视图上,标出相应的摆放的最多数量,求出至多有9盒,故选:C.7.如图是由小立方块搭成的几何体,则从左面看到的几何体的形状图是( )A.B.C.D.【点拨】从左面看到的图形是两列,其中第一列有两个正方形,第二列有1个正方形,做出判断即可.【解析】解:从左面正投影所得到的图形为选项B.故选:B.8.如图是由5个完全相同的小正方体搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的( )A.左视图会发生改变B.俯视图会发生改变C.主视图会发生改变D.三种视图都会发生改变【点拨】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解析】解:如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选:C.9.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A.主视图B.左视图C.俯视图D.主视图和左视图【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.10.如图,下列选项中不是正六棱柱三视图的是( )A.B.C.D.【点拨】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解析】解:正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选:A.11.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?( )A.B.C.D.【点拨】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解析】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.12.如图,下列水平放置的几何体中,左视图不是矩形的是( )A.B.C.D.【点拨】根据左视图是从左面看到的视图,对各选项分析判断后利用排除法求解.【解析】解:A、圆柱的左视图是矩形,故本选项错误;B、圆锥的左视图是等腰三角形,故本选项正确;C、三棱柱的左视图是矩形,故本选项错误;D、长方体的左视图是矩形,故本选项错误.故选:B.13.如图所示的支架是由两个长方体构成的组合体,则它的左视图是( )A.B.C.D.【点拨】根据从左边看得到的图形是左视图,可得答案.【解析】解:从左边看下边是一个中间为虚线的矩形,故选:A.14.桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为( )A.B.C.D.【点拨】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得左视图有3列,从左到右分别是2,3,2个正方形.【解析】解:由俯视图中的数字可得:左视图有3列,从左到右分别是2,3,2个正方形.故选:D.15.如图所示的几何体,从上面看得到的图形是( )A.B.C.D.【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看是一个六边形,中间为圆.故选:D.。
2019年全国中考试题解析版分类汇编-三视图注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!1.〔2017江苏淮安,4,3分〕如下图的几何体的主视图是〔〕A、B、C、D、考点:简单组合体的三视图。
分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中、解答:解:从正面看易得正方体位于长方体的上方,应选B、点评:此题考查了三视图的知识,主视图是从物体的正面看得到的视图、2.〔2017江苏连云港,8,3分〕如图,是由8个相同的小立方块搭成的几何体,它的三个视图都是2×2的正方形,假设拿掉假设干个小立方块后〔几何体不倒掉...〕,其三个视图仍都为2×2的正方形,那么最多能拿掉小立方块的个数为〔〕A、1B、2C、3D、4考点:简单几何体的三视图。
分析:拿掉假设干个小立方块后保证几何体不倒掉,且三个视图仍都为2×2的正方形,所以最底下一层必须有四个小立方块,这样能保证俯视图仍为2×2的正方形,为保证正视图与左视图也为2×2的正方形,所以上面一层必须保留交错的两个立方块,即可知最多能拿掉小立方块的个数、解答:解:根据题意,拿掉假设干个小立方块后,三个视图仍都为2×2的正方形,所以最多能拿掉小立方块的个数为2个、应选B、点评:此题考查了几何体的三种视图,掌握定义是关键、解决此类图的关键是由立体图形得到三视图;学生由于空间想象能力不够,易造成错误、3.〔2017江苏南京,5,2分〕如图是一个三棱柱、以下图形中,能通过折叠围成一个三棱柱的是〔〕A、B、C、D、考点:展开图折叠成几何体。
专题:几何图形问题。
分析:利用三棱柱及其表面展开图的特点解题、三棱柱上、下两底面都是三角形、解答:解:A、折叠后有二个侧面重合,不能得到三棱柱;B、折叠后可得到三棱柱;C、折叠后有二个底面重合,不能得到三棱柱;D、多了一个底面,不能得到三棱柱、应选B、点评:此题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且都是三角形、4.〔2017•南通〕以下水平放置的几何体中,俯视图是矩形的为〔〕A、B、C、D、考点:简单几何体的三视图。
