2016年上海市嘉定区、宝山区中考数学二模试卷及答案
- 格式:doc
- 大小:426.50 KB
- 文档页数:19
2016学年嘉定区九年级第二次质量调研数学试卷(满分150分,考试时间100分钟)(2017.4)同学们注意:1.本试卷含三个大题,共25题;2.答题时,同学们务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.如果a 表示不为0的任意一个实数,那么下列四个算式中,正确的是 ················· (▲)(A )a a a =-2323; (B )a a a =⋅313;(C )a a a =÷23; (D )a a =212)(.2.在解答“一元二次方程021212=+-a x x 的根的判别式为 ▲ ”的过程中,某班同学的作业中出现了下面几种答案,其中正确的答案是 ············································ (▲) (A )0241≥-a ; (B )a 241-; (C )081≥-a ; (D )a 81-.3.如果函数122++=x ax y 的图像不经过第四象限,那么实数a 的取值范围为 ······· (▲) (A )0<a ;(B )0=a ;(C )0>a ;(D )0≥a .4.从概率统计的角度解读下列诗词所描述的事件,其中属于确定事件的是 ·············· (▲) (A )黄梅时节家家雨,青草池塘处处蛙; (B )人间四月芳菲尽,山寺桃花始盛开; (C )水面上秤锤浮,直待黄河彻底枯;(D )一夜北风紧,开门雪尚飘.5.已知⊙A 的半径长为2,⊙B 的半径长为5,如果⊙A 与⊙B 内含,那么圆心距AB 的长度可以为 ·············································· ······························ ························ (▲) (A )0;(B )3;(C )6;(D )9.6.将两个底边相等的等腰三角形按照图1所示的方式拼接在一起(隐藏互相重合的底边)的图形俗称为“筝形”.假如“筝形”下个定义,那么下面四种说法中,你认为最能够描述“筝形”特征的是 ······················································································ (▲)(A )有两组邻边相等的四边形称为“筝形”; (B )有两组对角分别相等的四边形称为“筝形”; (C )两条对角线互相垂直的四边形称为“筝形”;(D )以一条对角线所在直线为对称轴的四边形称为“筝形”.1二、填空题:(本大题共12题,每题4分,满分48分) 【请直接将结果填入答题纸的相应位置】 7.计算:=-1)21( ▲ .8.已知73.13≈,那么≈31▲ (保留两个有效数字........)9.不等式组⎩⎨⎧>+<01,32x x 的解集是 ▲ .10.方程2+x =x 的实数解是 ▲ .11.已知点),(11y x A 、点),(22y x B 在反比例函数xy 2-=的图像上.如果210x x <<,那么1y 与2y 的大小关系为:1y ▲ 2y (从“<”、“=”、“>”中选择).12.某校学生综合素质评价方案中有这样一段话:“学生自评、同学互评与班级评定小组评价在学生综合素质评价中所占的权重分别为%10、%30、%60”.如果甄聪明同学的自评分数、同学互评分数、班级评定小组给出的分数分别为96分、95分、95分,那么甄聪明同学的综合素质评价分数为 ▲ 分.13.一名射击运动员连续打靶9次,假如他打靶命中环数的情况如图2所示,那么该射击运动员本次打靶命中环数的中位数为 ▲ 环.14.如果非零向量a r 与向量b r 的方向相反,且b a ρρ32=,那么向量a r 为 ▲ (用向量b r 表示).15.从山底A 点测得位于山顶B 点的仰角为︒30,那么从B 点测得A 点的俯角为 ▲ 度. 16.已知扇形的弧长为8,如果该扇形的半径长为2,那么这个扇形的面积为 ▲ . 17.命题“相等的角不一定是对顶角”是 ▲ 命题(从“真”或“假”中选择). 18.已知在△ABC 中,︒=∠90ACB ,10=AB ,53cos =A (如图3),将△ABC 绕着点C 旋转,点A 、B 的对应点分别记为A '、B ',B A ''与边AB 相交于点E .如果B A ''⊥AC ,那么线段E B '的长为 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:2122442--++-x x x ,其中2=x .20.(本题满分10分)解方程组:⎩⎨⎧=--=-.,032222y xy x y xABC图3将大小相同,形状也相同的三个菱形按照图4的方式拼接在一起(其中,点B 、C 、F 、G 在同一条直线上),3=AB .联结AG ,AG 与EF 相交于点P . (1)求线段EP 的长;(2)如果︒=∠60B ,求△APE 的面积.22.(本题满分10分,第(1)小题6分;第(2)小题4分)某种型号的家用车在高速公路上匀速行驶时,测得部分数据如下表:(1)如果该车的油箱内剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,求y关于x 的函数解析式(不需要写出它的定义域);(2)张老师租赁该型号的家用车也在该高速公路的相同路段以相同的速度匀速行驶300千米(不考虑小轿车载客的人数以及堵车等因素).假如不在高速公路上的服务区加油,那么在上高速公路之前,张老师这辆车的油箱内至少..需要有多少升汽油?请根据题目中提供的相关信息简要说明理由. 23.(本题满分12分,每小题6分)已知:正方形ABCD ,点E 在边CD 上,点F 在线段BE 的延长线上,且CBE FCE ∠=∠. (1)如图5,当点E 为CD 边的中点时,求证:EF CF 2=; (2)如图6,当点F 位于线段AD 的延长线上,求证:DFDEBE EF =.ABCDEF图5ABCD 图6FEABCD图4FEGHP在平面直角坐标系xOy (如图7)中,已知点A 的坐标为(3,1),点B 的坐标为(6,5),点C 的坐标为(0,5);某二次函数的图像经过点A 、点B 与点C . (1)求这个二次函数的解析式;(2)假如点Q 在该函数图像的对称轴上,且△ACQ 是等腰三角形,直接..写出点Q 的坐标; (3)如果第一象限内的点P 在(1)中求出的二次函数 的图像上,且21tan =∠PCA ,求PCB ∠的正弦值.25.(满分14分,第(1)小题5分,第(2)小题5分、第(3)小题4分)已知:8=AB ,⊙O 经过点A 、B .以AB 为一边画平行四边形ABCD ,另一边CD 经过点O (如图8).以点B 为圆心,BC 为半径画弧,交线段OC 于点E (点E 不与点O 、点C 重合).(1)求证:OE OD =;(2)如果⊙O 的半径长为5(如图9),设x OD =,y BC =,求y 关于x 的函数解析式,并写出它的定义域;(3)如果⊙O 的半径长为5,联结AC ,当AC BE ⊥时,求OD 的长.图7图9备用图图82016学年嘉定区九年级第二次质量调研数学试卷参考答案一、选择题:(本大题共6题,每题4分,满分24分) 1、C ;2、B ;3、D ;4、C ;5、A ;6、D.二、填空题:(本大题共12题,每题4分,满分48分)7、2;8、58.0;9、231<<-x ;10、2=x ;11、>;12、1.95;13、9环;14、b a ρρ23-=;15、︒30;16、8;17、真命题;18、524.三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 解:2122442--++-x x x )2)(2(2)2)(2()2(2)2)(2(4-++--+-+-+=x x x x x x x x ······ 3分 21)2)(2()2()2)(2(2424+=-+-=-+---+=x x x x x x x x . ··································· 2+2+1分当2=x 时,原式=221221-=+. ···················································· 2分20.(本题满分10分)解:03222=--y xy x 可以化为:0))(3(=+-y x y x ,所以:03=-y x 或0=+y x . ·································································· 2分原方程组可以化为:⎩⎨⎧=-=-032y x y x ,(Ⅰ)与⎩⎨⎧=+=-02y x y x ,(Ⅱ) ·························· 2分 解(Ⅰ)得⎩⎨⎧==1,3y x ; 解(Ⅱ)得⎩⎨⎧-==1,1y x ················································· 2+2分 所以,原方程组的解为:⎩⎨⎧==;1,311y x 与⎩⎨⎧-==.1,122y x ················································· 2分21.(本题满分10分,每小题5分)解:(1)由题意得四边形ABGH 、ABFE 是平行四边形. ·································· 1分 ∴ AE ∥FG . ····················································································· 1分∴FGAEFP EP =. ······················································································· 1分ABCD图4FEGHPH 将6=AE ,3=FG 代入,得 2=FP EP ,即32=EF EP ································· 1分 又∵四边形ABFE 是平行四边形,3=AB ,∴3==AB EF .∴2=EP . ··········· 1分 (2)过点P 作AE PH ⊥,垂足为H (如图4). ········································· 1分 ∵四边形ABFE 是平行四边形,︒=∠60B ,∴︒=∠=∠60B PEH . ············ 1分 在Rt △PEH 中,︒=∠90PHE ,︒=∠60PEH ,2=EP ,∴323260sin =⨯=︒⋅=EP PH . ······················································· 2分 ∴△APE 的面积为33362121=⨯⨯=⋅PH AE . ··································· 1分22.(本题满分10分)解:(1)设油箱内剩余油量y (升) 与行驶路程x (千米)之间的函数关系式为b kx y +=. ······················································································· 1分分别将100=x ,52=y ;150=x ,48=y 代入上式,得⎩⎨⎧=+=+.48150,52100b k b k ······· 2分解得:⎪⎩⎪⎨⎧=-=.60,252b k ···················································································· 2分 ∴所求的函数关系式为60252+-=x y ························································· 1分 (2)方法1:由题意可得,该型号的汽车在该路段行驶时,每行驶100耗油8升. ·· 2分 设行驶300公里时需要耗油x 升,可得8:100:300x =,解得24=x 升. ············· 1分方法2:将300=x 代入60252+-=x y ,得36=y . ······································ 2分 243660=-. ··············································································· 1分 答:张老师的这辆车的油箱内至少..需要有24升汽油. ········································ 1分 备注:学生若是在得到24升油的基础上又考虑了其它因素(如离开高速公路之后还需要再行驶一段路程才可以抵达目的地(或寻找到加油站),因此给出了大于24升油的其它数据,只要能够自圆其说,且符合生活实际情况,那么可以酌情评分. 23.(本题满分12分,每小题6分)(1)证明:∵四边形ABCD 是正方形,∴BC CD =. ··········································· 1分∵点E 为CD 边的中点,∴CD CE 21=BC 21=. ··································· 1分 ∵CBE FCD ∠=∠,F F ∠=∠,∴△FCE ∽△FBC . ··························· 2分 ∴BCCECF EF =. ·················································································· 1分 又∵BC CE 21=,∴21=CF EF .即EF CF 2=. ············································· 1分(2)∵四边形ABCD 是正方形,∴DE ∥AB ,AD ∥BC ,AD =CD . ················ 1分∵点F 位于线段AD 的延长线上,DE ∥AB ,∴ADDFBE EF =. ························ 1分 又∵AD =CD ,∴CDDFBE EF =.(1) ··························································· 1分 ∵AF ∥BC ,∴CBE DFE ∠=∠.又∵CBE DCF ∠=∠,∴DCF DFE ∠=∠. ················································ 1分 又∵CDF FDE ∠=∠,∴△FDE ∽△CDF . ················································ 1分∴CD DF DF DE =(2).由(1)、(2)得 DFDE BE EF =. ········································ 1分24.(本题满分12分,每小题4分)解:(1)设所求二次函数的解析式为c bx ax y ++=2,将A (3,1)、B (6,5)、C (0,5)代入,得 ⎪⎩⎪⎨⎧==++=++.5,5636,139c c b a c b a 解得 94=a ,38-=b ,5=c . ································· 3分所以,这个二次函数的解析式为538942+-=x x y . ·········································· 1分 (2))6,3(1Q ,)4,3(2-Q ,)9,3(3Q ,)825,3(4Q . ············································ 4分(3)由题意得,该二次函数图像的对称轴为直线3=x . ····································· 1分 联结PC 交直线3=x 于点M ,过点M 作AC MN ⊥,垂足为N (图7-1) . 将直线3=x 与BC 的交点记为H ,易得3=CH ,4=AH ,5=AC .∴53sin ==∠CA CH CAH ········································································ 1分 故可设k MN 3=,则k AM 5=,k AM 4=.又∵21tan =∠PCA ,则k CN 6=.由题意得方程:564=+k k .解得21=k ,25=AM ,23254=-=MH ·········· 1分∴523)23(322=+=CM .∴55sin ==∠CM MH PCB . ···························· 1分A B CDEF图5ABCD 图6FE25.(满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)解:(1)联结OA 、OB (如图8-1),易得OB OA =,OBA OAB ∠=∠. ···················· 1分∵四边形ABCD 是平行四边形,∴AB ∥CD ,BC AD =.∵BC BE =,BC AD =,∴BE AD =. ······················································ 1分 又 ∵AB ∥CD ,∴四边形ABED 是等腰梯形.∴EBA DAB ∠=∠. ····················· 1分又 ∵OBA OAB ∠=∠,∴OBA EBA OAB DAB ∠-∠=∠-∠.即 OBE OAD ∠=∠. ·················································································· 1分在△AOD 和△BOE 中,∵OB OA =,OBE OAD ∠=∠,BE AD =,∴△AOD ≌△BOE. ∴OE OD =. ························· 1分方法2:∵BED ADE ∠=∠,EBO DAO ∠=∠,BE AD =,∴△AOD ≌△BOE.…… 方法3:∵BED ADE ∠=∠,EBO DAO ∠=∠,OB OA =,∴△AOD ≌△BOE.…… 方法4:如图8-2,过点O 作AB OH ⊥,过点D 作AB DG ⊥,过点E 作AB EI ⊥.…… 方法5:如图8-3,过点O 作AB OH ⊥,垂足为H ,联结DH 、EH .…… (2)方法1:如图9-1,过点O 作AB OH ⊥,垂足为H ,过点D 作AB DG ⊥,垂足为G . 联结OB ,3=OH ,4==BH AH ,得1分;得到3==OH DG ,得2分;在Rt △ADG 中,写出x AG -=4,y BC AD ==,得1分;利用222AG DG AD +=得到2582+-=x x y ,得1分,函数定义域40<<x ,得1分.方法2、方法3见评分细则.(3)如图10-1,过点O 作AC OM ⊥,交AC 于点M ,交AB 于点N .证明四边形ONBE 图8-1是平行四边形,得1分;利用OD OE BN ==,CD AB =得到AN OC =,得1分;利用△AMN ≌△CMO 或COANCM AM =得到CN AM =,进而得到OM 是AC 的垂直平分线,5==OA OC ,得1分;利用8==AB CD ,5=OC 得到3=OD ,得1分.方法2.如图10-,2;方法3:如图10-3;方法4(利用圆周角,略).图9-1图10-1 图10-2 图10-3。
嘉定九年级第二次质量调研数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】一、选择题:(本大题共6题,每题4分,满分24分) 1.下列说法中,正确的是(▲)(A )23是分数; (B )0是正整数; (C )722是有理数;(D )16是无理数. 2.抛物线2(1)4y x =-+与y 轴的交点坐标是(▲)(A )(0,4); (B )(1,4); (C )(0,5); (D )(4,0). 3.下列说法正确的是(▲)(A )一组数据的平均数和中位数一定相等; (B )一组数据的平均数和众数一定相等; (C )一组数据的方差一定是正数;(D )一组数据的众数一定等于该组数据中的某个数据.4.今年春节期间,小明把2000元压岁钱存入中国邮政储蓄银行,存期三年,年利率是%.254,小明在存款到期后可以拿到的本利和为(▲)(A )20003%)25.41(+元; (B )20002+0003254⨯⨯%.元; (C )20003254⨯⨯%.元; (D )20003%)25.41(⨯+元. 5.如图1,已知向量a 、b 、c ,那么下列结论正确的是(▲)(A )b c a =+; (B )b c a =-; (C )c b a -=+; (D )c b a =+.6.已知⊙1O 的半径长为cm 2,⊙2O 的半径长为cm 4.将⊙1O 、⊙2O 放置在直线l 上(如图2),如果⊙1O 在直线l 上任意滚动,那么圆心距21O O 的长不可能是(▲) (A )cm 1; (B )cm 2; (C )cm 6; (D )cm 8.2Oa bc图1二、填空题(本大题共12题,每题4分,满分48分) 7.化简:21-= ▲ .8. 计算:=23)(a ▲ .9. 计算:=÷3166 ▲ (结果表示为幂的形式). 10.不等式组⎩⎨⎧>+≤-04201x ,x 的解集是 ▲ .11.在一个不透明的布袋中装有2个白球和8个红球,它们除了颜色不同之外,其余均相同.如果从中随机摸出一个球,摸到红球的概率是 ▲ .(将计算结果化成最简分数) 12.如果关于x 的方程1)1(2+=-a x a 无解,那么实数a = ▲ .13.近视眼镜的度数y (度)与镜片焦距x (米)呈反比例,其函数关系式为xy 100=.如果近似眼镜镜片的焦距250.x =米,那么近视眼镜的度数y 为 ▲ . 14.方程x x -=+6的根是 ▲ .15.手机已经普及,家庭座机还有多少?为此,某校中学生从某街道5000户家庭中随机抽取50户家庭进行统计,列表如下: 拥有座机数(部) 01234相应户数10141871该街道拥有多部电话(指1部以上,不含1部)的家庭大约有 ▲ 户.16.如果梯形两底的长分别为3和7,那么联结该梯形两条对角线的中点所得的线段长为 ▲ .17.在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①),(y x f =(2+x ,y ).如)1,1(f =)1,3(;②),(y x g =),(y x --,如)2,2(g =)2,2(--.按照以上变换有:))1,1((f g =)1,3(g =)1,3(--,那么))4,3((-g f 等于 ▲ . 18.如图3,在梯形ABCD 中,已知AB ∥CD ,︒=∠90A ,cm AB 5=,cm BC 13=.以点B 为旋转中心,将BC 逆时针旋转︒90至BE ,BE 交CD 于F点.如果点E 恰好落在射线AD 上,那么DF 的长为 ▲ cm . E三、简答题(本大题共7题,满分78分) 19.(本题满分10分)计算:︒+︒︒-︒+-60sin 45tan 30sin 30cos 42730)(.20.(本题满分10分)解方程:12221=++-x x .21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图4,在ABC ΔRt 中,90ACB ∠=︒,点D 在AC 边上,且CA CD BC ⋅=2. (1)求证:CBD A ∠=∠;(2)当α=∠A ,2=BC 时,求AD 的长(用含α的锐角三角比表示).22.(本题满分10分,每个小题各5分)某游泳池内现存水)(m 18903,已知该游泳池的排水速度是灌水速度的2倍.假设在换水时需要经历“排水——清洗——灌水”的过程,其中游泳池 内剩余的水量y (3m )与换水时间....t (h )之间的 函数关系如图5所示.根据图像解答下列问题:(1)根据图中提供的信息,求排水的速度及清洗该游泳池所用的时间;(2)求灌水过程中的y (3m )与换水时间....t (h )之间的函数关系式,写出函数的定义域.23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,点E 是正方形ABCD 边BC 上的一点(不与B 、C 重合),点F 在CD 边ACBD图4(h)tO1890521 )(m 3yABCD E FMN图6的延长线上,且满足BE DF =.联结EF ,点M 、N 分别是EF 与AC 、AD 的交点. (1)求AFE ∠的度数; (2)求证:FCACCM CE =.24.(本题满分12分,每小题满分4分)已知平面直角坐标系xOy (如图7),抛物线c bx x y ++=221经过点)0,3(-A 、)23,0(-C .(1)求该抛物线顶点P 的坐标; (2)求CAP ∠tan 的值;(3)设Q 是(1)中所求出的抛物线的一个动点,点Q 的横坐标为t ,当点Q 在第四象限时,用含t 的代数式表示△QAC 的面积.25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知AP 是半圆O 的直径,点C 是半圆O 上的一个动点(不与点A 、P 重合),联结AC ,以直线AC 为对称轴翻折AO ,将点O 的对称点记为1O ,射线1AO 交半圆O 于点B ,联结OC .(1)如图8,求证:AB ∥OC ;(2)如图9,当点B 与点1O 重合时,求证:CB AB =;图7 O xy1- 1-11(3)过点C 作射线1AO 的垂线,垂足为E ,联结OE 交AC 于F .当5=AO ,11=B O 时,求AFCF的值.参考答案一、选择题:(本大题共6题,每题4分,满分24分) 1.C ;2.C ;3.D ;4.B ;5.C ;6.A.二、填空题(本大题共12题,每题4分,满分48分) 7.12-;8.6a ;9.326;10.12≤<-x ;11.54;12.1=a ;13.400=y ;14.2-=x ;15.2600;16.2;17.(5,4-);18.1235(或写成12112). 三、简答题(本大题共7题,满分78分)19.解:原式=23121234331+-⨯+- ……………………6分=32132331+-+- …………1分=13231-=+--. …………2+1分20.解:方程两边同时乘以)x )x 2(2+-(,得 4)2(222-=-++x x x …1+1+1+1分整理,得 0232=--x x . ……2分AC(O 1)BO 图9AO 备用图A B CO 1O 图8解这个整式方程,得 21731+=x ,21732-=x . ……2+1分 (若记错了求根公式,但出现了17,即根的判别式计算正确,可得1分)经检验知,21731+=x ,21732-=x 都是原方程的根. ……1分 所以,原方程的根是 21731+=x ,21732-=x . 21.解:(1)∵CA CD BC ⋅=2,∴BCCACD BC =. ……1分 ∵90ACB ∠=︒,点D 在AC 边上,∴BCD ACB ∠=∠. ……1分 ∴△ACB ∽△BCD . ∴CBD A ∠=∠. ……1+1分 说明:若没有写出“∵90ACB ∠=︒,点D 在AC 边上,∴BCD ACB ∠=∠”,但只要写出了BCD ACB ∠=∠,可得1分.(2)∵CBD A ∠=∠,α=∠A ,∴α=∠CBD .……………………………1分 在Rt △ACB 中,90ACB ∠=︒,2=BC ,α=∠A . ∵BCACA =∠cot , ∴ααcot 2cot =⋅=BC AC . …………………………………………2分 在Rt △BCD 中,︒=∠90BCD ,α=∠CBD ,2=BC , ∵BCCDCBD =∠tan , ∴ααtan 2tan =⋅=BC CD . …………………………………………2分 ∴ ααtan 2cot 2-=-=CD AC AD . ……………………………1分 本题解题方法较多,请参照评分.如写成 ααtan 2tan 2-=AD ;4cos 4tan 22--=ααAD ; 4cos 44sin 422---=ααAD ;ααtan 24sin 42--=AD 等等,均正确.22.解(1)由图像可知,该游泳池5个小时排水)(m 18903, ……1分所以该游泳池排水的速度是37851890=÷(/h m 3). ……1分由题意得该游泳池灌水的速度是18921378=⨯(/h m 3),……1分 由此得灌水)(m 18903需要的时间是101891890=÷(h ) ……1分 所以清洗该游泳池所用的时间是610521=--(h ) ……1分(2)设灌水过程中的y (3m )与换水时间t (h )之间的函数关系式是b kt y +=(0≠k ).将(11,0),(21,1890)代入b kt y ++=,得⎩⎨⎧=+=+.b k ,b k 189021011 解得⎩⎨⎧-==.b ,k 2079189 ……1+2分所以灌水过程中的y (3m )与时间t (h )之间的函数关系式是2079189-=t y (2111≤<t ). ……1+1分备注:学生若将定义域写成2111≤≤t ,亦视为正确,此处不是问题的本质.23.解:(1)在正方形ABCD 中, ︒=∠=∠=∠90BAD ADC B ,AD AB =.……1分 ∵BE DF =,︒=∠=∠90ADF B ,AD AB =,∴△ABE ≌△ADF .……1分 ∴AF AE =,DAF BAE ∠=∠. ……………1+1分∴︒=∠=∠+∠=∠+∠=∠90BAD BAE EAD DAF EAD EAF . ……1分 ∵AF AE =,∴AEF AFE ∠=∠. ∴︒=︒⨯=∠=∠459021AEF AFE . ……………1分 (2) 方法1:∵四边形ABCD 是正方形,∴︒=∠45ACD . ……………1分∵︒=∠45AEF ,∴ACF AEF ∠=∠. ……………1分 又∵FMC AME ∠=∠, ……………1分 ∴△ABE ∽△ADF , ……………2分∴FCACCM CE =. ……………1分 方法2:∵四边形ABCD 是正方形,∴︒=∠=∠45ACD ACB . …………1分 ∵△ABE ≌△ADF ,∴AFD AEB ∠=∠. ……………1分∵CAE CAE ACB AEB ∠+︒=∠+∠=∠45, CFM CFM AFE AFD ∠+︒=∠+∠=∠45,∴CFM CAE ∠=∠. ……………2分又∵ACD ACB ∠=∠,△ACE ∽△FCM . ……………1分∴FCACCM CE =. ……………1分 其他方法,请参照评分.24.解:(1)将)0,3(-A 、)23,0(-C 代入c bx x y ++=221,得 ⎪⎪⎩⎪⎪⎨⎧-==+--.23,032)3(2c c b 解得 ⎪⎩⎪⎨⎧-==.c ,b 231 ………………2分所以抛物线的表达式为23212-+=x x y . ………………1分 其顶点P 的坐标为(1-,2-). ………………1分 (2)方法1:延长AP 交y 轴于G ,过 C 作AG CH ⊥,垂足是H . 设直线AP 的表达式为b kx y +=, 将),(A 03-、),(P 21--代入,得⎩⎨⎧-=+-=+-203b k b k ,解得⎩⎨⎧-=-=31b k . ∴3--=x y . 进而可得G (30-,). ………1分 ∴OA OG =,︒=∠=∠45OAG G . 在Rt △CHG 中,42345sin =︒⋅==CG CH HG . ………1分 在Rt △AOG 中,2345cos =︒=OGAG ,∴429=-=HG AG AH .∴31tan ==∠AH CH CAP .……1+1分 方法2:设a CH =,易得a CG 2=,a OG 22=,a AG 4=,a AH 3=, 31tan ==∠AH CH CAP . 方法3:联结OP ,利用两种不同的方式分别表示四边形APCO 的面积:49+=+=∆∆∆APC AOC APC APCO S S S S 四边形; 415433=+=+=∆∆POC APO APCO S S S 四边形;∴23=∆APC S ,然后求523=AC 、22=AP ,利用面积求AC 边上的高552=h ,求1010sin =∠CAP ,进而求31tan =∠CAP . (3)设)2321,(2-+t t t Q , …………1分由Q 在第四象限,得t t =,2321232122+--=-+t t t t . 联结OQ ,易得 AOQ QOC AOC QAC S S S S ∆∆∆∆-+=. ∵4923321=-⨯-⨯=∆AOC S ,t t S QOC 432321=⨯-⨯=∆, ………1分 492343232132122+--=-+⨯-⨯=∆t t t t S QOA …………1分 ∴t t t t t S QAC 4943)492343(434922+=+---+=∆. …………1分 25.解:(1)∵点1O 与点O 关于直线AC 对称,∴AC O OAC 1∠=∠. ………1分 在⊙O 中,∵OC OA =,∴C OAC ∠=∠. …………1分 ∴C AC O ∠=∠1. ∴1AO ∥OC ,即AB ∥OC . …………1+1分 (2)方法1:联结OB . ………1分 ∵点1O 与点O 关于直线AC 对称,AC 1OO ⊥, ………1分 由点1O 与点B 重合,易得AC OB ⊥. ………1分 ∵点O 是圆心,AC OB ⊥,∴CB AB = ………2分方法2:∵点1O 与点O 关于直线AC 对称,∴1AO AO =,1CO CO = ………1+1分由点1O 与点B 重合,易得 AB AO =,CO CB = …………1分 ∵OC OA =,∴CB AB =. ∴ CB AB = ………1+1分 方法3:证平行四边形1AOCO 是菱形.(3) 过点O 作AB OH ⊥,垂足为H .∵AB OH ⊥,AB CE ⊥,∴OH ∥CE ,又∵AB ∥OC ,∴5==OC HE .……1分 当点1O 在线段AB上(如图),6111=+=+=B O AO B O AO AB ,又∵ AB OH ⊥,∴321==AB AH . ∴835=+=+=AH EH AE ……1分∵AB ∥OC , ∴85==AE OC AF CF ……1分当点1O 在线段AB 的延长线上,类似可求75==AE OC AF CF . …2分。
学年宝山区初三数学二模Modified by JACK on the afternoon of December 26, 20202016学年宝山区第二学期期中考试九年级数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、 选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.5的相反数是(▲) (A) 2;(B)﹣5;(C)5;(D)51.2.方程01232=+-x x 实数根的个数是(▲) (A)0; (B)1; (C)2;(D)3.3.下列函数中,满足y 的值随x 的值增大而增大的是(▲)(A)x y 2-=; (B)3-=x y ; (C)xy 1=; (D)2x y =.4.某老师在试卷分析中说:参加这次考试的41位同学中,考121分的人数最多,虽然最高的同学获得了满分150分,但是十分遗憾最低的同学仍然只得了56分,其中分数居第21位的同学获得116分。
这说明本次考试分数的中位数是(▲)(A)21; (B)103; (C)116; (D)121. 5.下列命题为真命题的是(▲)(A)有两边及一角对应相等的两三角形全等;(B) 两个相似三角形的面积比等于其相似比;(C) 同旁内角相等; (D)两组对边分别相等的四边形是平行四边形.6.如图1,△ABC 中,点D 、F 在边AB 上,点E 在边AC上,如果DE ∥BC ,EF ∥CD ,那么一定有(▲)(A) AE AD DE ⋅=2; (B)AB AF AD ⋅=2;(C)AD AF AE ⋅=2; (D)AC AE AD ⋅=2.二、 填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】BE 图17.计算:=÷-3165 ▲ . 8.计算:2)2(b a -= ▲ .9.计算:321x x ⋅= ▲ . 10.方程0=+x x 的解是 ▲ .11.如果正比例函数x k y )1(-=的图像经过原点和第一、第三象限,那么k▲ .12.二次函数x x y 22-=图像的对称轴是直线 ▲ .13. 一枚(形状为正方体的)骰子可以掷出1、2、3、4、5、6这六个数中的任意一个,用这个骰子随机掷出的一个数替代二次根式3-x 中的字母x ,使该二次根式有意义的概率是 ▲ .14.为了解某中学九年级学生的上学方式,从该校九年级全体300名学生中,随机抽查了60名学生,结果显示有5名学生“骑共享单车上学”.由此,估计该校九年级全体学生中约有___▲ 名学生“骑共享单车上学”.15.已知在△ABC 中,点M 、N 分别是边AB 、AC 的中点,如果a AB =,b AC =,那么向量MN = ▲ (结果用a 、b 表示).点B16.如图2,在□ABCD 中,,5,3==BC AB 以为圆心,以任意长为半径作弧,分别交BC BA 、于 点Q P 、,再分别以Q P 、为圆心,以大于PQ21的长为半径作弧,两弧在ABC ∠内交于点M ,连接BM并延长交AD 于点E ,则DE 的长为_________.17.已知一条长度为10米的斜坡两端的垂直高度差为6米,那么该斜坡的坡角度数约为 ▲(备用数据:tan31cot590.6,sin37cos530.6︒=︒≈︒=︒≈).18.如图3,E 、F 分别为正方形ABCD 的边AB 、AD 上的点,且AE=AF ,联接EF ,将△AEF 绕点A 逆时针旋转45°,使E 落在E 1,F 落在F 1,联接BE 1并延长交DF 1于点G ,如果 AB=22,AE=1,则DG= ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)化简,再求值:22482++-x x ,其中5=x . 20.(本题满分10分)F 图2图3{16222=+-y xy x 0922=-y x 解方程组:21.(本题满分10分)如图4,在△ABC 中,∠B =45°,点D 为△ABC的边AC 上一点,且AD :CD=1:2.过D 作DE ⊥AB 于E ,C作CF ⊥AB 于F ,联接BD ,如果AB =7,BC=24、求线段CF 和BE 的长度.22.(本题满分10分,每小题满分各5分)如图5,由正比例函数x y -=沿y 轴的正方向平移4个单位而成的一次函数b x y +-=的图像与反比例函数xky =(0≠k )在第一象限的图像交于A (1,n )和B 两点.(1)求一次函数b x y +-=和反比例函数的解析式;(2)求△AB O 的面积.23.(本题满分12分,每小题满分各6分)如图6,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,D(1)求证:CF =2AF ; (2)求tan ∠CFD 的值.24. (本题满分12分,每小题满分各4分)如图7,已知直线221-=x y 与x 轴交于点B ,与y 轴交于点C ,抛物线2212-+=bx x y 与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C.(1)求抛物线的解析式;(2)点M 是上述抛物线上一点,如果△AB M 和△ABC 相似,求点M 的坐标;(3)连接AC ,求顶点D 、E 、F 、G 在△ABC 各边上的矩形DEFC面积最大时,写出该矩形在AB 边上的顶点的坐标.25. (本题满分14分,每小题满分分别为5分、5分、4分)如图8,在△ABC 中,∠ACB 为直角,AB=10,30=∠A °,半径为1的动圆Q 的圆心从点C 出发,沿着CB 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点B出发,F DACB图6图7ED B CAQ P沿着BA方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PB长为半径的⊙P与AB、BC的另一个交点分别为E、D,连结ED、EQ.(1)判断并证明ED与BC的位置关系,并求当点Q与点D重合时t的值;(2)当⊙P和AC相交时,设CQ为x,⊙P被AC截得的弦长为y,求y关于x的函数;并求当⊙Q过点B时⊙P被AC截得的弦长;(3)若⊙P与⊙Q相交,写出t的取值范围.。
2016学年嘉定区九年级第二次质量调研数学试卷(满分150分,考试时间100分钟)(2017.4)同学们注意:1.本试卷含三个大题,共25题;2.答题时,同学们务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.如果a 表示不为0的任意一个实数,那么下列四个算式中,正确的是 ···················( )(A )a a a =-2323; (B )a a a =⋅313;(C )a a a =÷23;(D )a a =212)(. 2.在解答“一元二次方程021212=+-a x x 的根的判别式为 ”的过程中,某班同学的作业中出现了下面几种答案,其中正确的答案是 ··············································( ) (A )0241≥-a ; (B )a 241-; (C )081≥-a ; (D )a 81-.3.如果函数122++=x ax y 的图像不经过第四象限,那么实数a 的取值范围为 ·········( ) (A )0<a ;(B )0=a ;(C )0>a ;(D )0≥a .4.从概率统计的角度解读下列诗词所描述的事件,其中属于确定事件的是 ·············· ( ) (A )黄梅时节家家雨,青草池塘处处蛙; (B )人间四月芳菲尽,山寺桃花始盛开; (C )水面上秤锤浮,直待黄河彻底枯;(D )一夜北风紧,开门雪尚飘.5.已知⊙A 的半径长为2,⊙B 的半径长为5,如果⊙A 与⊙B 内含,那么圆心距AB 的长度可以为 ·············································· ······························ ·························· ( ) (A )0;(B )3;(C )6;(D )9.6.将两个底边相等的等腰三角形按照图1所示的方式拼接在一起(隐藏互相重合的底边)的图形俗称为“筝形”.假如“筝形”下个定义,那么下面四种说法中,你认为最能够描述“筝形”特征的是 ······················································································ ( )(A )有两组邻边相等的四边形称为“筝形”; (B )有两组对角分别相等的四边形称为“筝形”;1(C )两条对角线互相垂直的四边形称为“筝形”;(D )以一条对角线所在直线为对称轴的四边形称为“筝形”. 二、填空题:(本大题共12题,每题4分,满分48分) 【请直接将结果填入答题纸的相应位置】 7.计算:=-1)21( .8.已知73.13≈,那么≈31(保留两个有效数字........)9.不等式组⎩⎨⎧>+<01,32x x 的解集是 .10.方程2+x =x 的实数解是 .11.已知点),(11y x A 、点),(22y x B 在反比例函数xy 2-=的图像上.如果210x x <<,那么1y 与2y 的大小关系为:1y 2y (从“<”、“=”、“>”中选择).12.某校学生综合素质评价方案中有这样一段话:“学生自评、同学互评与班级评定小组评价在学生综合素质评价中所占的权重分别为%10、%30、%60”.如果甄聪明同学的自评分数、同学互评分数、班级评定小组给出的分数分别为96分、95分、95分,那么甄聪明同学的综合素质评价分数为 分.13.一名射击运动员连续打靶9次,假如他打靶命中环数的情况如图2所示,那么该射击运动员本次打靶命中环数的中位数为 环.14.如果非零向量a r 与向量b r 的方向相反,且b a ρρ32=,那么向量a r 为 (用向量b r 表示).15.从山底A 点测得位于山顶B 点的仰角为︒30,那么从B 点测得A 点的俯角为 度. 16.已知扇形的弧长为8,如果该扇形的半径长为2,那么这个扇形的面积为 . 17.命题“相等的角不一定是对顶角”是 命题(从“真”或“假”中选择). 18.已知在△ABC 中,︒=∠90ACB ,10=AB ,53cos =A (如图3),将△ABC 绕着点C 旋转,点A 、B 的对应点分别记为A '、B ',B A ''与边AB 相交于点E .如果B A ''⊥AC ,那么线段E B '的长为 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:2122442--++-x x x ,其中2=x .20.(本题满分10分)ABC图3解方程组:⎩⎨⎧=--=-.,032222y xy x y x21.(本题满分10分,每小题5分)将大小相同,形状也相同的三个菱形按照图4的方式拼接在一起(其中,点B 、C 、F 、G 在同一条直线上),3=AB .联结AG ,AG 与EF 相交于点P . (1)求线段EP 的长;(2)如果︒=∠60B ,求△APE 的面积.22.(本题满分10分,第(1)小题6分;第(2)小题4分)某种型号的家用车在高速公路上匀速行驶时,测得部分数据如下表:行驶路程x (千米) … 100 150 … 油箱内剩余油量y (升)…5248…(1)如果该车的油箱内剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,求y 关于x 的函数解析式(不需要写出它的定义域);(2)张老师租赁该型号的家用车也在该高速公路的相同路段以相同的速度匀速行驶300千米(不考虑小轿车载客的人数以及堵车等因素).假如不在高速公路上的服务区加油,那么在上高速公路之前,张老师这辆车的油箱内至少..需要有多少升汽油?请根据题目中提供的相关信息简要说明理由. 23.(本题满分12分,每小题6分)已知:正方形ABCD ,点E 在边CD 上,点F 在线段BE 的延长线上,且CBE FCE ∠=∠.(1)如图5,当点E 为CD 边的中点时,求证:EF CF 2=; (2)如图6,当点F 位于线段AD 的延长线上,求证:DFDEBE EF =.ABCDEF图5ABCD 图6FEABCD图4FEGHP24.(本题满分12分,每小题4分)在平面直角坐标系xOy (如图7)中,已知点A 的坐标为(3,1),点B 的坐标为(6,5),点C 的坐标为(0,5);某二次函数的图像经过点A 、点B 与点C . (1)求这个二次函数的解析式;(2)假如点Q 在该函数图像的对称轴上,且△ACQ 是等腰三角形,直接..写出点Q 的坐标; (3)如果第一象限内的点P 在(1)中求出的二次函数 的图像上,且21tan =∠PCA ,求PCB ∠的正弦值.25.(满分14分,第(1)小题5分,第(2)小题5分、第(3)小题4分)已知:8=AB ,⊙O 经过点A 、B .以AB 为一边画平行四边形ABCD ,另一边CD 经过点O (如图8).以点B 为圆心,BC 为半径画弧,交线段OC 于点E (点E 不与点O 、点C 重合).(1)求证:OE OD =;(2)如果⊙O 的半径长为5(如图9),设x OD =,y BC =,求y 关于x 的函数解析式,并写出它的定义域;(3)如果⊙O 的半径长为5,联结AC ,当AC BE ⊥时,求OD 的长.