2019年中考数学专题复习17——立体图形(含答案解析)一、选择题1. 如图,左面的平面图形绕直线旋转一周,可以得到的立体图形是A. B.C. D.2. 如图所示,几何体的左视图为A. B.C. D.3. 如图是某个几何体的侧面展开图,则该几何体是A. 三棱锥B. 四棱锥C. 三棱柱D. 四棱柱4. 一个几何体的三视图如图所示,则这个几何体是A. 三棱锥B. 三棱柱C. 圆柱D. 长方体5. 过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为A. B.C. D.6. 如图所示的几何体是由六个小正方体组合而成的,它的左视图是A. B.C. D.7. 下图的长方体是由,,,四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是A. B.C. D.8. 一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的的表面积为A. B. C. D.9. 某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有A. B. C. D.10. 如图是某几何体的三视图,则该几何体的表面积为A. B. C. D.二、填空题11. 如图,在长方体中,所有与棱平行的棱是.12. 一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图、左视图如图所示,要摆成这样的图形,至少需用块小正方体.13. 如图,是某种工件的三视图,其俯视图为正六边形,它的表面积是.14. 如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“ ”相对的面上的数字是.15. 如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要个小立方体.16. 如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影(圆形).已知灯泡距离地面,桌面距离地面(桌面厚度不计算),若桌面的面积是,则地面上的阴影面积是.17. 在中,,,,将绕边所在的直线旋转一周得到圆锥,则该圆锥的表面积是.18. 如图,正三棱柱的底面周长为,截去一个底面周长为的正三棱柱,所得几何体的俯视图的周长是.19. 如图,在一次数学活动课上,张明用个边长为的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭成几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为.20. 从棱长为的正方体毛坯的一角,挖去一个棱长为的小正方体,得到一个如图所示的零件,则这个零件的表面积是.三、解答题21. 由几个相同的边长为的小立方块搭成的几何体的俯视图如图所示.方格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出这个几何体的正视图和左视图.(2)根据三视图,请你求出这个组合几何体的表面积(包括底面积).22. 一个长方体盒子的体积,底面为.(1)如果盒子底面是边长为的正方形,这个盒子的表面积是多少?(2)如果盒子底面是长为,宽为的长方形,这个盒子的表面积是多少?(3)上面两种情况下,如果盒子的底面的面积相等,那么两种盒子的表面积相差多少?23. 如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积.(结果保留根号)24. 下列物体是由六个棱长为的正方体组成如图的几何体.(1)该几何体的体积是,表面积是;(2)分别画出从正面、左面、上面看到的立体图形的形状.25. 如图,一个高,底面周长的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?26. 由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,求,的值.27. 如图是由两个长方体组合而成的一个几何体的三个视图,根据图中所标的尺寸(单位:),求这个几何体的表面积.28. 如图是某工厂设计生产的某种手电筒的三视图,利用图中标出的数据求该手电筒的表面积和体积.29. 数学活动课上,老师提出问题:如图,有一张长,宽的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.下面是探究过程,请补充完整.(1)设小正方形的边长为,体积为,根据长方体的体积公式得到和的关系式:;(2)确定自变量的取值范围是;(3)列出与的几组对应值;(说明:表格中相关数值保留一位小数)(4)在如图的平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(5)结合画出的函数图象,解决问题:当小正方形的边长约为时,盒子的体积最大,最大值约为.30. 把如图①的正方体切去一块,得到图②~⑤的几何体.(1)它们各有多少个面?多少条棱?多少个顶点?(2)举例说明其他形状的几何体也切去一块,所得到的几何体的面数、棱数和顶点数各是多少.(3)若面数记为,棱数记为,顶点数记为,则应满足什么关系?答案第一部分1. B2. A3. B4. B5. B6. C7. A8. D 【解析】根据三视图得到该立体图形为圆柱,再由圆柱的展开图是一个矩形和两个圆,根据题目中的数据,求出表面积.9. B 【解析】易得第一层有碗,第二层最少有碗,第三层最少有碗,所以至少共有个碗.10. A第二部分11. ,,12.13.【解析】正六边形的面积为:,六棱柱的侧面积为:,它的表面积是.14.15.16.17.18.19. ,20.第三部分21. (1)(2)几何体的表面积为:.22. (1)根据题意长方体盒子高为:,长方体盒子的表面积为:.(2)根据题意长方体盒子高为:,长方体盒子的表面积为:.(3)根据题意,底面积相等即,体积差为:.23. 根据几何体的三视图知,该几何体是一个六棱柱,因为其高为,底面半径为,所以其侧面积为,密封纸盒的底面积为,所以密封纸盒的表面积为.24. (1);【解析】几何体的体积:,表面积:.