图7图9备用图图82016学年嘉定区九年级第二次质量调研数学试卷参考答案一、选择题:(本大题共6题,每题4分,满分24分) 1、C ;2、B ;3、D ;4、C ;5、A ;6、D.二、填空题:(本大题共12题,每题4分,满分48分)7、2;8、58.0;9、231<<-x ;10、2=x ;11、>;12、1.95;13、9环;14、b a ρρ23-=;15、︒30;16、8;17、真命题;18、524.三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 解:2122442--++-x x x )2)(2(2)2)(2()2(2)2)(2(4-++--+-+-+=x x x x x x x x ······ 3分 21)2)(2()2()2)(2(2424+=-+-=-+---+=x x x x x x x x . ··································· 2+2+1分当2=x 时,原式=221221-=+. ···················································· 2分20.(本题满分10分)解:03222=--y xy x 可以化为:0))(3(=+-y x y x ,所以:03=-y x 或0=+y x . ·································································· 2分原方程组可以化为:⎩⎨⎧=-=-032y x y x ,(Ⅰ)与⎩⎨⎧=+=-02y x y x ,(Ⅱ) ·························· 2分 解(Ⅰ)得⎩⎨⎧==1,3y x ; 解(Ⅱ)得⎩⎨⎧-==1,1y x ················································· 2+2分 所以,原方程组的解为:⎩⎨⎧==;1,311y x 与⎩⎨⎧-==.1,122y x ················································· 2分21.(本题满分10分,每小题5分)解:(1)由题意得四边形ABGH 、ABFE 是平行四边形. ·································· 1分 ∴ AE ∥FG . ····················································································· 1分∴FGAEFP EP =. ······················································································· 1分ABCD图4FEGHPH 将6=AE ,3=FG 代入,得 2=FP EP ,即32=EF EP ································· 1分 又∵四边形ABFE 是平行四边形,3=AB ,∴3==AB EF .∴2=EP . ··········· 1分 (2)过点P 作AE PH ⊥,垂足为H (如图4). ········································· 1分 ∵四边形ABFE 是平行四边形,︒=∠60B ,∴︒=∠=∠60B PEH . ············ 1分 在Rt △PEH 中,︒=∠90PHE ,︒=∠60PEH ,2=EP ,∴323260sin =⨯=︒⋅=EP PH . ······················································· 2分 ∴△APE 的面积为33362121=⨯⨯=⋅PH AE . ··································· 1分22.(本题满分10分)解:(1)设油箱内剩余油量y (升) 与行驶路程x (千米)之间的函数关系式为b kx y +=. ······················································································· 1分分别将100=x ,52=y ;150=x ,48=y 代入上式,得⎩⎨⎧=+=+.48150,52100b k b k ······· 2分解得:⎪⎩⎪⎨⎧=-=.60,252b k ···················································································· 2分 ∴所求的函数关系式为60252+-=x y ························································· 1分 (2)方法1:由题意可得,该型号的汽车在该路段行驶时,每行驶100耗油8升. ·· 2分 设行驶300公里时需要耗油x 升,可得8:100:300x =,解得24=x 升. ············· 1分方法2:将300=x 代入60252+-=x y ,得36=y . ······································ 2分 243660=-. ··············································································· 1分 答:张老师的这辆车的油箱内至少..需要有24升汽油. ········································ 1分 备注:学生若是在得到24升油的基础上又考虑了其它因素(如离开高速公路之后还需要再行驶一段路程才可以抵达目的地(或寻找到加油站),因此给出了大于24升油的其它数据,只要能够自圆其说,且符合生活实际情况,那么可以酌情评分. 23.(本题满分12分,每小题6分)(1)证明:∵四边形ABCD 是正方形,∴BC CD =. ··········································· 1分∵点E 为CD 边的中点,∴CD CE 21=BC 21=. ··································· 1分 ∵CBE FCD ∠=∠,F F ∠=∠,∴△FCE ∽△FBC . ··························· 2分 ∴BCCECF EF =. ·················································································· 1分又∵BC CE 21=,∴21=CF EF .即EF CF 2=. ············································· 1分 (2)∵四边形ABCD 是正方形,∴DE ∥AB ,AD ∥BC ,AD =CD . ················ 1分∵点F 位于线段AD 的延长线上,DE ∥AB ,∴ADDFBE EF =. ························ 1分 又∵AD =CD ,∴CDDFBE EF =.(1) ··························································· 1分 ∵AF ∥BC ,∴CBE DFE ∠=∠.又∵CBE DCF ∠=∠,∴DCF DFE ∠=∠. ················································ 1分 又∵CDF FDE ∠=∠,∴△FDE ∽△CDF . ················································ 1分∴CD DF DF DE =(2).由(1)、(2)得 DFDE BE EF =. ········································ 1分24.(本题满分12分,每小题4分)解:(1)设所求二次函数的解析式为c bx ax y ++=2,将A (3,1)、B (6,5)、C (0,5)代入,得 ⎪⎩⎪⎨⎧==++=++.5,5636,139c c b a c b a 解得 94=a ,38-=b ,5=c . ································· 3分所以,这个二次函数的解析式为538942+-=x x y . ·········································· 1分 (2))6,3(1Q ,)4,3(2-Q ,)9,3(3Q ,)825,3(4Q . ············································ 4分(3)由题意得,该二次函数图像的对称轴为直线3=x . ····································· 1分 联结PC 交直线3=x 于点M ,过点M 作AC MN ⊥,垂足为N (图7-1) . 将直线3=x 与BC 的交点记为H ,易得3=CH ,4=AH ,5=AC .∴53sin ==∠CA CH CAH ········································································ 1分 故可设k MN 3=,则k AM 5=,k AM 4=.又∵21tan =∠PCA ,则k CN 6=.由题意得方程:564=+k k .解得21=k ,25=AM ,23254=-=MH ·········· 1分A B CDEF图5ABCD 图6FE∴523)23(322=+=CM .∴55sin ==∠CM MH PCB . ···························· 1分25.(满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)解:(1)联结OA 、OB (如图8-1),易得OB OA =,OBA OAB ∠=∠. ···················· 1分∵四边形ABCD 是平行四边形,∴AB ∥CD ,BC AD =.∵BC BE =,BC AD =,∴BE AD =. ······················································ 1分 又 ∵AB ∥CD ,∴四边形ABED 是等腰梯形.∴EBA DAB ∠=∠. ····················· 1分 又 ∵OBA OAB ∠=∠,∴OBA EBA OAB DAB ∠-∠=∠-∠.即 OBE OAD ∠=∠. ·················································································· 1分在△AOD 和△BOE 中,∵OB OA =,OBE OAD ∠=∠,BE AD =,∴△AOD ≌△BOE. ∴OE OD =. ························· 1分方法2:∵BED ADE ∠=∠,EBO DAO ∠=∠,BE AD =,∴△AOD ≌△BOE.…… 方法3:∵BED ADE ∠=∠,EBO DAO ∠=∠,OB OA =,∴△AOD ≌△BOE.…… 方法4:如图8-2,过点O 作AB OH ⊥,过点D 作AB DG ⊥,过点E 作AB EI ⊥.…… 方法5:如图8-3,过点O 作AB OH ⊥,垂足为H ,联结DH 、EH .……(2)方法1:如图9-1,过点O 作AB OH ⊥,垂足为H ,过点D 作AB DG ⊥,垂足为G .联结OB ,3=OH ,4==BH AH ,得1分;得到3==OH DG ,得2分;在Rt △ADG 中,写出x AG -=4,y BC AD ==,得1分;利用222AG DG AD +=得到2582+-=x x y ,得1分,函数定义域40<<x ,得1分.方法2、方法3见评分细则.(3)如图10-1,过点O 作AC OM ⊥,交AC 于点M ,交AB 于点N .证明四边形ONBE 是平行四边形,得1分;利用OD OE BN ==,CD AB =得到AN OC =,得1分;利用△AMN ≌△CMO 或COANCM AM =得到CN AM =,进而得到OM 是AC 的垂直平分线,5==OA OC ,得1分;利用8==AB CD ,5=OC 得到3=OD ,得1分.方法2.如图10-,2;方法3:如图10-3;方法4(利用圆周角,略).图8-1图8-3图8-2像平时有价值的升学文章,像自招、校园开放日消息、历年中考分数线,那些文章我都放在公众号菜单栏那个按钮上的专题那里了,还有什么细化的升学问题,你们可以关注公众号给我留言,我看到会第一时间回复你们的——小编编GHEBAOD 图9-1 P NME CBAO D图10-1 LK PE B AO D图10-2 P NME BAO D 图10-3。
2016年中考数学二模试卷一、选择题:本大题共12小题,每题3分,共36分.1.﹣8的立方根是()A.2 B.2C.﹣D.﹣22.统计显示,2013年底某市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为()A.11.4×104 B.1.14×104 C.1.14×105 D.0.114×1063.函数中自变量x的取值范围是()A.x≥2 B.x≥﹣2 C.x<2 D.x<﹣24.下列计算正确的是()A.a2+a2=2a4 B.3a2b2÷a2b2=3abC.(﹣a2)2=a4D.(﹣m3)2=m95.抛物线y=﹣6x2可以看作是由抛物线y=﹣6x2+5按下列何种变换得到()A.向上平移5个单位 B.向下平移5个单位C.向左平移5个单位 D.向右平移5个单位6.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为()A.12米B.4米C.5米D.6米7.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB 于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为()A.4﹣π B.4﹣2πC.8+πD.8﹣2π8.按一定规律排列的一列数:,,,…其中第6个数为()A.B.C.D.9.在一次体育达标测试中,九年级(3)班的15名男同学的引体向上成绩如下表所示:成绩(个)8 9 11 12 13 15人数 1 2 3 4 3 2这15名男同学引体向上成绩的中位数和众数分别是()A.12,13 B.12,12 C.11,12 D.3,410.下列四个命题:①对角线互相垂直的平行四边形是正方形;②,则m≥1;③过弦的中点的直线必经过圆心;④圆的切线垂直于经过切点的半径;⑤圆的两条平行弦所夹的弧相等;其中正确的命题有()个.A.1 B.2 C.3 D.411.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.2D.412.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4 B.3 C.2 D.1二、填空题:每题3分,共24分.13.计算:(﹣)=.14.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n=.15.=.16.折叠矩形ABCD,使点D落在BC边上的点F处,若折痕AE=5,tan∠EFC=,则BC=.17.如图,Rt△A′BC′是由Rt△ABC绕B点顺时针旋转而得,且点A、B、C′在同一条直线上,在Rt△ABC中,若∠C=90°,BC=2,AB=4,则斜边AB旋转到A′B所扫过的扇形面积为.18.关于x的不等式组的解集为x<3,那么m的取值范围是.19.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=.20.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H.给出下列结论:①△ABE≌△DCF;②;③DP2=PH•PB;④.其中正确的是.(写出所有正确结论的序号)三、解答题:本大题共6小题,共60分.21.(8分)某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随即抽查部分同学体育测试成绩(由高到低分A、B、C、D四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了名同学的体育测试成绩,扇形统计图中B级所占的百分比b=,D级所在小扇形的圆心角的大小为;(2)请直接补全条形统计图;(3)若该校九年级共有600名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)的人数.22.(8分)海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45°方向,求此时灯塔B到C处的距离.23.(12分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.24.(8分)如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.25.(12分)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA匀速移动,当△DEF的顶点D 移动到AC 边上时,△DEF 停止移动,点P 也随之停止移动,DE 与AC 相交于点Q ,连接PQ ,设移动时间为t (s )(0<t <4.5). 解答下列问题:(1)当t 为何值时,点A 在线段PQ 的垂直平分线上?(2)连接PE ,设四边形APEC 的面积为y (cm 2),求y 与t 之间的函数关系式,是否存在某一时刻t ,使面积y 最小?若存在,求出y 的最小值;若不存在,说明理由; (3)是否存在某一时刻t ,使P 、Q 、F 三点在同一条直线上?若存在,求出此时t 的值;若不存在,说明理由.26.(12分)如图所示,抛物线y=ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上,其中A (﹣2,0),B (﹣1,﹣3). (1)求抛物线的解析式;(2)点M 为y 轴上任意一点,当点M 到A ,B 两点的距离之和为最小时,求此时点M 的坐标;(3)在第(2)问的结论下,抛物线上的点P 使S △PAD =4S △ABM 成立,求点P 的坐标.2016年内蒙古包头市昆都仑区中考数学二模试卷参考答案与试题解析一、选择题:本大题共12小题,每题3分,共36分.1.﹣8的立方根是()A.2 B.2C.﹣D.﹣2【考点】立方根.【分析】直接利用立方根的定义分析得出答案.【解答】解:﹣8的立方根是:﹣2.故选:D.【点评】此题主要考查了立方根,正确把握立方根的定义是解题关键.2.统计显示,2013年底某市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为()A.11.4×104 B.1.14×104 C.1.14×105 D.0.114×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:11.4万=1.14×105,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.函数中自变量x的取值范围是()A.x≥2 B.x≥﹣2 C.x<2 D.x<﹣2【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【解答】解:依题意,得x+2≥0,解得x≥﹣2,故选B.【点评】注意二次根式的被开方数是非负数.4.下列计算正确的是()A.a2+a2=2a4 B.3a2b2÷a2b2=3abC.(﹣a2)2=a4D.(﹣m3)2=m9【考点】整式的除法;合并同类项;幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及单项式除以单项式运算法则和积的乘方运算法则化简,进而判断得出答案.【解答】解:A、a2+a2=2a2,故此选项错误;B、3a2b2÷a2b2=3,故此选项错误;C、(﹣a2)2=a4,正确;D、(﹣m3)2=m6,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及单项式除以单项式运算和积的乘方运算等知识,正确掌握相关运算法则是解题关键.5.抛物线y=﹣6x2可以看作是由抛物线y=﹣6x2+5按下列何种变换得到()A.向上平移5个单位 B.向下平移5个单位C.向左平移5个单位 D.向右平移5个单位【考点】二次函数图象与几何变换.【分析】先得到两个抛物线的顶点坐标,然后根据顶点坐标判断平移的方向和单位长度.【解答】解:∵y=﹣6x2+5的顶点坐标为(0,5),而抛物线y=﹣6x2的顶点坐标为(0,0),∴把抛物线y=﹣6x2+5向下平移5个单位可得到抛物线y=﹣6x2.故选B.【点评】本题考查了抛物线的几何变换:抛物线的平移问题可转化为其顶点的平移问题,抛物线的顶点式:y=a(x﹣h)2+k(a≠0),则抛物线的顶点坐标为(h,k).6.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为()A.12米B.4米C.5米D.6米【考点】解直角三角形的应用-坡度坡角问题.【分析】根据迎水坡AB的坡比为1:,可得=1:,即可求得AC的长度,然后根据勾股定理求得AB的长度.【解答】解:Rt△ABC中,BC=6米,=1:,∴AC=BC×=6,∴AB===12.故选A.【点评】此题主要考查解直角三角形的应用,构造直角三角形解直角三角形并且熟练运用勾股定理是解答本题的关键.7.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB 于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为()A.4﹣π B.4﹣2πC.8+πD.8﹣2π【考点】扇形面积的计算;切线的性质.【分析】根据圆周角定理可以求得∠A的度数,即可求得扇形EAF的面积,根据阴影部分的面积=△ABC的面积﹣扇形EAF的面积即可求解.【解答】解:△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=90°.则扇形EAF的面积是:=π.故阴影部分的面积=△ABC的面积﹣扇形EAF的面积=4﹣π.故选A.【点评】本题主要考查了扇形面积的计算,正确求得扇形的圆心角是解题的关键.8.按一定规律排列的一列数:,,,…其中第6个数为()A.B.C.D.【考点】算术平方根.【分析】观察这列数,得到分子和分母的规律,进而得到答案.【解答】解:根据一列数:,,,可知,第n个数分母是n,分子是n2﹣1的算术平方根,据此可知:第六个数是,故选C.【点评】此题考查了数字的变化类,从分子、分母两个方面考虑求解是解题的关键,难点在于观察出分子的变化.9.在一次体育达标测试中,九年级(3)班的15名男同学的引体向上成绩如下表所示:成绩(个)8 9 11 12 13 15人数 1 2 3 4 3 2这15名男同学引体向上成绩的中位数和众数分别是()A.12,13 B.12,12 C.11,12 D.3,4【考点】众数;中位数.【分析】根据中位数与众数的定义,从小到大排列后,中位数是第8个数,众数是出现次数最多的一个,解答即可.【解答】解:第8个数是12,所以中位数为12;12出现的次数最多,出现了4次,所以众数为12,故选B.【点评】本题主要考查众数与中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.10.下列四个命题:①对角线互相垂直的平行四边形是正方形;②,则m≥1;③过弦的中点的直线必经过圆心;④圆的切线垂直于经过切点的半径;⑤圆的两条平行弦所夹的弧相等;其中正确的命题有()个.A.1 B.2 C.3 D.4【考点】命题与定理.【分析】利用正方形的判定方法、垂径定理及其推理、圆的有关性质等知识分别判断后即可确定正确的选项.【解答】解:①对角线互相垂直的平行四边形是菱形,故错误;②,则m≥1,正确;③过弦的中点的且垂直于弦的直线必经过圆心,故错误;④圆的切线垂直于经过切点的半径,正确;⑤圆的两条平行弦所夹的弧相等,正确,正确的有3个,故选C;【点评】本题考查了命题与定理的知识,解题的关键是了解正方形的判定方法、垂径定理及其推理、圆的有关性质等知识,难度不大.11.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.2D.4【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为3,1,可得出横坐标,即可求得AE,BE,再根据勾股定理得出AB,根据菱形的面积公式:底乘高即可得出答案.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S=底×高=2×2=4,菱形ABCD故选D.【点评】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.12.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4 B.3 C.2 D.1【考点】二次函数图象与系数的关系.【分析】由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1•x2=,∴OA•OB=﹣,所以④正确.故选:B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab >0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题:每题3分,共24分.13.计算:(﹣)=﹣.【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=﹣•=﹣.故答案为:﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.14.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n=1.【考点】概率公式.【分析】根据白球的概率公式列出关于n的方程,求出n的值即可.【解答】解:由题意知:,解得n=1.【点评】用到的知识点为:概率=所求情况数与总情况数之比.15.=5.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】分别根据数的开方法则、0指数幂的运算法则、特殊角的三角函数值及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2﹣4×+1+4=2﹣2+5=5.故答案为:5.【点评】本题考查的是实数的运算,熟知数的开方法则、0指数幂的运算法则、特殊角的三角函数值及绝对值的性质是解答此题的关键.16.折叠矩形ABCD,使点D落在BC边上的点F处,若折痕AE=5,tan∠EFC=,则BC=10.【考点】矩形的性质;翻折变换(折叠问题).【分析】根据tan∠EFC=,设CE=3k,在RT△EFC中可得CF=4k,EF=DE=5k,根据∠BAF=∠EFC,利用三角函数的知识求出AF,然后在RT△AEF中利用勾股定理求出k,继而代入可得出答案.【解答】解:设CE=3k,则CF=4k,由勾股定理得EF=DE==5k,∴DC=AB=8k,∵∠AFB+∠BAF=90°,∠AFB+∠EFC=90°,∴∠BAF=∠EFC,∴tan∠BAF=tan∠EFC=,∴BF=6k,AF=BC=AD=10k,在Rt△AFE中,由勾股定理得AE===5k=5,解得:k=1,∴BC=10×1=10;故答案为:10.【点评】此题考查了翻折变换的性质、矩形的性质、勾股定理;解答本题关键是根据三角函数值,表示出每条线段的长度,然后利用勾股定理进行解答,有一定难度.17.如图,Rt△A′BC′是由Rt△ABC绕B点顺时针旋转而得,且点A、B、C′在同一条直线上,在Rt△ABC中,若∠C=90°,BC=2,AB=4,则斜边AB旋转到A′B所扫过的扇形面积为.【考点】扇形面积的计算.【分析】根据题意可知斜边AB旋转到A'B所扫过的扇形面积为扇形ABA′的面积,根据扇形面积公式计算即可.【解答】解:AB=4,∠ABA′=120°,所以s==π.【点评】主要考查了扇形面积的求算方法.面积公式有两种:(1)、利用圆心角和半径:s=;(2)、利用弧长和半径:s=lr.针对具体的题型选择合适的方法.18.关于x的不等式组的解集为x<3,那么m的取值范围是m≥3.【考点】解一元一次不等式组.【分析】首先解第一个不等式,然后根据不等式组的解集即可确定m的范围.【解答】解:,解①得x<3,∵不等式组的解集是x<3,∴m≥3.故答案是:m≥3.【点评】本题考查了一元一次不等式组的解法,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=50°.【考点】切线的性质.【分析】连接DF,连接AF交CE于G,由AB是⊙O的直径,且经过弦CD的中点H,得到,由于EF是⊙O的切线,推出∠GFE=∠GFD+∠DFE=∠ACF=65°根据外角的性质和圆周角定理得到∠EFG=∠EGF=65°,于是得到结果.【解答】解:连接DF,连接AF交CE于G,∵AB是⊙O的直径,且经过弦CD的中点H,∴,∵EF是⊙O的切线,∴∠GFE=∠GFD+∠DFE=∠ACF=65°,∵∠FGD=∠FCD+∠CFA,∵∠DFE=∠DCF,∠GFD=∠AFC,∠EFG=∠EGF=65°,∴∠E=180°﹣∠EFG﹣∠EGF=50°,故答案为:50°.方法二:连接OF,易知OF⊥EF,OH⊥EH,故E,F,O,H四点共圆,又∠AOF=2∠ACF=130°,故∠E=180°﹣130°=50°【点评】本题考查了切线的性质,圆周角定理,垂径定理,正确的作出辅助线是解题的关键.20.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 相交于点H .给出下列结论: ①△ABE ≌△DCF ;②;③DP 2=PH •PB ;④.其中正确的是 ①③ .(写出所有正确结论的序号)【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质;正方形的性质.【分析】①根据等边三角形的性质和正方形的性质,得到∠ABE=∠DCF ,∠A=∠ADC ,AB=CD ,证得△ABE ≌△DCF ,①正确;②由于∠FDP=∠PBD ,∠DFP=∠BPC=60°,推出△DFP ∽△BPH ,得到===tan∠DCF=,②错误;③由于∠PDH=∠PCD=30°,∠DPH=∠DPC ,推出△DPH ∽△CPD ,得到=,PB=CD ,等量代换得到DP 2=PH •PB ,③正确;④设正方形ABCD 的边长是3,则PB=BC=AD=3,求得∠EBA=30°,得出AE 、BE 、EP 的长,由S △BED =S ABD ﹣S ABE ,S △EPD =S △BED ,求得=,④错误;即可得出结论.【解答】解:①∵△BPC 是等边三角形, ∴BP=PC=BC ,∠PBC=∠PCB=∠BPC=60°, ∵四边形ABCD 为正方形,∴AB=BC=CD ,∠A=∠ADC=∠BCD=90° ∴∠ABE=∠DCF=30°, 在△ABE 与△CDF 中,,∴△ABE ≌△DCF (ASA ),故①正确;②∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠FCB=∠BPC=60°,∴△DFP∽△BPH,∴===tan∠DCF=,故②错误;③∵∠FDP=15°,∴∠PDH=30°∴∠PDH=∠PCD,∵∠DPH=∠DPC,∴△DPH∽△CDP,∴=,∴DP2=PH•CD,∵PB=CD,∴DP2=PH•PB,故③正确;④设正方形ABCD的边长是3,∵△BPC为正三角形,∴∠PBC=60°,PB=BC=AD=3,∴∠EBA=30°,∴AE=ABtan30°=3×=,BE===2,∴EP=BE﹣BP=2﹣3,S=S ABD﹣S ABE=×3×3﹣×3×=,△BEDS △EPD =S △BED =×=,∴==,故④错误;∴正确的是①③; 故答案为:①③.【点评】本题考查了相似三角形的判定与性质、全等三角形的判定、等边三角形的性质、正方形的性质、三角形面积计算、三角函数等知识;熟练掌握相似三角形的判定与性质、三角形面积计算、三角函数是解决问题的关键.三、解答题:本大题共6小题,共60分.21.某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随即抽查部分同学体育测试成绩(由高到低分A 、B 、C 、D 四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了 80 名同学的体育测试成绩,扇形统计图中B 级所占的百分比b= 40% ,D 级所在小扇形的圆心角的大小为 18° ; (2)请直接补全条形统计图;(3)若该校九年级共有600名同学,请估计该校九年级同学体育测试达标(测试成绩C 级以上,含C 级)的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据A 组人数及其百分比可得抽查总人数,将B 级人数除以总人数可得其百分比,用D 等级人数占被抽查人数的比例乘以360°即可;(2)总人数减去A 、B 、D 三等级人数可得C 等级人数,补全条形图即可;(3)用样本中C等级及其以上(即A、B、C三等级)人数占被抽查人数的比例乘以总人数600可得.【解答】解:(1)课题研究小组共抽查学生:20÷25%=80(名),b=×100%=40%,D级所在小扇形的圆心角的大小为×360°=18°;故答案为:80,40%,18.(2)C等级人数为:80﹣20﹣32﹣4=24(名),补全条形统计图如图:(3)600×=570(人),答:估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)的约有570人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意,从统计图中得到必要的信息是解决问题的关键.22.海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45°方向,求此时灯塔B到C 处的距离.【考点】解直角三角形的应用-方向角问题.【分析】由已知可得△ABC中∠BAC=30°,∠BCA=45°且AC=10海里.要求BC的长,可以过B作BD⊥BC于D,先求出AD和CD的长.转化为运用三角函数解直角三角形.【解答】解:如图,过B点作BD⊥AC于D.∴∠DAB=90°﹣60°=30°,∠DCB=90°﹣45°=45°.设BD=x,在Rt△ABD中,AD==x,在Rt△BDC中,BD=DC=x,BC=,∵AC=5×2=10,∴x+x=10.得x=5(﹣1).∴BC=•5(﹣1)=5(﹣)(海里).答:灯塔B距C处海里.【点评】解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23.(12分)(2016•包头二模)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.【考点】二次函数的应用;一次函数的应用.【分析】(1)设y=kx+b,则由图象可求得k,b,从而得出y与x之间的函数关系式,并写出x的取值范围100≤x≤180;(2)设公司第一年获利W万元,则可表示出W=﹣(x﹣180)2﹣60≤﹣60,则第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)假设两年共盈利1340万元,则﹣x2+36x﹣1800﹣60=1340,解得x的值,根据100≤x≤180,则x=160时,公司两年共盈利达1340万元.【解答】解:(1)设y=kx+b,则由图象知:,解得k=﹣,b=30,∴y=﹣x+30,100≤x≤180;(2)设公司第一年获利W万元,则W=(x﹣60)y﹣1500=﹣x2+36x﹣3300=﹣(x﹣180)2﹣60≤﹣60,∴第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)若两年共盈利1340万元,因为第一年亏损60万元,第二年盈利的为(x﹣60)y=﹣x2+36x﹣1800,则﹣x2+36x﹣1800﹣60=1340,解得x1=200,x2=160,∵100≤x≤180,∴x=160,∴每件产品的定价定为160元时,公司两年共盈利达1340万元.【点评】本题是一道一次函数的综合题,考查了二次函数的应用,还考查了用待定系数法求一次函数的解析式.24.如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.【考点】切线的判定.【分析】(1)利用圆周角定理结合等腰三角形的性质得出∠OCF+∠DCB=90°,即可得出答案;(2)利用圆周角定理得出∠ACB=90°,利用相似三角形的判定与性质得出DC的长.【解答】(1)证明:连接OC,∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,又∵∠CFD=∠BFO,∴∠DCB=∠BOF,∵CO=BO,∴∠OCF=∠B,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直线CD为⊙O的切线;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DCO=∠ACB,又∵∠D=∠B∴△OCD∽△ACB,∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴=,即=,解得;DC=.【点评】此题主要考查了切线的判定以及相似三角形的判定与性质,得出△OCD∽△ACB 是解题关键.25.(12分)(2016•昆都仑区二模)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s 的速度沿BA匀速移动,当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动,DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题:(1)当t为何值时,点A在线段PQ的垂直平分线上?(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式,是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.【考点】三角形综合题.【分析】(1)因为点A在线段PQ垂直平分线上,所以得到线段相等,可得CE=CQ,用含t的式子表示出这两个线段即可得解;(2)作PM⊥BC,将四边形的面积表示为S△ABC ﹣S△BPE即可求解;(3)假设存在符合条件的t值,由相似三角形的性质即可求得.【解答】解:(1)∵点A在线段PQ的垂直平分线上,∴AP=AQ;∵∠DEF=45°,∠ACB=90°,∠DEF+∠ACB+∠EQC=180°,∴∠EQC=45°;∴∠DEF=∠EQC;∴CE=CQ;由题意知:CE=t,BP=2t,∴CQ=t;∴AQ=8﹣t;在Rt△ABC中,由勾股定理得:AB=10cm;则AP=10﹣2t;∴10﹣2t=8﹣t;解得:t=2;答:当t=2s时,点A在线段PQ的垂直平分线上;(2)如图1,过P作PM⊥BE,交BE于M,∴∠BMP=90°;在Rt△ABC和Rt△BPM中,sinB=,∴=,∴PM=,∵BC=6cm,CE=t,∴BE=6﹣t,∴y=S△ABC ﹣S△BPE=BC•AC﹣BE•PM=6×8﹣(6﹣t)×t=t2﹣t+24=(t﹣3)2+,∵a=,∴抛物线开口向上;∴当t=3时,y最小=;答:当t=3s时,四边形APEC的面积最小,最小面积为cm2.(3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上;如图2,过P作PN⊥AC,交AC于N∴∠ANP=∠ACB=∠PNQ=90°;∵∠PAN=∠BAC,∴△PAN∽△BAC,∴,∴,∴PN=6﹣tAN=8﹣t,∵NQ=AQ﹣AN,。
宝山2016届第二学期高三教学质量检测数学试卷(理科) 2016.04.(满分150分,考试时间120分钟)考生注意:1.本试卷共4页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸上将姓名、学校、班级等信息填写清楚,并将核对后的条形码贴在指定位置上.一.填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.设集合},2||{R ∈<=x x x A ,},034{2R ∈≥+-=x x x x B ,则A B =I _________.2.已知i 为虚数单位,复数z 满足i 11=+-zz,则=||z __________. 3.设0>a 且1≠a ,若函数2)(1+=-x a x f 的反函数的图像经过定点P ,则点P 的坐标 是___________.4.计算:=++∞→222)1(C P lim n nn n __________. 5.在平面直角坐标系内,直线:l 022=-+y x ,将l 与两条坐标轴围成的封闭图形绕y 轴 旋转一周,所得几何体的体积为___________. 6.已知0sin 2sin =+θθ,⎪⎭⎫⎝⎛∈ππθ,2,则=θ2tan _____________. 7.设定义在R 上的奇函数)(x f y =,当0>x 时,42)(-=x x f ,则不等式0)(≤x f 的 解集是__________________.8.在平面直角坐标系xOy 中,有一定点)1,1(A ,若线段OA 的垂直平分线过抛物线:C px y 22=(0>p )的焦点,则抛物线C 的方程为_____________.9.曲线⎪⎪⎩⎪⎪⎨⎧+-=-=ty t x 5521,551(t 为参数)与曲线⎩⎨⎧+=⋅=θθθθcos sin ,cos sin y x (θ为参数)的公共点的坐标为____________.10.记nx x ⎪⎭⎫ ⎝⎛+12*(N ∈n )的展开式中第m 项的系数为m b ,若432b b =,则=n ________.11.从所有棱长均为2的正四棱锥的5个顶点中任取3个点,设随机变量ξ表示这三个点所 构成的三角形的面积,则其数学期望=ξE _________.12.已知各项均为正数的数列}{n a23n n +=+L (*N ∈n ),则12231n a a a n +++=+L ___________. 13.甲、乙两人同时参加一次数学测试,共有20道选择题,每题均有4个选项,答对得3分,答错或不答得0分.甲和乙都解答了所有的试题,经比较,他们有2道题的选项不同,如果甲最终的得分为54分,那么乙的所有可能的得分值组成的集合为____________.14.已知0>a ,函数xa x x f -=)((]2,1[∈x )的图像的两个端点分别为A 、B ,设M 是函数)(x f 图像上任意一点,过M 作垂直于x 轴的直线l ,且l 与线段AB 交于点N ,若1||≤MN 恒成立,则a 的最大值是_________________.二.选择题(本大题共有4题,满分20分)每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,每题选对得5分,否则一律得零分.15.“0s i n =α”是“1cos =α”的( ).(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件16.下列命题正确的是( ).(A )若直线1l ∥平面α,直线2l ∥平面α,则1l ∥2l ; (B )若直线l 上有两个点到平面α的距离相等,则l ∥α; (C )直线l 与平面α所成角的取值范围是⎪⎭⎫⎝⎛2,0π; (D )若直线1l ⊥平面α,直线2l ⊥平面α,则1l ∥2l .17.已知a r ,b r 是平面内两个互相垂直的单位向量,若向量c r 满足()()0c a c b -⋅-=rr r r ,则 ||c r的最大值是( ).(A )1 (B )2 (C )2 (D )2218.已知函数⎪⎩⎪⎨⎧≤≤⎪⎭⎫ ⎝⎛<<=,153,6sin ,30,|log |)(3x x x x x f π 若存在实数1x ,2x ,3x ,4x 满足)()()()(4321x f x f x f x f ===,其中4321x x x x <<<,则4321x x x x 的取值范围是( ).(A ))96,60( (B ))72,45( (C ))48,30( (D ))24,15( 三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.如图,在直三棱柱111C B A ABC -中,底面△ABC 是等腰直角三角形,21===AA BC AC ,D 为侧棱1AA 的中点.(1)求证:⊥BC 平面11A ACC ;(2)求二面角11C CD B --的大小(结果用反三角函数值表示). 20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数13cos 3cos sin 3)(-⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛++=πωπωωx x x x f (0>ω,R ∈x ),且函数)(x f 的最小正周期为π.(1)求函数)(x f 的解析式;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若0)(=B f ,23=⋅BC BA ,且4=+c a ,求b 的值.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.定义在D 上的函数)(x f ,如果满足:对任意D x ∈,存在常数0>M ,都有M x f ≤)(成立,则称)(x f 是D 上的有界函数,其中M 称为函数)(x f 的上界.(1)设1)(+=x x x f ,判断)(x f 在⎥⎦⎤⎢⎣⎡-21,21上是否为有界函数,若是,请说明理由,并写出)(x f 的所有上界M 组成的集合;若不是,也请说明理由;(2)若函数xxa x g 421)(⋅++=在]2,0[∈x 上是以3为上界的有界函数,求实数a 的取值范围.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6A B C A 1B 1C 1D分.如图,设F 是椭圆14322=+y x 的下焦点,直线4-=kx y (0>k )与椭圆相交于A 、B 两点,与y 轴交于P 点.(1)若=,求k 的值;(2)求证:BFO AFP ∠=∠; (3)求△ABF 面积的最大值.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知正项数列}{n a ,}{n b 满足:对任意*N ∈n ,都有n a ,n b ,1+n a 成等差数列,n b ,1+n a ,1+n b 成等比数列,且101=a ,152=a . (1)求证:数列{}nb 是等差数列;(2)求数列}{n a ,}{n b 的通项公式; (3)设12111n nS a a a =+++L ,如果对任意*N ∈n ,不等式n n n a baS -<22恒成立,求实数a 的取值范围.二模理科数学参考答案一.填空题1.]1,2(- 2.1 3.)1,3( 4.23 5.32π 6.3 7.]2,0[]2,( --∞ 8.x y 42= 9.)1,0( 10.5 11.5326+ 12.n n 622+ 13.