(2)如图所示:25. 将圆柱表面切开展开呈长方形,设登梯长为米.圆柱高,底面周长,,登梯至少(米).答:登梯至少米.26. 由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知;由主视图右边一列可知,右边一列最高可以叠个正方体,故或.27.28. 先求圆台的表面积和体积.构造如图所示的三角形.,,,,,则梯形可表示圆台的主视图.,,.在中,.,..解得..由,得..圆台的体积为.又手电筒圆柱部分的表面积为.圆柱的体积为.该手电筒的表面积.该手电筒的体积.29. (1)(2)(3)如表.(4)如图.(5)至均可;至均可30. (1)图②有个面、条棱、个顶点;图③有个面、条棱、个顶点;图④有个面、条棱、个顶点;图⑤有个面、条棱、个顶点.(2)例如:三棱锥被切去一块,如图所示,有个面、条棱、个顶点.(3)由()总结归纳可得:.。
2019年全国中考试题汇编知识点36 投影、三视图与展开图(通用版全解全析)一、选择题2.(2019·德州)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【答案】D【解析】本题考查了轴对称和中心对称图形的识别,A.轴对称图形;B.中心对称图形;C.既不是轴对称图形,也不是中心对称图形;D.既是轴对称图形,又是中心对称图形,故选D.4.(2019·滨州)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是()A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是4【答案】A【解析】观察该几何体,主视图有四个小正方形,面积为4;左视图有3个小正方形,面积为3;俯视图有四个小正方形,面积为4,故A正确.5.(2019·广元)我国古代数学家刘徽用"牟合方盖"找到了球体体积的计算方法."牟合方盖"是由两个圆柱分别从纵横两个方向嵌人一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成"牟合方盖"的一种模型,它的俯视图是( )第5题图【答案】A【解析】由两个圆柱分别从纵横两个方向嵌入一个正方体,而横嵌入圆柱的俯视图是长方形,纵嵌入圆柱的俯视图是圆,正方体俯视图是正方形,故选A.2.(2019·遂宁)如图为正方体的一种平面展开图,各面都标有数字,则数字-2的面与其对面上的数字之积是( )A.-12B. 0C.-8D. -10【答案】A【解析】正方体折叠还原后-2的对面是6,所以-2 6=-12.4.(2019·淮安)下图是由4个相同的小正方体搭成的几何体,则该几何体的主视图是()【答案】C【解析】从正面看几何体共有3列,第一列2块,第二列和第三列都是一块,所以主视图为C. 6.(2019·长沙)某个几何体的三视图如图所示,该几何体是【】【答案】D【解析】由三视图可知:该几何体为圆锥.故本题选:D.3.(2019·益阳)下列几何体中,其侧面展开图为扇形的是()A. B. C.D.【答案】C【解析】∵圆柱的侧面展开图是长方形、三棱柱的侧面展开图是长方形、圆锥的侧面展开图是扇形、三棱锥的侧面展开图是三块三角形,∴选C.5.(2019·常德)图是由4个大小相同的小正方体摆成的几何体,它的左视图是()【答案】C【解析】根据左视图是从左向右看得到的视图,可知选项C正确.5.(2019·武汉)如图是由5个相同的小正方体组成的几何体,该几何题的左视图是()A .B .C .D .【答案】A【解析】从左面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选A .6.(2019·黄冈)如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是【答案】B【解析】直接利用三视图的画法,从左边观察,可画.1.(2019·陇南)下列四个几何体中,是三棱柱的为( )A .B .C .D .【答案】C . 【解析】A 中的立体图形是长方体,B 中的立体图形是圆锥,C 中的立体图形是三棱柱,D 中的立体图形是圆柱,故选:C . 3.(2019·安徽)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是DC B A【答案】C【解析】本题考查了简单组合体的三视图,解题的关键是就在于要先确定几何体的主视图的位置,然后按照题目要求从不同方向观察几何体,看得见的部分的轮廓用实线画出.从上方观察该几何体,圆柱的俯视图是圆,长方体的俯视图是正方形,且圆内切于该正方形.注意:能看见的棱边用实线表示,看不见的棱边用虚线表示,故选C.1.(2019·岳阳)下列立体图形中,俯视图不是圆的是()A B C D【答案】C【解析】正方体的俯视图与正方形,其它三个的俯视图都是圆,故选C.2.(2019·无锡)一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是()A.长方体B.四棱锥C.三棱锥D.圆锥【答案】A【解析】本题考查了由视图判断几何体,主视图、左视图、俯视图都是长方形的几何体是长方体,故选A.3.(2019·滨州)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是()A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是4【答案】A【解析】观察该几何体,主视图有四个小正方形,面积为4;左视图有3个小正方形,面积为3;俯视图有四个小正方形,面积为4,故A正确.4.(2019·济宁)如图,一个几何体上半部为正四校锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A B C D【答案】B【解析】选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.5. (2019·聊城)如图所示的几何体的左视图是第2题图【答案】B【解析】A中间是虚线,∴是从右边看得到的图形,故A错误;B是左视图,正确;C是主视图,故C错误;D是俯视图,故D错误.故选B.6.(2019·潍坊)如图是由10个同样大小的小正方体摆成的几何体,将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变【答案】A【解析】通过小正方体①的位置可知,只有从正面看会少一个正方形,故主视图会改变,而俯视图和左视图不变,故选择A.7.(2019·淄博)下列几何体中,其主视图、左视图和俯视图完全相同的是()A.B.C.D.【答案】D.【解析】:A.圆柱的主视图和左视图是长方形、俯视图是圆形,故本选项不符合题意;B.三棱柱的主视图和左视图是相同的长方形,但是俯视图是一个三角形,故本选项不符合题意;C.长方体的主视图和左视图是不一样的长方形,俯视图也是一个长方形,故本选项不符合题意;D.球体的主视图、左视图和俯视图是相同的圆,故本选项符合题意.故选.D.【知识点】简单几何体的三视图8. (2019·巴中)如图是由一些小立方体与圆锥组合成的立体图形,它的主视图是( )【答案】C【解析】从正面看这个组合体,可以看到四个正方体和一个圆锥的侧面,下面一层是三个正方形,上面一层左边是正方形,右边是三角形,故选C.9.(2019·达州)下图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()【答案】C【解析】这个几何体的第一行有三层,第二行有一层,故应选C.10.(2019·眉山)如图是由6个完全相同的小正方体组成的立体图形,它的左视图是【答案】D【解析】解:从左侧看,共有3列,第一列有两个正方形,第二列有一个正方形,第三列有一个正方形,故选D.11.(2019·自贡)下图是一个水平放置的全封闭物体,则它的俯视图是()【答案】C.【解析】俯视图就是从上面看,从上面看可以看到两个矩形,并且都是实线.故选C.12.(2019·天津)右图是一个由6个相同的正方体组成的立体图形,它的主视图是【答案】B【解析】从正面看由两层组成,上面一层1个正方形,下面一层三个正方形,所以选B.13. (2019·宁波) 如图,下列关于物体的主视图画法正确的是第5题图 【答案】C【解析】如图所示是一个空心圆柱,其左视图轮廓应该是长方形,内部的两条线段看不到,应该用虚线表示,故选C.14.(2019·衢州)如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图...是(A )【答案】A【解析】本题考查主视图的识别,该几何体从正面看看到的图形是A 图,故选A.15. (2019·台州)如图是某几何体的三视图,则该几何体是( ) A.长方体 B.正方体 C.圆柱 D.球第2题图【答案】C 【解析】圆柱从正面看是长方形,从左面看底面是圆形,从上面看是长方形,符合图示的三视图.16.(2019·重庆B 卷)如图是一个由5个相同正方体组成的立体图形,它的主视图是( )【答案】D.A.B.C.D【解析】三视图分为主视图,俯视图和左视图.三视图是观测者从上面、左面、正面三个不同角度观察同一个空间几何体而画出的图形.从正面看,有5个正方体表面组成,故选D.17.(2019·重庆A卷)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()【答案】A.【解析】因为从正面看该几何体,共有2列,第1列有两个小正方形,第2列有一个小正方形,所以选A.3.(2019·温州)某露天舞台如图所示,它的俯视图...是()【答案】B【解析】本题考查的是画出立体图形的三视图的知识,解题的关键是准确掌握三视图的概念来求解,要画出图中几何体的俯视图,首先由俯视图的概念:几何体的俯视图是从上面看到的图形,观察得出这个几何体的俯视图是长方形中间有一个长方形,且这两个长方形具有共同的边,故选B.3.(2019·绍兴)如图的几何体由6个相同的小正方体搭成,它的主视图是( )【答案】A【解析】从正面看易得第一层有2个正方形,第二层有3个正方形.故选A.3.(2019·嘉兴)如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.【答案】B【解析】俯视图是上面往下观察所得的图形,观察可知第一层一个靠左边,第二层两根,故选B. 3.(2019·烟台)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是().A .主视图和左视图B .主视图和俯视图C .左视图和俯视图D .主视图、左视图、俯视图 【答案】A【解析】将小正方体①移走后,该几何体的主视图和左视图没有发生变化,俯视图中小正方体①的投影会没有. 4. (2019·威海)如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是( )【答案】C【解析】俯视图是从一个几何体的上面由上向下看所得到的视图,从这个几何体的上面看,可以得到两排小正方形,其中上一排4个,下一排1个,故选C .5.(2019·盐城)如图是由6个小正方体搭成的物体,该所示物体的主视图是( )【答案】C【解析】三视图分为主视图、左视图和俯视图.主视图是在物体正面从前向后观察物体得到的图形;该图从正面看第一层是三个小正方形,第二次中间一个小正方形,故选C. 3.(2019·江西)如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )【答案】A【解析】俯视图反映几何体的长和宽,通过观察几何体可以画出对应的视图. 3.(2019·山西)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与"点"字所在面相对的面上的汉字是( ) A.青 B.春 C.梦 D.想D.C.B.A. A.B. C.D.第3题图【答案】B【解析】根据正方体的展开与折叠中面的关系,可知与"点"字所在面相对的面上的汉字是春,故选B.二、填空题1.(2019·攀枝花)如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是面.(填字母)【答案】C或E【解析】动手折一折或发挥空间想象能力都可得出判断.11。