{48,51,54,57,60} 14.246+二.选择题15.B 16.D 17.C 18.B三.解答题 19.(1)因为底面△ABC 是等腰直角三角形,且BC AC =,所以,BC AC ⊥,(2分) 因为⊥1CC 平面111C B A ,所以BC CC ⊥1, ………………………………………(4分) 所以,⊥BC 平面11A ACC . ……………………………………………………(5分) (2)以C 为原点,直线CA ,CB ,1CC 为x ,y ,z 轴,建立空间直角坐标系, 则)0,0,0(C ,)0,0,2(A ,)0,2,0(B ,)2,0,0(1C ,)2,2,0(1B ,)1,0,2(D , 由(1),)0,2,0(=是平面11A ACC 的一个法向量, ………………………(2分))2,2,0(1=CB ,)1,0,2(=CD ,设平面CD B 1的一个法向量为),,(z y x n =,则有 ⎪⎩⎪⎨⎧=⋅=⋅,0,01CD n CB n即⎩⎨⎧=+=+,02,022z x z y 令1=x ,则2-=z ,2=y , 所以)2,2,1(-=n, …………………………………………(5分)设CB 与n 的夹角为θ,则32324||||cos =⨯=⋅=n CBθ, …………………(6分) 由图形知二面角11C CD B --的大小是锐角,所以,二面角11C CD B --的大小为32arccos . ……………………………(7分)20.(1)16sin 21cos sin 3)(-⎪⎭⎫⎝⎛+=-+=πωωωx x x x f , ………………(3分) 又π=T ,所以,2=ω, ………………………………………………(5分)所以,162sin 2)(-⎪⎭⎫ ⎝⎛+=πx x f . …………………………………………………(6分) (2)0162sin 2)(=-⎪⎭⎫ ⎝⎛+=πB B f ,故2162sin =⎪⎭⎫ ⎝⎛+πB ,所以,6262πππ+=+k B 或65262πππ+=+k B (Z ∈k ),因为B 是三角形内角,所以3π=B .……(3分)而23cos =⋅=⋅B ac BC BA ,所以,3=ac , …………………………(5分) 又4=+c a ,所以,1022=+c a ,所以,7cos 2222=-+=B ac c a b ,所以,7=a . …………………………………(8分)21.(1)111)(+-=x x f ,则)(x f 在⎥⎦⎤⎢⎣⎡-21,21上是增函数,故⎪⎭⎫⎝⎛≤≤⎪⎭⎫ ⎝⎛-21)(21f x f f , 即31)(1≤≤-x f , ……………………………………………(2分) 故1|)(|≤x f ,所以)(x f 是有界函数. ……………………………………………(4分) 所以,上界M 满足1≥M ,所有上界M 的集合是),1[∞+. ……………………(6分)(2)因为函数)(x g 在]2,0[∈x 上是以3为上界的有界函数,故3|)(|≤x g 在]2,0[∈x 上恒成立,即3)(3≤≤-x g ,所以,34213≤⋅++≤-xxa (]2,0[∈x ), ……(2分)所以⎪⎭⎫ ⎝⎛-≤≤⎪⎭⎫ ⎝⎛--x x x x a 21422144(]2,0[∈x ), 令x t 21=,则⎥⎦⎤⎢⎣⎡∈1,41t ,故t t a t t -≤≤--2224在⎥⎦⎤⎢⎣⎡∈1,41t 上恒成立,所以,min 2max 2)2()4(t t a t t -≤≤--(⎥⎦⎤⎢⎣⎡∈1,41t ), ………………………(5分)令t t t h --=24)(,则)(t h 在⎥⎦⎤⎢⎣⎡∈1,41t 时是减函数,所以2141)(max -=⎪⎭⎫ ⎝⎛=g t h ;(6分)令t t t p -=22)(,则)(t p 在⎥⎦⎤⎢⎣⎡∈1,41t 时是增函数,所以8141)(min -=⎪⎭⎫ ⎝⎛=h t p .…(7分)所以,实数a 的取值范围是⎥⎦⎤⎢⎣⎡--81,21. ……………………………………(8分)22.(1)由⎪⎩⎪⎨⎧-==+4,14322kx y y x 得03624)43(22=+-+kx x k ,所以△0)4(1442>-=k , 设),(11y x A ,),(22y x B ,则4324221+=+k k x x ,4336221+=k x x , ………………(2分) 因为=,所以122x x =,代入上式求得556=k 。
2015年宝山嘉定联合模拟考试数学试卷(满分150分,考试时间100分钟)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.下列实数中,属无理数的是(▲)(A)722; (B) 010010001.1; (C) 27; (D)︒60cos .2.如果b a >,那么下列不等式一定成立的是(▲)(A) 0<-b a ; (B) b a ->-; (C)b a 2121<; (D) b a 22>. 3.数据6,7,5,7,6,13,5,6,8的众数是(▲)(A)5; (B)6; (C)7; (D)5或6或7. 4.抛物线3)2(2-+-=x y 向右平移了3个单位,那么平移后抛物线的顶点坐标是(▲) (A) ),35(--; (B) )31(-,; (C) )31(--,; (D) )02(,-. 5.下列命题中,真命题是(▲)(A)菱形的对角线互相平分且相等; (B)矩形的对角线互相垂直平分;(C)对角线相等且垂直的四边形是正方形; (D) 对角线互相平分的四边形是平行四边形. 6.Rt △ABC 中,已知︒=∠90C ,4==BC AC ,以点A 、B 、C 为圆心的圆分别记作圆A 、圆B 、圆C ,这三个圆的半径长都等于2,那么下列结论正确的是(▲) (A) 圆A 与圆B 外离; (B) 圆B 与圆C 外离; (C) 圆A 与圆C 外离; (D) 圆A 与圆B 相交.二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】7.计算:=-2)21( ▲ . 8.计算:=--)2(2x x ▲ .9.方程31=-x 的解是 ▲ .10.函数xx y 241-+=的定义域是 ▲ .11.如果正比例函数k kx y (=是常数,)0≠k 的图像经过点)2,1(-,那么这个函数的解析式是 ▲ .12.抛物线222-++-=m x x y 与y 轴的交点为)4,0(-,那么=m ▲ .13.某班40名全体学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图1所示,根据图中所提供的信息,你认为这次捐款活动中40个捐款额的中位数是 ▲ 元.14.在不透明的袋中装有2个红球、5个白球和3个黑球,它们除颜色外其它都相同,如果从这不透明的袋里随机摸出一个球,那么所摸到的球恰好为黑球的概率是 ▲ . 15.如图2,在△ABC 中,点M 在边BC 上,BM MC 2=,设向量=,AM =, 那么向量= ▲ (结果用、表示).16.如图3,在平行四边形ADBO 中,圆O 经过点A 、D 、B ,如果圆O 的半径4=OA ,那么弦=AB ▲ .17. 我们把两个三角形的外心之间的距离叫做外心距.如图4,在Rt △ABC 和Rt △ACD中,︒=∠=∠90ACD ACB ,点D 在边BC 的延长线上,如果3==DC BC ,那么△ABC 和△ACD 的外心距是 ▲ .18.在矩形ABCD 中,15=AD ,点E 在边DC 上,联结AE ,△ADE 沿直线AE 翻折后点D 落到点F ,过点F 作AD FG ⊥,垂足为点G ,如图5,如果GD AD 3=, 那么=DE ▲ . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:xx x x x x x x 124122222++---+- ,其中13-=x .20.(本题满分10分)解方程组:⎩⎨⎧=--=+.,0658222y xy x y x②①图1 AB C M图2 图3 A BC 图4AD C GEF 图521.(本题满分10分,每小题满分各5分)某住宅小区将现有一块三角形的绿化地改造为一块圆形的绿化地如图6.已知原来三角形绿化地中道路AB 长为216米,在点B 的拐弯处道路AB 与BC 所夹的B ∠为︒45,在点C 的拐弯处道路AC 与BC 所夹的C ∠的正切值为2(即2tan =∠C ),如图7. (1)求拐弯点B 与C 之间的距离; (2)在改造好的圆形(圆O )绿化地中,这个圆O 过点A 、C ,并与原道路BC 交于点D ,如果点A 是圆弧(优弧)道路DC 的中点,求圆O 的半径长.22.(本题满分10分,每小题满分各5分)已知一水池的容积V (公升)与注入水的时间t (分钟)之间开始是一次函数关系,表中记录的是这段时间注入水的时间与水池容积部分对应值.(1)求这段时间时关于的函数关系式(不需要写出函数的定义域);(2)从t 为25分钟开始,每分钟注入的水量发生变化了,到t 为27分钟时,水池的容积为726公升,如果这两分钟中的每分钟注入的水量增长的百分率相同,求这个百分率. 23.(本题满分12分,每小题满分各6分)如图8,已知△ABC 和△ADE 都是等边三角形,点D 在边BC 上,点E 在边AD 的右侧,联结CE .(1)求证:︒=∠60ACE ;(2)在边AB 上取一点F ,使BD BF =,联结DF 、EF .求证:四边形CDFE 是等腰梯形.图8A .OB C D 图7 图624.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy (图9),双曲线)0(≠=k xky 与直线2+=x y 都经过点),2(m A .(1)求k 与m 的值;(2)此双曲线又经过点)2,(n B ,过点B 的直线BC 与直线2+=x y 平行交y 轴于点C ,联结AB 、AC ,求△ABC 的面积;(3)在(2)的条件下,设直线2+=x y 与y 轴交于点D ,在射线CB 上有一点E ,如果以点A 、C 、E 所组成的三角形与△ACD 相似,且相似比不为1,求点E 的坐标.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分) 在Rt △ABC 中,︒=∠90C ,2=BC ,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE ,过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合如图10,求BAE ∠cot 的值;(2)若点M 在边BC 上如图11,设边长x AC =,y BM =,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围; (3)若EBM BAE ∠=∠,求斜边AB 的长.2015年宝山嘉定联合模拟考试数学试卷参考答案与评分标准图9M ) 图10 图11一、1.C ;2.D ;3.B ;4.B ;5.D ;6.A .二、7.41;8.x x 422+-;9.8-=x ;10.2≠x 的一切实数;11.x y 2-=;12.2-;13.15; 14.103;15.33-;16.34;17.3;18.53. 三、19.解:原式x x x x x x x x 1)2()2)(2()1()1(2++-+---=…………4分 x x x x x 121+---=………………………2分x2=…………………………………………2分把13-=x 代入x2得:原式132-=………………………………1分13+=………………………………1分20. ⎩⎨⎧=--=+.,0658222y xy x y x ②① 解:由②得:0))(6(=+-y x y x ……………………2分 即:06=-y x 或0=+y x …………………2分所以原方程组可化为两个二元一次方程组:⎩⎨⎧=+=-;82,06y x y x⎩⎨⎧=+=+;82,0y x y x ………………2分 分别解这两个方程组,得原方程组的解是⎩⎨⎧=-=8821x x ,⎩⎨⎧==1612x x …………4分.21.解:(1)过点A 作BC AH ⊥,垂足为点H在Rt △AHB 中,∵︒=∠45B∴︒=∠45BAH …………………………1分∴BH AH =………………………………1分∵222AB BH AH =+ ,216=AB∴16==BH AH …………………………1分 在Rt △AHC 中,HCAH C =∠tan ,∵2tan =∠C ∴8=HC ………………1分∴24=BC ………………1分 答:拐弯点B 与C 之间的距离为24米; (2)联结OC …………………………………1分 ∵BC AH ⊥,点A 是优弧CD 的中点∴AH 必经过圆心O …………………………1分 设圆O 的半径为r 米,则r OH -=16……1分在Rt △OHC 中,222OC HC OH =+∴222)16(8r r -+= ………………………1分∴10=r ………………………………………1分 答:圆O 的半径长为10米.22.解:(1)设V 关于t 的函数解析式为:b kt V +=………………1分A .O B C DH由题意得:⎩⎨⎧=+=30010100b k b …………………………………1分解此方程组得:⎩⎨⎧==10020b k ……………………………………2分所以V 关于t 的函数解析式为:10020+=t V ……………1分 (2)设这个百分率为x …………………………………………1分 由题意得:726)1(6002=+x ………………………………2分解此方程得:%101.01==x ,1.22-=x (不符合题意舍去)……1分答这个百分率为%10.……………………………………………………1分23.证明:(1)∵△ABC 是等边三角形∴AC AB =,︒=∠=∠=∠60ACB BAC B ……1分 ∵△ADE 是等边三角形∴AE AD =,︒=∠60DAE ……………………1分 ∴DAE BAC ∠=∠∵=∠BAD DAC BAC ∠-∠ DAC DAE CAE ∠-∠=∠∴CAE BAD ∠=∠…………………………1分∴△ABD ≌△ACE ………………………1分 ∴ACE B ∠=∠ ……………………………1分∴︒=∠60ACE ……………………………1分 (2)∵BD BF =,︒=∠60B∴△BDF 是等边三角形∴FD BF BD ==…………………………1分 ∵△ABD ≌△ACE∴CE BD =∴CE FD BF ==…………………………1分 ∵︒=∠=∠=∠60ACE ACB B ∴︒=∠+∠180ECB B∴BF ∥CE ………………………………1分 ∴四边形ECBF 是平行四边形 …………1分 ∴DC ∥EF又DF 与CE 不平行∴四边形CDFE 是梯形……………………1分 又CE FD =∴四边形CDFE 是等腰梯形………………1分24.解:(1) ∵直线2+=x y 经过点),2(m A∴422=+=m ………………………………1分 ∴点A 的坐标为)4,2(A ……………………1分 ∵双曲线)0(≠=k xky 经过点)4,2(A ∴24k=…………………………………………1分 ∴8=k …………………………………………1分(2)由(1)得:双曲线的表达式为xy 8=∵双曲线xy 8=经过点)2,(n B ,∴n 82=,∴2=n∴点B 的坐标为)2,4(……………………………………1分 ∵直线BC 与直线2+=x y 平行∴可设直线BC 的表达式为:b x y +=∴b +=42,∴2-=b ,∴直线BC 的表达式为:2-=x y ∴点C 的坐标为)2,0(-……………………………………1分∴22=AB ,24=BC ,102=AC ,∴222AC BC AB =+ ∴︒=∠90ABC …………………………………………1分∴△ABC 的面积为821=⨯⨯BC AB ……………………1分 (3)根据题意设点E 的坐标为)2,(-x x ,这里的0>x∵直线2+=x y 与y 轴交于点D ∴点D 的坐标为)2,0(∴22=AD ,x CE 2= ∵AD ∥BC∴ACE DAC ∠=∠…………………………………………1分 当CAE ADC ∠=∠时,△ADC ∽△CAE∴CE ACAC AD =∴x 210210222= ∴10=x∴点E 的坐标为)8,10( ……………………………………2分 当CEA ADC ∠=∠时,△ADC ∽△CEA ∴AC AC EC AD = ∴EC AD =又ACE DAC ∠=∠,CA AC = ∴△ADC ≌△CEA又已知△ADC 与△CEA 的相似比不为1∴这种情况不存在 …………………………………………1分 综上所述点E 的坐标为)8,10(25.解:(1)当点M 与点B 重合,由旋转得:2==BD BC ,ED AC =,EBD CBA ∠=∠,︒=∠=∠90C EDB ∵CB EM ⊥∴︒=∠90EBC ∴︒=∠=∠45EBD CBA …………1分 ∴︒=∠=∠45CBA CAB ∴2==CB AC∴22=AB …………………………………1分 ∴2==DB DE∴222-=AD ……………………………1分∴12cot -==∠DEADBAE ………………1分(2)设EM 与边AB 交点为G由题意可知:︒=∠+∠9021,︒=∠+∠903CBA 又32∠=∠,∴CBA ∠=∠1∵CBA EBD ∠=∠,∴EBD ∠=∠1,∵BDE EDG ∠=∠,∴△EDG ∽△BDE ∴EDDG BD ED =…………………………………………1分 ∵2==BD BC ,x ED AC ==∴xDGx =2,∴22x DG =…………………………1分由题意可知:ABBCBG MB ABC ==∠cos42+=x AB ,242xGB -=∴422422+=-x x y ……………………1分 ∴444222++-=x x x y ……………………1分 定义域为20<<x …………………………1分(3)当点M 在边BC 上时,由旋转可知:EB AB =,∴BAE AEB ∠=∠设︒=∠x CBA ,则︒=∠x ABE ,∵EBM BAE ∠=∠,分别延长EA 、BC 交于点H ∴︒=∠=∠=∠x EMB BAE AEB 2,∵︒=∠+∠+∠180AEB BAE ABE ∴36=x 易得:︒=∠=∠=∠36ABE ABH H ,︒=∠=∠=∠72AEB BAE HBE ∴BE AB AH ==,HE HB =,∵︒=∠90ACB ,∴2==BC HC∴4==HE HB ,∴△BAE ∽△HBE ,∴BEAEHB AB =,又AB BE = AB HA HE AE -=-=4,∴ABABAB -=44,∴522±-=AB (负值舍去) ∴522+-=AB …………………………2分当点M 在边CB 的延长线上时,∵BAE AEB ∠=∠,EBM BAE ∠=∠∴EBM AEB ∠=∠∴AE ∥MC ∴CBA BAE ∠=∠ ∵EBA CBA ∠=∠∴EBA CBA EBM ∠=∠=∠∴︒=∠60CBA ,∵AB BCCBA =∠cos ,2=BC∴4=AB …………………………2分 综上所述:522+-=AB 或4.。
2016年宝山、嘉定区初三数学二模卷(满分150分,考试时间100分钟)物 理 部 分考生注意: 1.本试卷物理部分含五大题。
2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效。
一、选择题(共16分)下列各题均只有一个正确选项,请将正确选项的代号用2B 铅笔填涂在答题纸的相应位置上,更改答案时,用橡皮擦去,重新填涂。
1.太阳系中属于恒星的是 A .太阳B .地球C .月亮D .冥王星2.首先测出大气压值的物理学家是 A .伽利略B .安培C .奥斯特D . 托里拆利3.光斜射到镜面上时,入射光线与镜面的夹角为40º,则反射光线与法线的夹角为 A .0º B .40º C .50º D .100º 4.下列物理量中,能用来鉴别物质种类的是A .响度 B. 质量 C. 电阻 D. 密度 5.下列现象中,能说明分子间存在斥力的是A .香气四溢B .破镜不能重圆C .液体很难压缩D .同名磁极相互排斥 6.图1所示的各物体中,所受的两个力属于一对平衡力的是7.在验证凸透镜成像实验中,蜡烛、凸透镜和光屏在光具座上的位置如图2所示,此时在光屏上得到烛焰清晰的像;若保持透镜位置不变,将蜡烛在光具座上移动5厘米,对于此时成像的性质判断正确的是 A .一定是缩小的实像 B .可能是放大的实像 C .一定是正立的虚像 D .可能是放大的虚像F 2F 1F 2F 1F 2F 1F 2=G F 1A .推拉方向盘B .推手 C.推拉小车 D .提着水桶不动图1图20 10 20 30 40 50 60 70 80 90 cm8. 在图3所示的电路中,电源电压保持不变。
闭合电键S ,电路正常工作。
一段时间后,有一个电表的示数增大;然后将电流表A 与电阻R 1位置互换后,发现电压表的示数不变。
若故障只发生在电阻R 1、R 2上,则A .R 1一定短路B .R 2一定短路C .R 1可能短路D .R 2可能断路 二、填空题(共26分)请将结果填入答题纸的相应位置。
E 2016学年第二学期宝山区九年级教学质量检测数学试卷(满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.5的相反数是( )(A) 2; (B)﹣5; (C)5; (D)51. 2.方程01232=+-x x 实数根的个数是( ) (A)0; (B)1; (C)2; (D)3. 3.下列函数中,满足y 的值随x 的值增大而增大的是( ) (A)x y 2-=; (B)3-=x y ; (C)xy 1=; (D)2x y =. 4.某老师在试卷分析中说:参加这次考试的41位同学中,考121分的人数最多,虽然最高的同学获得了满分150分,但是十分遗憾最低的同学仍然只得了56分,其中分数居第21位的同学获得116分。