专题29.2 三视图1.视图:从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图。
视图可以看作物体在某一方向光线下的正投影。
2.主视图、俯视图、左视图(1)对一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;(2)在水平面内得到的由上向下观察物体的视图,叫做俯视图;(3)在侧面内得到的由左向右观察物体的视图,叫做左视图。
主视图与俯视图的长对正;主视图与左视图的高平齐;左视图与俯视图的宽相等。
【例题1】如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变【答案】A【解析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.【点拨】本题考查了简单组合体的三视图,从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.【例题2】如图是由一个长方体和一个球组成的几何体,它的主视图是()A. B. C. D.【答案】C【解析】从正面看几何体,确定出主视图即可.几何体的主视图为:【点拨】主视图就是从几何体正面看得到的图形。
【例题3】如图所示的几何体的俯视图是()A B C D【答案】D【解析】此几何体的俯视图如图:【点拨】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【例题4】下列几何体中,俯视图不是圆的是()A.四面体 B.圆锥C.球 D.圆柱【答案】A【解析】分别找出从图形的上面看所得到的图形即可.A.俯视图是三角形,故此选项正确;B.俯视图是圆,故此选项错误;C.俯视图是圆,故此选项错误;D.俯视图是圆,故此选项错误。
【点拨】此题主要考查了简单几何体的三视图,关键是掌握俯视图是从几何体的上面看所得到的图形.1.如图是由4个相同的小立方体搭成的几何体,则它的主视图是()A.B.C.D.【答案】B【解析】主视图有2列,每列小正方形数目分别为1,2.如图所示:它的主视图是:.【点拨】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.2.如图是由5个大小相同的小正方体摆成的几何体,它的俯视图是()A. B. C. D.【答案】D【解析】根据俯视图是从上面看到的图象判定则可.从上面看下来,上面一行是横放3个正方体,左下角一个正方体.【点拨】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A.πB.2πC.3πD.(+1)π【答案】C【解析】由三视图可知:该几何体是一个圆锥,其轴截面是一个高为的正三角形.∴正三角形的边长==2.∴圆锥的底面圆半径是1,母线长是2,∴底面周长为2π∴侧面积为2π×2=2π,∵底面积为πr2=π,∴全面积是3π.4.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个 B.5个C.6个 D.7个【答案】B.【解析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.由主视图和左视图可确定所需正方体个数最少时俯视图为:,则搭成这个几何体的小正方体最少有5个.5.如图所示,该几何体的俯视图是()A.B.C.D.【答案】C.【解析】根据俯视图是从物体的上面看得到的视图进行解答即可.从上往下看,可以看到选项C所示的图形.故选:C.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【答案】C.【解析】根据从上边看得到的图形是俯视图,可得答案.从上边看是一个田字,“田”字是中心对称图形.7.如图是由4个相同的小正方体搭成的几何体,则该几何体的主视图是()A. B.C. D.【答案】C【解析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解:从正面看,下面一行是横放3个正方体,上面一行是一个正方体.如图所示:【点拨】本题考查了三种视图中的主视图,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.8.下列图形中,主视图为①的是()A.B.C. D.【答案】B.【解析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.A.主视图是等腰梯形,故此选项错误;B.主视图是长方形,故此选项正确;C.主视图是等腰梯形,故此选项错误;D.主视图是三角形,故此选项错误.9.下列几何体中,主视图与俯视图不相同的是()A.正方体 B.四棱锥 C.圆柱 D.球【答案】B.【解析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.四棱锥的主视图与俯视图不同.10.下列几何体的左视图为长方形的是()A. B.C.D.【答案】C.【解析】找到个图形从左边看所得到的图形即可得出结论.A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.11.把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A.B.C.D.【答案】D.【解析】根据从正面看得到的图形是主视图,可得答案.从正面看是一个等腰三角形,高线是虚线.12.如图所示的几何体的主视图是()A.B.C.D.【答案】B.【解析】根据从正面看得到的图形是主视图,可得答案.从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形.13.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【答案】C.【解析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.从左边看竖直叠放2个正方形.14.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是()A.B.C.D.【答案】D.【解析】根据从左边看得到的图形是左视图,可得答案.从左边看第一层是两个正方形,第二层是左边一个正方形.15.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【答案】B.【解析】根据从上面看得到的图形是俯视图,可得答案.从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形.16.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.6【答案】C.【解析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.17.如图所示的几何体的左视图是()A.B.C.D.【答案】D.【解析】根据从左边看得到的图形是左视图,可得答案.从左边看是两个等宽的矩形,矩形的公共边是虚线。
数学试卷1)三视图:是指观测者从三个不同位置观察同一个空间几何体而画出的图形。
将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。
一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图--能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图--能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图--能反映物体的左面形状,三视图就是主视图、俯视图、左视图的总称。
(2)特点:一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。
三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。
三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
B
A D
C
三视图
三只钟的故事
一只小钟被主人放在了两只旧钟当中,两只旧钟滴答、滴答的走着。
一只旧钟对小钟说:“来吧,你也该工作了。
可是我有点担心,你走完三千两百万次以后,恐怕会吃不消的。
”
“天哪!三千两百万次。
”小钟吃惊不已,“要我做这么大的事?办不到,办不到!”另一支旧钟说:“别听他胡说八道,不用害怕,你只要每秒滴答摆一下就行了。
”
“天下哪有这么简单的事情?”小钟将信将疑,“如果这样,我就试试吧。
”小钟很轻松地每秒滴答摆一下,不知不觉中,一年过去了,它摆了三千两百万次。
成功就是这样,把简单的事做到极致,就能成功。
1.如图所示的几何体的左视图是()
2.一个几何体的三视图完全相同,该几何体可以是.
3.长方体的主视图、俯视图如图3所示(单位:m),
则其左视图面积是()
A.42
m B.122
m
(B)
(A)(C)(D)
C.12
m D.32
m
4.如图,是有几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是( )
A. 3个
B. 4个
C. 5个
D. 6个
1.小明从正面观察下图所示的两个物体,看到的是()
2.下面是空心圆柱在指定方向上的视图,正确的是()
3.如图是某物体的三视图,则该物体形状可能是()
(A)长方体(B)圆锥体(C)立方体(D)圆柱体
4.下图是由一些相同的小正方形构成的几何体的三视图,则小正方形的个数是()
(A)4个(B)5个(C)6个(D)7个
5.如果用□表示1个立方体,用
用█表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图是 ( )
(A)(B)(C)(D)
6.一个全透明的玻璃正方体,上面嵌有一根黑色的金属丝,如图,金属丝在俯视图中的形状是()
7.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()
(第4题)
(B)
(A)(C)(D)
主
视
图
左
视
图
(第3题)
(B)
(A)(C)(D)
左视图
主视图俯视图
2 2
4 1 1 3
(B ) (A ) (C ) (D )
8.如图,桌面上的模型由20个棱长为a 的小正方体组成,现将该模型露在外面的部分涂上 涂料,则涂上涂料部分的总面积为( )
A .220a
B .230
a C .240a D .250a
9.有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示。
如果记6的对面的数字为a ,2的对面的数字为b ,那么b a 的值为 ( )
A .3
B .7
C .8
D .11
10.一个几何体的三视图如右图,
那么这个几何体是 .