这说明本次考试分数的中位数是( ) (A)21; (B)103; (C)116; (D)121. 5.下列命题为真命题的是( )(A)有两边及一角对应相等的两三角形全等;(B) 两个相似三角形的面积比等于其相似比;(C) 同旁内角相等; (D)两组对边分别相等的四边形是平行四边形.6.如图1,△ABC 中,点D 、F 在边AB 上,点E 在边AC 如果DE ∥BC ,EF ∥CD ,那么一定有( ) (A) AE AD DE ⋅=2; (B)AB AF AD ⋅=2; 学校 班级 准考证号 姓名………密○……………………………………封○……………………………………○线……………………………(C)AD AF AE ⋅=2; (D)AC AE AD ⋅=2. 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】7.计算:=÷-3165 . 8.计算:2)2(b a -= .9.计算:321x x ⋅= . 10.方程0=+x x 的解是 .11.如果正比例函数x k y )1(-=的图像经过原点和第一、第三象限,那么k .12.二次函数x x y 22-=图像的对称轴是直线 .13. 一枚(形状为正方体的)骰子可以掷出1、2、3、4、5、6这六个数中的任意一个,用这个骰子随机掷出的一个数替代二次根式3-x 中的字母x ,使该二次根式有意义的概率是 .14.为了解某中学九年级学生的上学方式,从该校九年级全体300名学生中,随机抽查了60名学生,结果显示有5名学生“骑共享单车上学”.由此,估计该校九年级全体学生中约有___ 名学生“骑共享单车上学”. 15.已知在△ABC 中,点M 、N 分别是边AB 、AC 的中点,如果a AB =,b AC =, 那么向量MN = (结果用a 、b 表示). 16.如图2,在□ABCD 中,,5,3==BC AB 以点B 为圆心,以任意长为半径作弧,分别交BC BA 、于点Q P 、,再分别以Q P 、为圆心,以大于PQ 21的长为半径作弧,两弧在ABC ∠内交于点M ,连接BM 并延长交AD 于点E ,则DE 的长为_________.17.已知一条长度为10米的斜坡两端的垂直高度差为6米,那么该斜坡的坡角度数约为(备用数据:tan31cot590.6,sin37cos530.6︒=︒≈︒=︒≈). 18.如图3,E 、F 分别为正方形ABCD 的边AB 、AD 上的点,且 AE=AF ,联接EF ,将△AEF 绕点A 逆时针旋转45°,使E FBCD图2落在E 1,F 落在F 1,联接BE 1并延长交DF 1于点G ,如果AB=22,AE=1,则DG= .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)化简,再求值:22482++-x x ,其中5=x . 20.(本题满分10分)解方程组:21.(本题满分10分)如图4,在△ABC 中,∠B =45°,点D 为△ABC 的边AC 上一点,且AD :CD=1:2.过D 作DE ⊥AB 于E ,C 作CF ⊥AB 于F ,联接BD ,如果AB =7,BC= 24、求线段CF 和BE 的长度.图4D如图5,由正比例函数x y -=沿y 轴的正方向平移4个单位而成的一次函数b x y +-=的图像与反比例函数xky =(0≠k )在第一象限的图像交于A (1,n )和B 两点.(1)求一次函数b x y +-=和反比例函数的解析式;(2)求△ABO 的面积.23.(本题满分12分,每小题满分各6分)如图6,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF , (1)求证:CF =2AF ; (2)求tan ∠CFD 的值.F DACB图6图5如图7,已知直线221-=x y 与x 轴交于点B ,与y 轴交于点C ,抛物线2212-+=bx x y 与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C. (1)求抛物线的解析式;(2)点M 是上述抛物线上一点,如果△ABM 和△ABC 相似,求点M 的坐标; (3)连接AC ,求顶点D 、E 、F 、G 在△ABC 各边上的矩形DEFC 面积最大时,写出该矩形在AB 边上的顶点的坐标.25. (本题满分14分,每小题满分分别为5分、5分、4分)如图8,在△ABC 中,∠ACB 为直角,AB=10,30=∠A °,半径为1的动圆Q 的圆心从点C 出发,沿着CB 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点B 出发,沿着BA 方向也以1个单位长度/秒的速度匀速运动,设运动时间为t 秒(0<t ≤5)以P 为圆心,PB 长为半径的⊙P 与AB 、BC 的另一个交点分别为E 、D ,连结ED 、EQ .(1)判断并证明ED 与BC 的位置关系,并求当点Q 与点D 重合时t 的值;(2)当⊙P 和AC 相交时,设CQ 为x ,⊙P 被AC 截得的弦长为y ,求y 关于x 的函数;并求当⊙Q 过点B 时⊙P 被AC 截得的弦长;(3)若⊙P 与⊙Q 相交,写出t 的取值范围.图8图7ED B CAQ P宝山区2016学年第二学期期中考试九年级数学试卷评分参考一、选择题:(本大题共6题,每题4分,满分24分) 1、B ; 2、A ; 3、B ; 4、C ; 5、D ; 6、B ; 二、填空题:(本大题共12题,每题4分,满分48分)7、25-; 8、2244b ab a +-; 9、2x ; 10、0=x ; 11、1>k ; 12、1=x ; 13、32; 14、25; 15、a b 2121-; 16、2; 17、37; 18、554. 三、解答题:(本大题共7题,满分78分) 19.解: 原式=4)2(24822--+-x x x …………………………3分=4422-+x x ……………………………………………3分 =22-x……………………………………………2分 当5=x 时,原式=452252+=-…………2分说明:分式的通分、加法、约分、二次根式分母有理化等每一步各2---3分,代入(或约分或分母有利化方法不限)得出答案可以分别为1分. 20.解:0)4)(4(16222=--+-=-+-y x y x y xy x)3)(3(922y x y x y x -+=-=0, ………………………2分则原方程可化为: (4)分解这些方程组得: (4)分说明:知道通过因式分解降次2-分,上下两两组合和解得答案各4-分,每一个答案可以分别为1分. 21.解:∵CF ⊥AB ,∠B =45°,BC= 24,∴在RT △BCF 中 ,C F=42224sin =⋅=⋅B BC ,……………2分 ∴ BF=BC B cos ⋅=42224=⋅………………………2分 ∵AB=7,∴AF= AB 3=-BF ………………………1分 ∵DE ⊥ AB ,∴DE ∥CF , ………………………1分 ∴AE :EF=AD :CD=1:2, ………………………2分 ∴EF=2, ∴BE=6 ………………………2分22.解:(1)题意易得一次函数b x y +-=的解析式为:4+-=x y ,………1分∵点),1(n A 在直线4+-=x y 上,∴3=n ,∴点)3,1(A …………1分将)3,1(A 代入反比例函数xky =, ……………………1分 得3=k ,反比例函数的解析式为:xy 3=. ………………………2分(2) 由题意易得方程组解得: )3,1(A 、)1,3(B ……………………2分∴设一次函数4+-=x y 和y 轴的交点为N ,与x 轴交于点M ,. 易知:M (4,0),点N (0,4), NA :AB :BM=1:2:1 ……………分23.解:(1) ∵ABCD 为矩形, ∴AD ∥BC ,AD =BC , ∠D=90°, ………………2分 ∴△AEF ∽△CBF , ……………………………1分∵E 是AD 边的中点, ∴AF :CF=AE :BC=1:2……………………………2分∴CF =2AF ; ……………………………1分(2) 过D 作DH ⊥AC 于H ,∵BE ⊥A C ,∴DH ∥BE ……………………………2分∴AF :FH=AE :ED=1:1 ∴AF=FH=HC设AF=a ,则AH=2a CH=a …………………………………1分 ∵∠DAH=∠CDH=90°-∠ADH易知:Rt △ADH ∽Rt △DCH ,∴ BF=a 2 ……………………………2分 ∴tan ∠CFD=t 2 …………………………………1分24.解:(1) 由题意:直线221-=x y 与x 轴交于点B (4,0),……………………1分与y 轴交于点C 点C (0,-2), (1)分将点B (4,0)代入抛物线2212-+=bx x y 易得23-=b (1)分∴所求抛物线解析式为:223212--=x x y …………………………1分(2) ∵222AB BC AC =+, ∴△ABC 为直角三角形,∠BCA=90°…………1分∵点M 是上述抛物线上一点∴不可能有MB 与AB 或者MA 与AB 垂直…1分当△ABM 和△ABC 相似时,一定有∠AMB=90° △BAM ≌△ABC……1分 此时点M 的坐标为:M (3,-2) (3)∵△ABC 为直角三角形, ∠BCA=90°当矩形DEFG 只有顶点D 在AB 上时,显然点F 与点 C 重合时面积最大,如图1, 设CG =x ,∵DG ∥BC ,∴△AGD ∽△ACB. ∴AG :AC =DG ∶BC ,即5255DG x =-∴DG =2(5-x)∴S矩形DEFG =-2(x -52)2+52 即x =25时矩形DEFG 的面积有最大值25, 当矩形DEFG 有两个顶点D 、E 在AB 上时,如图2,CO 交GF 于点H ,设DG =x ,则OH =x ,CH =2-x ,∵GF ∥AB ,∴△CGF ∽△CAB ,∴GF ∶AB =CH ∶CO ,即GF ∶5=(2-x)∶2,解得GF =52(2-x).∴S矩形DEFG=x·52(2-x)=-52(x -1)2+52,即当x =1时矩形DEFG 的面积同样有最大值25, 综上所述,无论矩形DEFG 有两个顶点或只有一个顶点在AB 上,其最大面积相同…2分 当矩形一个顶点在AB 上时, GD =2(5-x)=5,AG =52,∴AD =52, OD =AD -OA =32, ∴D(32,0). ………………………1分当矩形DEFG 有两个顶点D 、E 在AB 上时,∵DG =1, ∴DE =25, ∵DG ∥OC ,∴△ADG ∽△AOC ,∴AD ∶AO =DG ∶OC ,解得AD =12,∴OD =12, OE =52-12=2, ∴D(-12,0),E(2,0). (1)分综上所述,满足题意的矩形在AB 边上的顶点的坐标为D(32,0)或D(-12,0)、E(2,0) .25. 解:(1)连接PD ,∵B 、E 、D 都在⊙P 上∴PB=PD ,∠PBD=∠PDB , PD=PE ,∠PDE=∠PED …………………1分∵△BDE 的内角和为180° ∴∠BDE=∠BDP+∠PDE=90°,∴即:DE ⊥BC…………1分 ∵∠BCA=90°,30=∠A °∴DE ∥CA ,∴△BDE ∽△BCA , …………1分∴21==BA BC BE BD 设CQ=CD=t ,BD=5-t ,BE=2t …………1分代入有2125=-t t 解得:25=t …………1分∴当25=t 时Q 与D 重合,(2)设⊙P 和AC 相交于 M 、N ,BP=CQ=x ,AP=AB-BP=10-x 过点P 作PH ⊥AC 于点 H …1分在Rt △APH 中,易知:AP PH 21=PH=)10(21x - …………1分A学习资料仅供学习与参考 在Rt △PHN 中,易知:HN=22PH PN -=100203212-+x x …………1分 10020322-+==x x MH MN …………1分当⊙Q 经过B 点时,(如图) CQ=CB ﹣QB=4, 将414==t 代入得:72=MN …………1分(3)当Q ⊙P 与⊙Q 外切时,如图,易知此时∠QBP=60°,BQ=5-t ,PQ=t+1,BP=t 49717-=t , …………2分 ∵从此时起直至停止运动,⊙P 与⊙Q 都处于相交位置 ∴⊙P 与⊙Q 相交时t 的取值范围为: 549717≤-t π …………2分。
上海市宝山区中考数学二模试卷(解析版)上海市宝山区中考数学二模试卷(解析版)第一部分选择题1. 题目解析这题是一道选择题,要求考生在给出的选项中选择正确答案,并解析出答案的原因或过程。
2. 题目解析这题是另一道选择题,同样要求考生选择正确答案,并解析出答案的原因或过程。
3. 题目解析这题是一道涉及数学知识点的选择题,要求考生运用所学知识解决问题,并解析出答案的原因或过程。
第二部分计算题1. 题目解析这题是一道计算题,要求考生运用所学的数学运算法则进行计算,并解析出答案的步骤和思路。
2. 题目解析这题是另一道计算题,同样要求考生进行数学运算,并解析出答案的计算过程和思维方法。
第三部分应用题1. 题目解析这题是一道应用题,要求考生将所学的数学知识应用到实际问题中,并解析出解题的思路和方法。
2. 题目解析这题是另一道应用题,同样要求考生结合实际情境进行数学问题的求解,并解析出解题的过程和思考方式。
第四部分证明题1. 题目解析这题是一道证明题,要求考生运用所学的数学理论和推理能力进行证明,并解析出证明的思路和步骤。
2. 题目解析这题是另一道证明题,同样要求考生进行数学推理和证明,并解析出证明的过程和思维方式。
总结:在上海市宝山区中考数学二模试卷中,题目类型包括选择题、计算题、应用题和证明题。
选择题要求考生选择正确答案并解析出答案的原因或过程,形式为非常数选择;计算题要求考生进行数学运算并解析出计算过程和思路;应用题要求考生将数学知识应用到实际问题中并解析出解题思路和方法;证明题要求考生进行数学推理和证明并解析出证明的思路和步骤。
考生在解答这些题目时,需要灵活运用所学知识和技巧,严谨思考并合理解释答案。
通过阅读解析版试卷,考生能够更好地理解题目要求,提高解题能力。
2016年上海市宝山区中考数学二模试卷及答案解析2016年上海市宝山区中考数学二模试卷及答案解析一.选择题1.下列实数中,属无理数的是()A.B.1.010010001 C.D.cos60°2.如果a>b,那么下列不等式一定成立的是()A.a﹣b<0 B.﹣a>﹣b C.a<b D.2a>2b 3.数据6,7,5,7,6,13,5,6,8的众数是()A.5 B.6 C.7 D.5或6或74.抛物线y=﹣(x+2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(﹣2,0)5.下列命题中,真命题是()A.菱形的对角线互相平分且相等B.矩形的对角线互相垂直平分C.对角线相等且垂直的四边形是正方形D.对角线互相平分的四边形是平行四边形6.Rt△ABC中,已知∠C=90°,AC=BC=4,以点A、B、C为圆心的圆分别记作圆A、圆B、圆C,这三个圆的半径长都等于2,那么下列结论正确的是()A.圆A与圆B外离 B.圆B与圆C外离 C.圆A 与圆C外离D.圆A与圆B相交二.填空题7.计算:(﹣)2=.8.计算:﹣2x(x﹣2)=.9.方程=3的解是.10.函数y=的定义域是.11.如果正比例函数y=kx(k常数,k≠0)的图象经过点(﹣1,2),那么这个函数的解析式是.12.抛物线y=﹣x2+2x+m﹣2与y轴的交点为(0,﹣4),那么m=.13.某班40名学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图所示,根据图中所提供的信息,你认为这次捐款活动中40个捐款额的中位数是元.14.在不透明的袋中装有2个红球、5个白球和3个黑球,它们除颜色外其它都相同,如果从这不透明的袋里随机摸出一个球,那么所摸到的球恰好为黑球的概率是.15.如图,在△ABC中,点M在边BC上,MC=2BM,设向量,,那么=(结果用表示)16.如图,在平行四边形ADBO中,圆O经过点A、D、B,如果圆O的半径OA=4,那么弦AB=.17.我们把两个三角形的外心之间的距离叫做外心距.如图,在Rt△ABC和Rt△ACD中,∠ACB=∠ACD=90°,点D在边BC的延长线上,如果BC=DC=3,那么△ABC和△ACD的外心距是.18.在矩形ABCD中,AD=15,点E在边DC上,联结AE,△ADE沿直线AE翻折后点D落到点F,过点F作FG⊥AD,垂足为点G,如图,如果AD=3GD,那么DE=.三.解答题19.先化简,再求值:﹣+,其中x=﹣1.20.解方程组:.21.某住宅小区将现有一块三角形的绿化地改造为一块圆形的绿化地如图1.已知原来三角形绿化地中道路AB长为16米,在点B的拐弯处道路AB与BC所夹的∠B为45°,在点C的拐弯处道路AC与BC 所夹的∠C的正切值为2(即tan∠C=2),如图2.(1)求拐弯点B与C之间的距离;(2)在改造好的圆形(圆O)绿化地中,这个圆O 过点A、C,并与原道路BC交于点D,如果点A是圆弧(优弧)道路DC的中点,求圆O的半径长.22.已知一水池的容积V(公升)与注入水的时间t (分钟)之间开始是一次函数关系,表中记录的是这段时间注入水的时间与水池容积部分对应值.注入水的时间t(分钟)0 10 (25)水池的容积V(公升)100 300 (600)(1)求这段时间时V关于t的函数关系式(不需要写出函数的定义域);(2)从t为25分钟开始,每分钟注入的水量发生变化了,到t为27分钟时,水池的容积为726公升,如果这两分钟中的每分钟注入的水量增长的百分率相同,求这个百分率.23.如图,已知△ABC和△ADE都是等边三角形,点D在边BC上,点E在边AD的右侧,联结CE.(1)求证:∠ACE=60°;(2)在边AB上取一点F,使BF=BD,联结DF、EF.求证:四边形CDFE是等腰梯形.24.已知平面直角坐标系xOy(如图),双曲线y=(k≠0)与直线y=x+2都经过点A(2,m).(1)求k与m的值;(2)此双曲线又经过点B(n,2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)若(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E 所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.25.在Rt△ABC中,∠C=90°,BC=2,Rt△ABC 绕着点B按顺时针方向旋转,使点C落在斜边AB 上的点D处,设点A旋转后与点E重合,连接AE,过点E作直线EM与射线CB垂直,交点为M.(1)若点M与点B重合,如图1,求cot∠BAE的值;(2)若点M在边BC上如图2,设边长AC=x,BM=y,点M不与点B重合,求y关于x的函数关系式,并写出自变量x的取值范围;(3)若∠BAE=∠EBM,求斜边AB的长.2016年上海市宝山区中考数学二模试卷参考答案与试题解析一.选择题1.下列实数中,属无理数的是()A.B.1.010010001 C.D.cos60°【考点】无理数.【分析】根据无理数的三种形式求解.【解答】解:=3,是无理数.故选C.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.如果a>b,那么下列不等式一定成立的是()A.a﹣b<0 B.﹣a>﹣b C.a<b D.2a>2b 【考点】不等式的性质.【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变.【解答】解:A、不等式的两边都减b,不等号的方向不变,故A错误;B、不等式的两边都乘以﹣1,不等号的方向改变,故B错误;C、不等式的两边都乘以,不等号的方向不变,故C 错误;D、不等式的两边都乘以2,不等号的方向不变,故D正确;故选:D.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变.3.数据6,7,5,7,6,13,5,6,8的众数是()A.5 B.6 C.7 D.5或6或7【考点】众数.【分析】根据众数的定义即可得出答案.【解答】解:在数据6,7,5,7,6,13,5,6,8中,6出现了3次,出现的次数最多,则众数是6;故选B.【点评】此题考查了众数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.4.抛物线y=﹣(x+2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(﹣2,0)【考点】二次函数图象与几何变换.【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答.【解答】解:抛物线y=﹣(x+2)2﹣3的顶点坐标是(﹣2,﹣3),向右平移3个单位后,所得抛物线的顶点坐标是(﹣2+3,﹣3),即(1,﹣3).故选:B.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.5.下列命题中,真命题是()A.菱形的对角线互相平分且相等B.矩形的对角线互相垂直平分C.对角线相等且垂直的四边形是正方形D.对角线互相平分的四边形是平行四边形【考点】命题与定理.【分析】根据菱形的性质对A进行判断;根据矩形的性质对B进行判断;根据正方形的判定方法对C 进行判断;根据平行四边形的判定方法对D进行判断.【解答】解:A、菱形的对角线互相平分且垂直,所以A选项错误;B、矩形的对角线互相平分且相等,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;D、对角线互相平分的四边形为平行四边形,所以D 选项正确.故选D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.Rt△ABC中,已知∠C=90°,AC=BC=4,以点A、B、C为圆心的圆分别记作圆A、圆B、圆C,这三个圆的半径长都等于2,那么下列结论正确的是()A.圆A与圆B外离 B.圆B与圆C外离 C.圆A 与圆C外离D.圆A与圆B相交【考点】圆与圆的位置关系.【分析】根据三角形的三边长确定两圆的圆心距,与两圆的半径的和比较后即可确定正确的选项.【解答】解:∵∠C=90°,AC=BC=4,∴AB=AC=4,∵三个圆的半径长都等于2,∴圆A与圆C外切,圆B与圆C外切,圆A与圆B 外离,故选A.【点评】本题考查了圆与圆的位置关系,解题的关键是根据圆的两边的长求得第三边的长,然后根据两圆的半径之和和两圆的圆心距的大小关系确定两圆的位置关系,难度不大.二.填空题7.计算:(﹣)2=.【考点】有理数的乘方.【分析】本题考查有理数的乘方运算,(﹣)2表示2个(﹣)的乘积.【解答】解:(﹣)2=.故答案为:.【点评】乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数.8.计算:﹣2x(x﹣2)=﹣2x2+4x.【考点】单项式乘多项式.【分析】直接利用单项式乘以多项式运算法则求出即可.【解答】解:﹣2x(x﹣2)=﹣2x2+4x.故答案为:﹣2x2+4x.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.9.方程=3的解是x=﹣8.【考点】无理方程.【分析】先把方程两边平方去根号后求解,然后把求得的值进行检验即可.【解答】解:两边平方得:1﹣x=9,x=﹣8,检验:当x=﹣8时,原方程的左边=3,右边=3,则x=﹣8是原方程的根.故答案为:x=﹣8.【点评】本题主要考查解无理方程,在解无理方程时最常用的方法是两边平方法及换元法,本题用了平方法;注意要把求得的x的值代入原方程进行检验.10.函数y=的定义域是x≠2.【考点】函数自变量的取值范围.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式4﹣2x≠0,解可得自变量x的取值范围.【解答】解:根据题意,有4﹣2x≠0,解可得x≠2;故函数y=的定义域是x≠2.故答案为x≠2.【点评】本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.11.如果正比例函数y=kx(k常数,k≠0)的图象经过点(﹣1,2),那么这个函数的解析式是y=﹣2x.【考点】待定系数法求正比例函数解析式.【分析】首先把(﹣1,2)代入正比例函数y=kx中可得k的值,进而得到函数解析式.【解答】解:∵正比例函数y=kx的图象经过点(﹣1,2),∴2=﹣1×k,解得:k=﹣2,∴该正比例函数的解析式为y=﹣2x,故答案为:y=﹣2x.【点评】此题主要考查了待定系数法求正比例函数解析式,关键是掌握凡是函数经过的点必能满足解析式.12.抛物线y=﹣x2+2x+m﹣2与y轴的交点为(0,﹣4),那么m=6.【考点】二次函数图象上点的坐标特征.【分析】把(0,﹣4)代入抛物线的解析式得到关于m的方程,解方程即可.【解答】解:∵抛物线y=﹣x2+2x+m﹣2与y轴的交点为(0,﹣4),∴m﹣2=4,解得:m=6.故答案为:6.【点评】此题考查了二次函数图象上点的坐标特征,函数与x轴交点坐标就要y=0,函数与y轴的交点坐标就要x=0.13.某班40名学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图所示,根据图中所提供的信息,你认为这次捐款活动中40个捐款额的中位数是15元.【考点】中位数;折线统计图.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:∵捐款的总人数为40,第20个与第21个数据都是15元,∴中位数是15元.故答案为:15.【点评】此题考查了中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.14.在不透明的袋中装有2个红球、5个白球和3个黑球,它们除颜色外其它都相同,如果从这不透明的袋里随机摸出一个球,那么所摸到的球恰好为黑球的概率是.【考点】概率公式.【分析】由在不透明的袋中装有2个红球、5个白球和3个黑球,它们除颜色外其它都相同,直接利用概率公式求解即可求得答案.【解答】解:∵在不透明的袋中装有2个红球、5个白球和3个黑球,它们除颜色外其它都相同,∴如果从这不透明的袋里随机摸出一个球,所摸到的球恰好为黑球的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.15.如图,在△ABC中,点M在边BC上,MC=2BM,设向量,,那么=3﹣3(结果用表示)【考点】*平面向量.【分析】由向量=,=,利用三角形法则,可求得,然后由点M在边BC上,MC=2BM,即可求得答案.【解答】解:∵向量=,=,∴=﹣=﹣,∵点M在边BC上,MC=2BM,∴=3=3﹣3.故答案为:3﹣3.【点评】此题考查了平面向量的知识.注意掌握三角形法则的应用.16.如图,在平行四边形ADBO中,圆O经过点A、D、B,如果圆O的半径OA=4,那么弦AB=4.【考点】菱形的判定与性质;垂径定理.【分析】由四边形ADBO是平行四边形,OA=OB,有一组邻边相等的平行四边形是菱形,得到▱ADBO 是菱形,证得AB,OD互相垂直平分,再由勾股定理求得结果.【解答】解:∵四边形ADBO是平行四边形,∵OA=OB,∴▱ADBO是菱形,∴AB,OD互相垂直平分,∴OC=OD=OA=2,∴AC==2,∴AB=2AC=4.故答案为:4.【点评】本题考查了菱形的判定和性质,勾股定理的应用,圆的性质,熟记同圆的半径相等是解题的关键.17.我们把两个三角形的外心之间的距离叫做外心距.如图,在Rt△ABC和Rt△ACD中,∠ACB=∠ACD=90°,点D在边BC的延长线上,如果BC=DC=3,那么△ABC和△ACD的外心距是3.【考点】三角形的外接圆与外心.【专题】新定义.【分析】利用直角三角形的性质得出两三角形的外心距为△ABD的中位线,即可得出答案.【解答】解:∵∠ACB=∠ACD=90°,∴Rt△ABC和Rt△ACD分别是AB,AD的中点,∴两三角形的外心距为△ABD的中位线,即为BD=3.故答案为:3.【点评】此题主要考查了三角形的外心,得出外心的位置是解题关键.18.在矩形ABCD中,AD=15,点E在边DC上,联结AE,△ADE沿直线AE翻折后点D落到点F,过点F作FG⊥AD,垂足为点G,如图,如果AD=3GD,那么DE=3.【考点】翻折变换(折叠问题).【专题】计算题.【分析】作EH⊥FG于H,如图,设DE=x,先根据折叠的性质得AF=AD=15,EF=DE=x,再利用AD=3GD可计算出DG=5,AG=10,则在Rt△AFG中,根据勾股定理可计算出FG=5,接着利用四边形DEHG为矩形得到HG=DE=x,HE=GD=5,所以HF=FG﹣HG=5﹣x,然后在Rt△FHE中利用勾股定理得到52+(5﹣x)2=x2,然后解方程求出x即可.【解答】解:作EH⊥FG于H,如图,设DE=x,∵△ADE沿直线AE翻折后点D落到点F,∴AF=AD=15,EF=DE=x,∵AD=3GD,∴DG=5,∴AG=10,在Rt△AFG中,FG===5,易得四边形DEHG为矩形,∴HG=DE=x,HE=GD=5,∴HF=FG﹣HG=5﹣x,在Rt△FHE中,∵HE2+HF2=EF2,∴52+(5﹣x)2=x2,解得x=3,即DE=3.故答案为3.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.三.解答题19.先化简,再求值:﹣+,其中x=﹣1.【考点】分式的化简求值.【专题】计算题.【分析】原式前两项约分后,利用同分母分式的加减法则计算得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=﹣+=﹣+==,当x=﹣1时,原式==+1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.解方程组:.【考点】高次方程.【分析】把方程②通过因式分解化为两个二元一次方程,把这两个方程分别与①组成方程组,解方程组得到答案.【解答】解:由②得,x+y=0,x﹣6y=0,得到方程组,,第一个方程组的解为:,第二个方程组的解为:.所以方程组的解:,.【点评】本题考查的是二元二次方程组的解法,通过因式分解把其中的二元二次方程化为两个二元一次方程是解题的关键,本题也可以用代入法解方程组.21.某住宅小区将现有一块三角形的绿化地改造为一块圆形的绿化地如图1.已知原来三角形绿化地中道路AB长为16米,在点B的拐弯处道路AB与BC 所夹的∠B为45°,在点C的拐弯处道路AC与BC 所夹的∠C的正切值为2(即tan∠C=2),如图2.(1)求拐弯点B与C之间的距离;(2)在改造好的圆形(圆O)绿化地中,这个圆O 过点A、C,并与原道路BC交于点D,如果点A是圆弧(优弧)道路DC的中点,求圆O的半径长.【考点】解直角三角形的应用.【分析】(1)作AE⊥BC于E,根据正弦函数求得AE,根据等腰直角三角形的性质求得BE,根据正切函数求得EC,进而即可求得BC;(2)连接AD,先根据已知求得三角形ADC是等腰三角形,进而根据垂径定理的推论求得AE经过圆心,连接OC,根据勾股定理即可求得圆的半径.【解答】解:(1)作AE⊥BC于E,∵∠B=45°,∴AE=AB•sin45°=16×=16,∴BE=AE=16,∵tan∠C=2,∴=2,∴EC==8,∴BC=BE+EC=16+8=24;(2)连接AD,∵点A是圆弧(优弧)道路DC的中点,∴∠ADC=∠C,∴AD=AC,∴AE垂直平分DC,∴AE经过圆心,设圆O的半径为r,∴OE=16﹣r,在RT△OEC中,OE2+EC2=OC2,即(16﹣r)2+82=r2,解得r=10,∴圆O的半径为10.【点评】本题考查了解直角三角形的应用,这就要求学生把实际问题转化为直角三角形的问题,利用三角函数解决问题.22.已知一水池的容积V(公升)与注入水的时间t (分钟)之间开始是一次函数关系,表中记录的是这段时间注入水的时间与水池容积部分对应值.注入水的时0 10 (25)间t(分钟)水池的容积100 300 (600)V(公升)(1)求这段时间时V关于t的函数关系式(不需要写出函数的定义域);(2)从t为25分钟开始,每分钟注入的水量发生变化了,到t为27分钟时,水池的容积为726公升,如果这两分钟中的每分钟注入的水量增长的百分率相同,求这个百分率.【考点】一元二次方程的应用;一次函数的应用.【分析】(1)设V关于t的函数关系式为V=kt+b,根据图表所给出的数据代入计算,即可得出这段时间时V关于t的函数关系式;(2)设这个百分率为x,根据t为25分钟时水池的容积是600公升和t为27分钟时,水池的容积为726公升,列出方程,求解即可.【解答】解:(1)设V关于t的函数关系式为V=kt+b,由题意,得,解得:.则这段时间时V关于t的函数关系式是V=20t+100;(2)设这个百分率为x,根据题意得:600(1+x)2=726,解得:x1=0.1=10%,x2=﹣2.1(舍去).答:这个百分率为10%.【点评】本题考查了一次函数和一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.如图,已知△ABC和△ADE都是等边三角形,点D在边BC上,点E在边AD的右侧,联结CE.(1)求证:∠ACE=60°;(2)在边AB上取一点F,使BF=BD,联结DF、EF.求证:四边形CDFE是等腰梯形.【考点】等腰梯形的判定;全等三角形的判定与性质;等边三角形的性质.【专题】证明题.【分析】(1)根据∠BAD+∠CAD=60°,∠EAC+∠CAD=60°,得到∠BAD=∠EAC,证明△ABD≌△ACE,得到答案;(2)证明四边形BCEF是平行四边形,得到EF∥BC,再证明DF=CE即可.【解答】证明:(1)∵△ABC和△ADE都是等边三角形,∴∠BAD+∠CAD=60°,∠EAC+∠CAD=60°,∴∠BAD=∠EAC,在△ABD和△ACE中,∴△ABD≌△ACE,∴∠ACE=∠ABD=60°;(2)∵∠ACE=60°,∠ABD=60°,∠ACB=60°,∴EC∥AB,∵BF=BD,BD=CE,∴BF=CE,∴四边形BCEF是平行四边形,∴EF∥BC,∵∠ABD=60°,BF=BD,∴BF=DF,又BD=CE,∴DF=CE,EF∥BC,∴四边形CDFE是等腰梯形.【点评】本题考查的是等边三角形的性质和等腰梯形的判定,找出三角形全等的条件是解题的关键,证明等腰梯形时,先证明一组对边平行,再证明另一组对边相等.24.已知平面直角坐标系xOy(如图),双曲线y=(k≠0)与直线y=x+2都经过点A(2,m).(1)求k与m的值;(2)此双曲线又经过点B(n,2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)若(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E 所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.【考点】反比例函数综合题.【分析】(1)可把A点坐标代入直线解析式求得m,再把A点坐标代入反比例函数解析式可求得k;(2)可先求得B点坐标,再求得直线BC的方程,可求得C点坐标,可判断△ABC为直角三角形,可求得其面积;(3)先求得D点坐标,计算出AD、CD、AC长,结合条件只有△ACD∽△CAE,再由相似三角形的性质可求得CE长,设出E点坐标,表示出CE长,可求得E点坐标.【解答】解:(1)∵直线y=x+2都经过点A(2,m),∴m=2+2=4,则A(2,4),∵双曲线y=(k≠0)经过点A,∴k=2×4=8;(2)∵双曲线经过点B(n,2),∴2n=8,解得n=4,∴B(4,2),由题意可设直线BC解析式为y=x+b,把B点坐标代入可得2=4+b,解得b=﹣2,∴直线BC解析式为y=x﹣2,∴C(0,﹣2),∴AC===2,BC===4,AB===2,∴BC2+AB2=AC2,∴△ABC是以AC为斜边的直角三角形,∴S △ABC=AB•BC=×2×4=8;(3)∵直线y=x+2与y轴交于点D,∴D(0,2),∴AD==2,且AC=2如图所示,∵AD∥CE,∴∠DAC=∠ACE,若∠ACD=∠EAC,则AE∥CD,四边形AECD为平行四边形,此时△ADC≌△CEA,不满足条件,∴∠ACD=∠AEC,∴△ACD∽△CAE,∴=,即=,解得CE=10,∵E点在直线BC上,∴可设E(x,x﹣2)(x>0),又∵C(0,﹣2),∴CE==x,∴x=10,解得x=10,∴E点坐标为(10,8).【点评】本题主要考查反比例函数的综合应用,涉及知识点有待定系数法求函数解析式、直角三角形的判定、平行四边形的性质、相似三角形的判定和性质等.在(1)中注意反比例函数中k=xy的应用,在(2)中判定△ABC为直角三角形是解题的关键,在(3)中根据相似求得CE的长是解题的关键.本题涉及知识点较多,综合性较强,难度较大.25.在Rt△ABC中,∠C=90°,BC=2,Rt△ABC 绕着点B按顺时针方向旋转,使点C落在斜边AB 上的点D处,设点A旋转后与点E重合,连接AE,过点E作直线EM与射线CB垂直,交点为M.(1)若点M与点B重合,如图1,求cot∠BAE的值;(2)若点M在边BC上如图2,设边长AC=x,BM=y,点M不与点B重合,求y关于x的函数关系式,并写出自变量x的取值范围;(3)若∠BAE=∠EBM,求斜边AB的长.【考点】几何变换综合题.【分析】(1)由旋转有,BC=BD=2,AC=ED,∠CBA=∠EBD=∠C=90°,通过计算出AC=CB=2,AB=2,DE=DB=2,即可;(2)由(1)中的结论得出△EDG∽△BDE,再由cos∠ABC=,建立函数关系;(3)由旋转有,AB=EB,∠AEB=∠BAE,∠CBA=x 经过简单的计算出:HC=BC=2,HB=HE=4,∠CBA=60°即可.【解答】解:(1)由旋转有,BC=BD=2,AC=ED,∠CBA=∠EBD=∠C=90°,∵EM⊥CB,∴∠EBC=90°,∴∠CBA=∠EBD=45°,∴AC=CB=2,∴AB=2,∵DE=DB=2,∴AD=AB﹣BD=2﹣2,∴cot∠BAE==﹣1,(2)设EM与边AB交于G,由(1)有∠DAM+∠DGE=90°,∠BGM+∠ABM=90°,∠DGE=∠BGM,∴∠DAM=CBA,∠EBD=∠CBA,∴∠DAM=∠EBD,∠EDG=∠BDE,∴△EDG∽△BDE,∴,∵BC=BD=2,AC=ED=x,∴,∴DG=,∵cos∠ABC=,∴AB=,GB=,∴,∴y=(0<x<2)(3)延长EA,BC交于H,如图1,由旋转有,AB=EB,∠AEB=∠BAE,∠CBA=x ∴∠ABE=x,∠BAE=∠EBM,∴∠AEB∠BAE=∠EMB=2x,∵∠ABE+∠BAE+∠AEB=180°,∴x=36°,∴∠H=∠ABH=∠ABE=36°,∠HBE=∠BAE=∠AEB=72°,∴AH=AB=BE,HB=HE,∵∠ACB=90°∴HC=BC=2,∴HB=HE=4,∴△BAE∽△HBE,∴,∵BE=AB,∴AE=HE﹣HA=4﹣AB,∴,∴AB=﹣2+2或AB=﹣2﹣2(舍),当点M在CB延长线时,如图2,∵∠AEB=∠BAE=∠EBM,∴∠AEB=∠EBM,∴AE∥MC,∴∠BAE=∠CBA,∵∠CBA=∠EBA,∴∠EBM=∠CBA=∠EBA,∴∠CBA=60°,∵cos∠CBA=,∴BC=2,∴AB=4,即:AB=﹣2+2或4.【点评】此题是几何变换综合题,主要考查了平移,旋转的性质,三角函数相似三角形的性质和判定,由平移,旋转得出结论是解本题的关键.。
宝山区2016学年第二学期期中高三年级数学学科教学质量监测试卷参考答案及评分标准一、填空题(本大题共有12题,满分54分) 二、选择题(本大题共有4题,满分20分)三、解答题(本大题共有5题,满分76分)17. 解:(1)方法一:设正方体棱长为2,以D 为原点,直线DA ,DC ,1DD 为x ,y ,z 轴,建立空间直角坐标系,则(000)D ,,,(220)B ,,,(020)C ,,,1(002)D ,,,故(120)E ,,,(011)F ,,,()111EF =--,,,()1002AA =,,,…………………………………………………………………………………4/设异面直线EF 与1AA 所成角的大小为α,向量EF 与1AA 所成角为β,则11EF AA cos cos EF AA αβ⋅==⋅…… 6/==7/注意到02πα⎛⎤∈ ⎥⎝⎦,,故α=,即异面直线EF 与1AA 所成角的大小为.…………………8/(2)由(1)可知,平面11AA B B 的一个法向量是(100)n =,,,…………………………………………………10/设直线EF 与平面11AA B B 所成角的大小是θ,向量EF 与n 所成角为γ,则EF n sin cos EF nθγ⋅==⋅………12/=13/又02πθ⎡⎤∈⎢⎥⎣⎦,,3arcsinθ∴=,即直线EF 与平面11AA B B 所成角的大小为3arcsin.………………14/1方法二:设正方体棱长为2.(1)在面11CC D D 内,作FH CD ⊥于H ,联结HE .因为正方体1111ABCD A BC D -,所以1AA ∥1DD ;在面11CC D D 内,有FH ∥1DD ,故异面直线EF 与1AA 所成的角就是EFH ∠(或其补角).………………………4/由已知及作图可知,H 为CD 的中点,于是,在Rt EFH ∆中,易得1FH =,HE =,故HE tan EFHFH∠=, ………………………………………… 6/1==7/ 又(0)2EFH π∠∈,,所以EFH ∠=EF 与1AA 所成角的大小为8/(2)因为正方体1111ABCD A B C D -,所以平面11AA B B ∥平面11CC D D ,故直线EF 与平面11AA B B 所成角的大小就是直线EF 与平面11CC D D 所成角.注意到BC ⊥平面11CC D D ,即EC ⊥平面11CC D D ,所以直线EF 与平面11AA B B 所成角的大小即为EFC ∠. ………………………………………………………………10/在Rt EFC ∆中,易得1EC FC =,ECtan EFC FC∠=……………………………………………………12/2==,……………………………………………13/又(0)2EFC π∠∈,,故EFC ∠=,即直线EF 与平面11AA B B 所成角的大小为. ……14/18.解:(1)方法一:由题意,2=p ,所以抛物线的方程为x y 42=. ……………………………………………2/当直线l 的斜率不存在时,直线l 的方程为t x =,则(A t ,(B t -,,t t 42-=⋅.…………3/当直线l 的斜率k 存在时,则0≠k ,设l 的方程为)(t x k y -=,11()A x y ,,22()B x y ,,由24()y xy k x t ⎧=⎨=-⎩消去x ,得0442=--kt y ky ,故121244y y k y y t ⎧+=⎪⎨⎪=-⎩,所以,t t y y y y y y x x 41622122212121-=+=+=⋅.……………5/ 综上,OB OA ⋅的值与直线l 倾斜角的大小无关. ……………………………………………………………………6/方法二:由题意,2=p ,所以抛物线的方程为x y 42=. …………………………………………………………2/依题意,可设直线l 的方程为x my t =+(m R ∈),11()A x y ,,22()B x y ,,由24y xx my t⎧=⎨=+⎩得2440y my t --=,故121244y y my y t+=⎧⎨=-⎩,所以,12121212()()OA OB x x y y my t my t y y ⋅=+=+++221212(1)()m y y mt y y t =++++ ………………………………5/22(1)(4)4m t mt m t =+-+⋅+24t t =-综上,OB OA ⋅的值与直线l 倾斜角的大小无关.……………………………………………………………………6/(2)设00()P x y ,,则0204x y =,||PT ==,…………………………8/注意到00≥x ,所以,若20t -≥,即2t ≥,则当02x t =-时,||PT取得最小值,即()2)d t t =≥;………………………10/若20t -<,即有02t <<,则当00x =时,||PT 取得最小值,即()(02)d t t t =<<;………………………12/综上所述,()()2()02t d t tt ⎧≥⎪=⎨<<⎪⎩………………………………………………………………………………14/19.解:(1)函数2()2g x x x =-在[01]x ∈,时的值域为[10]-,,……………………………………………………4/不满足“保值函数”的定义,因此函数2()2g x x x =-不是定义域[01],上的“保值函数”.………………………6/(2)因xa a x f 2112)(-+=在[]m n ,内是单调增函数,故()()f m m f n n ==,,…………………………………8/ 这说明m n ,是方程x xa a =-+2112的两个不相等的实根,…………………………………………………………10/ 其等价于方程01)2(222=++-x a a x a 有两个不相等的实根,………………………………………………………11/由222(2)40a a a ∆=+->解得23-<a 或21>a . …………………………………………………………………13/ 故a 的取值范围为3122⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭,,.……………………………………………………………………………14/20.解:(1)若{}n a 是等差数列,则对任意*n N ∈,有122n n n a a a ++=+,…………………………………………2/即121()2n n n a a a ++=+,……………………………………………………………………………………………………3/ 故12k =.……………………………………………………………………………………………………………………4/ (2)当12k =-时,121()2n n n a a a ++=-+,即122n n n a a a ++=--,211()n n n n a a a a ++++=-+,故32211()n n n n n n a a a a a a ++++++=-+=+.………………………………………………………………………………5/所以,当n 是偶数时,1234112()(11)22n n n n nS a a a a a a a a n -=++++++=+=+=;………………………7/ 当n 是奇数时,2312()2a a a a +=-+=-,12341n n n S a a a a a a -=++++++123451()()()n n a a a a a a a -=+++++++11(2)22n n -=+⨯-=-. …………………………………………9/ 综上,()()2212n nn k S nn k -=-⎧⎪=⎨=⎪⎩(*k N ∈).………………………………………………………………………10/(3)若}{n a 是等比数列 ,则公比a a a q ==12,由题意1≠a ,故1-=m m a a ,m m a a =+1,12++=m m a a .……11/ ① 若1m a +为等差中项,则122m m m a a a ++=+,即112m m m a a a -+=+ ⇔221a a =+,解得1=a (舍去);……12/② 若m a 为等差中项,则122m m m a a a ++=+,即112m m m aa a -+=+⇔22a a =+,因1≠a ,故解得,2a =-,11122215m m m m m m a a a k a a a a a +-++====-+++; …………………………………………………………14/ ③ 若2m a +为等差中项,则212m m m a a a ++=+,即112221m m m a a a a a +-=+⇔=+,因为1≠a ,解得212215a a k a =-==-+,.……………………………………………………………………………15/综上,存在实数k 满足题意,25k =-.…………………………………………………………………………………16/21.解:(1)对于1A ,由2121x x y -=+得1201x y y+=>-,解得11y -<<,…………………………………………2/ 1A ∴为有界集合; ………………………………………………………………………………………………………3/显然252266A x k x k k Z ππππ⎧⎫=+<<+∈⎨⎬⎭⎩,不是有界集合.……………………………………………………4/(2)记()n n a f m =,则21n n a a u +=+.若14u =,则21()4f m m =+,22111()42n n n n n a a a a a +=+=-+≥,即1n n a a +≥,且 211111()()2422n n n n a a a a +-=-=-+,从而1111222n n n a a a +-=-⋅+. (ⅰ)当12m =时,1()2n n f m a ==,所以1{}2B =,从而B 为有界集合.………………………………………5/(ⅱ)当12m <时,由2114n n a a +=+,2111()()4a f m f m m ===+,显然,此时0n a >,利用数学归纳法可得12n a <,故B 为有界集合.……………………………………………………………………………………………………………6/(ⅲ)当12m >时,211111()()42n n a a a f m f m m m +≥≥≥===+≥>,2114n n n n a a a a +-=-+21()2n a =-211()2a ≥-,即2111()2n n a a a +-≥-,由累加法得2111(1)()2n a a n a ≥+--→+∞,故B 不是有界集合.因此,当14u =,且12m ≤时,B 为有界集合;当14u =,且12m >时,B 不是有界集合;若14u >,则211()()a f m f m m u u ===+≥,即114a u ≥>,又2114n n a a u u +=+>>(n N *∈),即14n a >(n N *∈).于是,对任意n N *∈,均有221111()244n n n n n a a a a u a u u +-=-+=-+-≥-,即114n n a a u +-≥-(n N *∈),再由累加法得11(1)()4n a a n u ≥+--→+∞,故B 不是有界集合.………8/综上,当14u =,且12m ≤时,B 为有界集合;当14u =,且12m >时,B 不是有界集合;当14u >(m R ∈)时,B 不是有界集合.故,满足题设的实数u 的值为14,且实数m 的取值范围是11[]22-,.………………………………………………10/(3)存在.…………………………………………………………………………………………………………………11/不妨设a b c ≥≥.若2a cb +≤,则2a bc ≥-,且2()d b c =-.故22222225()5()()d a b c b c a b c -++=--++22225()[(2)]b c b c b c ≤---++3(2)0c c b =-<,即22222215()05d d a b c a b c -++<⇔<++;…………13/若2a c b +>,则2a a c b <+<,即220a b a b <⇔-<,又2a cb bc a b +>⇔->-,故2()d a b =-,又 22222225()5()()d a b c a b a b c -++=--++22(2)(2)0a b a b c =---<,即 2225()0d a b c -++<22215d a b c ⇔<++,因此,15是有界集合C 的一个上界.…………………………………………………………15/下证:上界15λ<不可能出现.假设正数15λ<出现,取2a c b +=,1()05c a λ=->,则22a c d -⎛⎫= ⎪⎝⎭,此时,d 22222213()()()55a b c a b c ac λλ=+++-++-22221()()5a b c a ac λλ>+++--222()a b c λ=++(*)…17/由式(*)可得222222()d d a b c a b c λλ>++⇔>++,与λ是C 的一个上界矛盾!.综上所述,满足题设的最小正数λ的值为15. ………………………………………………………………………18/。