11.一个物体的俯视图是圆,则该物体有可能是 .(写两个即可)
12.一张桌子摆放若干碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有碟子
个。
13.一位画家把边长为1米的7
个相同正方体摆成如图的形式,然后把露出的表
面涂上颜色,那涂色面积为_________ m 2
.
第8题图
俯视图 主视图 左视图
(第10题)
俯视图 主视图 左视图
(第12题)
14.如图,是一个几何体的三视图(含有数据),则这个几何体的侧面展开图的面积等于( )
A .2π
B .π
C .4
D .
2
15.如图是由大小相同的小正方体组成的简单几何体的主视图和左视图,那么组成这个几何体的小正方体的个数最多为 .
16.由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是 .
17.长方体的主视图和左视图如下图所示(单位:cm ),则其俯视图的面积是________cm 2
.
18.如图是某几何体的展开图.
(1)这个几何体的名称是 ; (2)画出这个几何体的三视图;
(3)求这个几何体的体积.( 取3.14)
第18
第15题图
19.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V )、面数(F )、棱数(E )之间存在的一个有趣的关系式,被称为欧拉公式. 请你观察下列几种简单多面体模型,解答下列问题:
(1) 根据上面多面体模型,完成表格中的空格:
你发现顶点数(V )、面数(F )、棱数(E )之间存在的关系式是 ;
(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是 ; (3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱. 设该多面体外表面三角形的个数为x 个,八边形的个数为y 个,求x+y 的值.
四面体 长方体 正八面体 正十二面体
20.问题探究:
(1)如图①所示是一个半径为
3
2π
,高为4的圆柱体和它的侧面展开图,AB 是圆柱的一条母线,一只蚂蚁从A 点出发沿圆柱的侧面爬行一周到达B 点,求蚂蚁爬行的最短路程.(探
究思路:将圆柱的侧面沿母线AB 剪开,它的侧面展开图如图①中的矩形ABB A ′′,则蚂蚁爬
行的最短路程即为线段AB ′的长)
(2)如图②所示是一个底面半径为2
3
,母线长为4的圆锥和它的侧面展开图,PA 是它的
一条母线,一只蚂蚁从A 点出发沿圆锥的侧面爬行一周后回到A 点,求蚂蚁爬行的最短路
程. (3)如图③所示,在②的条件下,一只蚂蚁从A 点出发沿圆锥的侧面爬行一周到达母线PA 上的一点,求蚂蚁爬行的最短路程.
B A A ' B ′ 图①
A ' P A 图②
P A 图③
第20题图
三视图参考答案
典题探究
1.B
2. 球、正方体等(写一个即可)
3.D
4.B
演练方阵
1.C
2.C
3.D
4.B
5.B
6.C
7.C
8.D
9.B
10.圆锥
11.圆柱,圆锥,球等
12. 12
13. 23
14..A
15.7 思路分析:本题综合考查了几何体的三视图.结合主视图和俯视图可知俯视图可以为下图,此时小正方块的个数最多,一共有7块.
16. 4或5 17.12
18.解:(1)圆柱; (2)如图所示;
(3)体积为:2πr h =23.14520⨯⨯=1570.
19.解:(1) 6, 6 , 2V F E +-=
(2)20
(3)这个多面体的面数为x y +,棱数为
243
362
⨯=条, 根据2V F E +-=可得 24()362x y ++-=,
∴14x y +=.
20.解:(1)易知3
2π32π
BB =⨯=′
5AB ==′
即蚂蚁爬行的最短路程为5.
(2)连结AA ′,则AA ′的长为蚂蚁爬行的最短路程,设1r 为圆锥底面半径,2r 为侧面展开
图(扇形)的半径,则122
43r r ==,,由题意得:21π2πr =180
n r 即22ππ43180
n
⨯⨯
=⨯⨯ 60n ∴= PAA ∴△′是等边三角形
∴最短路程为4AA PA ==′
. (3)如图③所示是圆锥的侧面展开图,过A 作AC PA ⊥′于点C ,则线段AC 的长就是蚂蚁
爬行的最短路程.
sin 4sin 604AC PA APA '∴=∠=⨯==°
第13题图
∴
蚂蚁爬行的最短距离为
B
A
A'
B′
图①图③
A'
P
C
A
60°
图②
A'
P
A。