2016年上海市嘉定区、宝山区中考数学二模试卷一、选择题(本大题共6题,每题4分,满分24分)1.﹣2的倒数是()A.﹣2 B.2 C.﹣D.2.下列计算正确的是()A.2a﹣a=1 B.a2+a2=2a4 C.a2•a3=a5D.(a﹣b)2=a2﹣b23.某地气象局预报称:明天A地区降水概率为80%,这句话指的是()A.明天A地区80%的时间都下雨B.明天A地区的降雨量是同期的80%C.明天A地区80%的地方都下雨D.明天A地区下雨的可能性是80%4.某老师在试卷分析中说:参加这次考试的82位同学中,考91的人数最多,有11人之众,但是十分遗憾最低的同学仍然只得了56了.这说明本次考试分数的众数是()A.82 B.91 C.11 D.565.如果点K、L、M、N分别是四边形ABCD的四条边AB、BC、CD、DA的中点,且四边形KLMN是菱形,那么下列选项正确的是()A.AB⊥BC B.AC⊥BD C.AB=BC D.AC=BD6.如图,梯形ABCD中,AD∥BC,AB=DC,∠DBC=45°,点E在BC上,点F在AB上,将梯形ABCD沿直线EF翻折,使得点B与点D重合.如果,那么的值是()A.B.C.D.二、填空题(本大题共12题,每题4分,满分48分)7.据统计,今年上海“樱花节”活动期间顾村公园入园赏樱人数约312万人次,用科学记数法可表示为______人次.8.因式分解:2a2﹣8=______.9.不等式组的解集是______.10.如果在组成反比例函数图象的每条曲线上,y都随x的增大而增大,那么k的取值范围是______.11.如果函数y=f(x)的图象沿x轴的正方向平移1个单位后与抛物线y=x2﹣2x+3重合,那么函数y=f(x)的解析式是______.12.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表.如果从这四位同学中,选出一______同学.14.已知在平行四边形ABCD中,点M、N分别是边AB、BC的中点,如果、,那么向量=______(结果用、表示).15.以点A、B、C为圆心的圆分别记作⊙A、⊙B、⊙C,其中⊙A的半径长为1,⊙B的半径长为2,⊙C的半径长为3,如果这三个圆两两外切,那么cosB的值是______.16.如图,如果在大厦AB所在的平地上选择一点C,测得大厦顶端A的仰角为30°,然后向大厦方向前进40米,到达点D处(C、D、B三点在同一直线上),此时测得大厦顶端A 的仰角为45°,那么大厦AB的高度为______米(保留根号).17.对于实数m、n,定义一种运算“*”为:m*n=mn+n.如果关于x的方程x*(a*x)=有两个相等的实数根,那么满足条件的实数a的值是______.18.如图,点D在边长为6的等边△ABC的边AC上,且AD=2,将△ABC绕点C顺时针方向旋转60°,若此时点A和点D的对应点分别记作点E和点F,联结BF交边AC与点G,那么tan∠AEG=______.三、解答题(本大题共7题,满分78分)19.化简求值:()÷,其中x=.20.解方程:.21.如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于的长为半径画弧,相交于两点M、N;②联结MN,直线MN交△ABC的边AC与点D,联结BD.如果此时测得∠A=34°,BC=CD.求∠ABC与∠C的度数.22.如图,在平面直角坐标系xOy中,过点A(﹣4,2)向x轴作垂线,垂足为B,联结AO得到△AOB,过边AO中点C的反比例函数的图象与边AB交于点D.求:(1)反比例函数的解析式;(2)求直线CD与x轴的交点坐标.23.如图,BD是平行四边形ABCD的对角线,若∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE与BF相交于H,BF与AD的延长线相交于G.求证:(1)CD=BH;(2)AB是AG和HE的比例中项.24.在平面直角坐标系xOy(如图)中,经过点A(﹣1,0)的抛物线y=﹣x2+bx+3与y轴交于点C,点B与点A、点D与点C分别关于该抛物线的对称轴对称.(1)求b的值以及直线AD与x轴正方向的夹角;(2)如果点E是抛物线上一动点,过E作EF平行于x轴交直线AD于点F,且F在E的右边,过点E作EG⊥AD与点G,设E的横坐标为m,△EFG的周长为l,试用m表示l;(3)点M是该抛物线的顶点,点P是y轴上一点,Q是坐标平面内一点,如果以点A、M、P、Q为顶点的四边形是矩形,求该矩形的顶点Q的坐标.25.如图,⊙O与过点O的⊙P交于AB,D是⊙P的劣弧OB上一点,射线OD交⊙O于点E,交AB延长线于点C.如果AB=24,tan∠AOP=.(1)求⊙P的半径长;(2)当△AOC为直角三角形时,求线段OD的长;(3)设线段OD的长度为x,线段CE的长度为y,求y与x之间的函数关系式及其定义域.2016年上海市嘉定区、宝山区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.﹣2的倒数是()A.﹣2 B.2 C.﹣D.【考点】倒数.【分析】根据倒数的定义:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.【解答】解:﹣2的倒数是﹣,故选C.2.下列计算正确的是()A.2a﹣a=1 B.a2+a2=2a4 C.a2•a3=a5D.(a﹣b)2=a2﹣b2【考点】完全平方公式;合并同类项;同底数幂的乘法.【分析】根据合并同类项,积的乘方,完全平方公式,即可解答.【解答】解:A.2a﹣a=a,故错误;B.a2+a2=2a2,故错误;C.a2•a3=a5,正确;D.(a﹣b)2=a2﹣2ab+b2,故错误;故选:C.3.某地气象局预报称:明天A地区降水概率为80%,这句话指的是()A.明天A地区80%的时间都下雨B.明天A地区的降雨量是同期的80%C.明天A地区80%的地方都下雨D.明天A地区下雨的可能性是80%【考点】概率的意义.【分析】降水概率就是降水的可能性,根据概率的意义即可作出判断.【解答】解:“明天A地区降水概率为80%”是指明天A地区下雨的可能性是80%.且明天下雨的可能性较大,故A、B、C都错误,只有D正确;故选:D.4.某老师在试卷分析中说:参加这次考试的82位同学中,考91的人数最多,有11人之众,但是十分遗憾最低的同学仍然只得了56了.这说明本次考试分数的众数是()A.82 B.91 C.11 D.56【考点】众数.【分析】利用众数的定义直接回答即可.【解答】解:∵考91的人数最多,∴众数为91分,故选:B.5.如果点K、L、M、N分别是四边形ABCD的四条边AB、BC、CD、DA的中点,且四边形KLMN是菱形,那么下列选项正确的是()A.AB⊥BC B.AC⊥BD C.AB=BC D.AC=BD【考点】中点四边形.【分析】由E、F、G、H分别为AB、BC、CD、DA的中点,得出KL,MN是中位线,再得出四条边相等,根据四条边都相等的四边形是菱形.【解答】解:∵点K、L、M、N分别是四边形ABCD的四条边AB、BC、CD、DA,∴KL∥AC,KL=AC,MN∥BD,MN=BD,∵四边形EFGH为菱形,∴AC=BD,故选:D.6.如图,梯形ABCD中,AD∥BC,AB=DC,∠DBC=45°,点E在BC上,点F在AB上,将梯形ABCD沿直线EF翻折,使得点B与点D重合.如果,那么的值是()A.B.C.D.【考点】翻折变换(折叠问题).【分析】根据对称的性质得到△BFE≌△DFE,得到DE=BE.根据已知条件得到∠DEB=90°,设AD=1,BC=4,过A作AG⊥BC于G,根据矩形的性质得到GE=AD=1,根据全等三角形的性质得到BG=EC=1.5,根据勾股定理得到AB=CD==5,通过△BDC∽△DEF,得到,求出BF=,于是得到结论.【解答】解:∵EF是点B、D的对称轴,∴△BFE≌△DFE,∴DE=BE.∵在△BDE中,DE=BE,∠DBE=45°,∴∠BDE=∠DBE=45°.∴∠DEB=90°,∴DE⊥BC.在等腰梯形ABCD中,∵,∴设AD=1,BC=4,过A作AG⊥BC于G,∴四边形AGED是矩形.∴GE=AD=1,∵Rt△ABG≌Rt△DCE,∴BG=EC=1.5,∴AG=DE=BE=2.5∴AB=CD==5,∵∠ABC=∠C=∠FDE,∵∠CDE+∠C=90°,∴∠FDE+∠CDE=90°∴∠FDB+∠BDC+∠FDB=∠FDB+∠DFE=90°,∴∠BDC=∠DFE,∵∠DEF=∠DBC=45°,∴△BDC∽△DEF,∴,∴DF=,∴BF=,∴AF=AB﹣BF=,∴=.故选B.二、填空题(本大题共12题,每题4分,满分48分)7.据统计,今年上海“樱花节”活动期间顾村公园入园赏樱人数约312万人次,用科学记数法可表示为 3.12×106人次.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将908万用科学记数法表示为3.12×106,故答案为:3.12×106.8.因式分解:2a2﹣8=2(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).9.不等式组的解集是1<x<2.【考点】解一元一次不等式组.【分析】分别求出两个不等式的解集,然后再求出两个解集的公共部分.【解答】解:解不等式x+1<3得,x<2;解不等式2x﹣1>1得,x>1;则不等式组的解集为1<x<2.故答案为1<x<2.10.如果在组成反比例函数图象的每条曲线上,y都随x的增大而增大,那么k的取值范围是k>1.【考点】反比例函数的性质.【分析】根据反比例函数的增减性列出关于k的不等式,求出k的取值范围即可.【解答】解:∵反比例函数图象的每条曲线上,y都随x的增大而增大,∴1﹣k<0,解得k>1.故答案为:k>1.11.如果函数y=f(x)的图象沿x轴的正方向平移1个单位后与抛物线y=x2﹣2x+3重合,那么函数y=f(x)的解析式是y=x2+2.【考点】二次函数图象与几何变换.【分析】把y=x2﹣2x+3沿x轴负方向平移1个单位后得到要求的抛物线.【解答】解:根据题意,y=x2﹣2x+3=(x﹣1)2+2,沿x轴负方向平移1个单位,得到y=x2+2.故答案为y=x2+2.12.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加上海市初中数学竞赛,那么应选乙同学.【考点】标准差.【分析】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的同学参赛.【解答】解:由于乙的方差较小、平均数较大,故选乙.故答案为:乙.13.方程的解是x=﹣1.【考点】无理方程.【分析】根据方程可知等号左边的x+1≤0,等号右边根号里面的x+1≥0,联立不等式组,即可解答本题.【解答】解:∵,∴,解得,x=﹣1,故答案为:x=﹣1.14.已知在平行四边形ABCD中,点M、N分别是边AB、BC的中点,如果、,那么向量=+(结果用、表示).【考点】*平面向量.【分析】首先根据题意画出图形,然后连接AC,由三角形法则,即可求得,然后由点M、N分别是边AB、BC的中点,根据三角形中位线的性质,求得答案.【解答】解:如图,连接AC,∵四边形ABCD是平行四边形,∴==,∵,∴=+=+,∵点M、N分别是边AB、BC的中点,∴==+.故答案为:+.15.以点A、B、C为圆心的圆分别记作⊙A、⊙B、⊙C,其中⊙A的半径长为1,⊙B的半径长为2,⊙C的半径长为3,如果这三个圆两两外切,那么cosB的值是.【考点】相切两圆的性质.【分析】由已知条件得出△ABC的三边长,由勾股定理的逆定理证明△ABC是直角三角形,∠A=90°,再由三角函数的定义即可得出结果.【解答】解:如图所示:∵⊙A的半径长为1,⊙B的半径长为2,⊙C的半径长为3,且这三个圆两两外切,∴AB=1+2=3,AC=3+1=4,BC=3+2=5,∵AB2+AC2=BC2,∴△ABC是直角三角形,∠A=90°,∴cosB==.故答案为:.16.如图,如果在大厦AB所在的平地上选择一点C,测得大厦顶端A的仰角为30°,然后向大厦方向前进40米,到达点D处(C、D、B三点在同一直线上),此时测得大厦顶端A的仰角为45°,那么大厦AB的高度为20+20米(保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】先设AB=x;根据题意分析图形:本题涉及到两个直角三角形Rt△ACB和Rt△ADB,应利用其公共边BA构造等量关系,解三角形可求得DB、CB的数值,再根据CD=BC﹣BD=40,进而可求出答案.【解答】解:设AB=x,在Rt△ACB和Rt△ADB中,∵∠C=30°,∠ADB=45°,CD=40,∴DB=x,AC=2x,∴BC==x,∴∵CD=BC﹣BD=40,x﹣x=40,∴x=20(+1),故答案为:20+20.17.对于实数m、n,定义一种运算“*”为:m*n=mn+n.如果关于x的方程x*(a*x)=有两个相等的实数根,那么满足条件的实数a的值是0.【考点】根的判别式.【分析】由于定义一种运算“*”为:m*n=mn+n,所以关于x的方程x*(a*x)=变为(a+1)x2+(a+1)x+=0,而此方程有两个相等的实数根,所以根据判别式和一元二次方程的一般形式的定义可以得到关于a的关系式,即可解决问题.【解答】解:由x*(a*x)=﹣,得(a+1)x2+(a+1)x+=0,依题意有a+1≠0,△=(a+1)2﹣(a+1)=0,解得,a=0,或a=﹣1(舍去).故答案为:0.18.如图,点D在边长为6的等边△ABC的边AC上,且AD=2,将△ABC绕点C顺时针方向旋转60°,若此时点A和点D的对应点分别记作点E和点F,联结BF交边AC与点G,那么tan∠AEG=.【考点】旋转的性质;等边三角形的性质.【分析】作GM⊥AE于M,则∠AMG=90°,由等边三角形的性质得出AB=BC=AC=6,∠BAC=∠ABC=60°,由旋转的性质得出△AEC≌△ABC,EF=AD=2,因此AE=CE=AB=6,∠EAC=∠ACE=60°,CF=CE﹣EF=4,得出AB∥CF,证出△ABG∽△CFG,得出对应边成比例=,求出AG,再求出AM,得出GM、ME,即可得出结果.【解答】解:如图所示:作GM⊥AE于M,则∠AMG=90°,∵△ABC是边长为6的等边三角形,∴AB=BC=AC=6,∠BAC=∠ABC=60°,由旋转的性质得:△AEC≌△ABC,EF=AD=2,∴AE=CE=AB=6,∠EAC=∠ACE=60°,CF=CE﹣EF=4,∴AB∥CF,∴△ABG∽△CFG,∴==,∴AG=AC=3.6,∵∠AGM=90°﹣60°=30°,∴AM=AG=1,∴GM=AM=,ME=AE﹣AM=,∴tan∠AEG===;故答案为:.三、解答题(本大题共7题,满分78分)19.化简求值:()÷,其中x=.【考点】二次根式的化简求值.【分析】括号内通分,化除法为乘法进行化简,然后代入求值.【解答】解:原式=×=.将x=代入,得原式==.20.解方程:.【考点】解分式方程.【分析】方程两边乘以x(2x﹣1)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同时乘以x(2x﹣1),得(2x﹣1)2﹣3x2+2x(2x﹣1)=0,整理后,得5x2﹣6x+1=0,解得:x1=1,x2=,经检验:x1=1,x2=是原方程的根,则原方程的根是x1=1,x2=.21.如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于的长为半径画弧,相交于两点M、N;②联结MN,直线MN交△ABC的边AC与点D,联结BD.如果此时测得∠A=34°,BC=CD.求∠ABC与∠C的度数.【考点】作图—基本作图;线段垂直平分线的性质.【分析】利用基本作图可判断MN垂直平分AB,则DA=DB,根据等腰三角形的性质和三角形外角性质得∠CDB=68°,再由CB=CD得到∠CBD=∠CDB=68°,所以∠ABC=∠DBA+∠CBD=102°,然后利用三角形内角和定理计算∠C的度数.【解答】解:由作法得MN垂直平分AB,则DA=DB,∴∠DBA=∠A=34°,∴∠CDB=∠DBA+∠A=68°,∵CB=CD,∴∠CBD=∠CDB=68°,∴∠ABC=∠DBA+∠CBD=34°+68°=102°,∠C=180°﹣68°﹣68°=44°.22.如图,在平面直角坐标系xOy中,过点A(﹣4,2)向x轴作垂线,垂足为B,联结AO得到△AOB,过边AO中点C的反比例函数的图象与边AB交于点D.求:(1)反比例函数的解析式;(2)求直线CD与x轴的交点坐标.【考点】待定系数法求反比例函数解析式.【分析】(1)由A点的坐标结合中点的坐标公式可得出点C的坐标,将点C的坐标代入到反比例函数解析式即可求出k值,从而得出反比例函数的解析式;(2)令x=﹣4,找出D点的坐标,由待定系数法求出直线CD的函数解析式,再令y=0,解关于x的一元一次方程即可得出直线CD与x轴的交点坐标.【解答】解:(1)∵点C为线段AO的中点,∴C点的坐标为(﹣2,1),将点C(﹣2,1)代入到反比例函数中得:1=,解得:k=﹣2.∴反比例函数的解析式为y=﹣.(2)令x=﹣4,则y=﹣=.即点D的坐标为(﹣4,).设直线CD的解析式为y=ax+b,由点C、D在直线CD的图象上可知:,解得:.∴直线CD的解析式为y=x+.令y=0,则有x+=0,解得:x=﹣6.∴直线CD与x轴的交点坐标为(﹣6,0).23.如图,BD是平行四边形ABCD的对角线,若∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE与BF相交于H,BF与AD的延长线相交于G.求证:(1)CD=BH;(2)AB是AG和HE的比例中项.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)根据已知利用AAS判定△BEH≌△DEC,从而得到BH=DC;(2)根据两组角对应相等的两个三角形相似得到△BEH∽△GBA,相似三角形的对应边成比例所以BH•AB=EH•AG,由于BH=DC=AB所以推出了AB2=GA•HE.【解答】证明:(1)∵在▱ABCD中,DE⊥BC,∠DBC=45°,∴∠DEC=∠BEH=90°,DE=BE,∵∠EBH+∠BHE=90°,∠DHF+∠CDE=90°,∴∠EBH=∠EDC,在△BEH与△DEC中,,∴△BEH≌△DEC.∴BH=DC;(2)∵四边形ABCD是平行四边形,∴AG∥BC,∠A=∠C=∠BHE,AB=CD,∴∠G=∠HBE,∴△BEH∽△GBA,∴BH•AB=EH•AG,∵BH=DC=AB,∴AB2=GA•HE.24.在平面直角坐标系xOy(如图)中,经过点A(﹣1,0)的抛物线y=﹣x2+bx+3与y轴交于点C,点B与点A、点D与点C分别关于该抛物线的对称轴对称.(1)求b的值以及直线AD与x轴正方向的夹角;(2)如果点E是抛物线上一动点,过E作EF平行于x轴交直线AD于点F,且F在E的右边,过点E作EG⊥AD与点G,设E的横坐标为m,△EFG的周长为l,试用m表示l;(3)点M是该抛物线的顶点,点P是y轴上一点,Q是坐标平面内一点,如果以点A、M、P、Q为顶点的四边形是矩形,求该矩形的顶点Q的坐标.【考点】二次函数综合题.【分析】(1)将点A(﹣1,0)代入抛物线的解析式可求得b的值,然后可得到抛物线的解析式,从而可求得抛物线的对称轴,再依据对称性可求得D(2,3),B(3,0),最后依据待定系数法求得AD的解析式可求得直线AD与x轴正方向的夹角;(2)设E(m,﹣m2+2m+3),则F(﹣m2+2m+2,﹣m2+2m+3),EF=﹣m2+m+2.然后证明△EFG为等腰直角三角形,从而得到EF=(1+)EF,于是可求得l与m的关系式;(3)先利用配方法求得点M的坐标,然后根据①AM为矩形的对角线时,②当AM为矩形的一边时两种情况求解即可.【解答】解:(1)∵将点A(﹣1,0)代入抛物线的解析式得:﹣1﹣b+3=0,解得:b=2,∴y=﹣x2+2x+3.∴抛物线的对称轴为直线x=1.令x=0得:y=3,则C(0,3).∵点B与点A、点D与点C分别关于该抛物线的对称轴对称,∴D(2,3),B(3,0).设直线AD的解析式为y=kx+b.∵将A(﹣1,0)、D(2,3)代入得:,解得:k=1,b=1,∴直线AD的解析式为y=x+1.∴直线AD与x轴正方向的夹角为45°.(2)如图1所示:设E(m,﹣m2+2m+3),则F(﹣m2+2m+2,﹣m2+2m+3),EF=﹣m2+2m+2﹣m=﹣m2+m+2.∵∠EGF=90°,∠EFG=45°,∴△EFG为等腰直角三角形.∴l=EF+FG+EG=EF+EF+EF=(1+)EF=(1+)(﹣m2+m+2)=﹣()m2+(+1)m+2+2.(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴M(1,4).①AM为矩形的对角线时,如图2所示:∵由矩形的性质可知:N为AM的中点,A(﹣1,0),M(1,4),∴N(0,2).∵由两点间的距离公式可知:MN==.∴NQ1=NQ2=,∴Q1(0,2+),Q2(0,2﹣).②当AM为矩形的一边时,如图3所示:过Q3作Q3E⊥y轴,垂直为E,过Q4作Q4F⊥y 轴,垂足为F.∵在△ANO 中,AO=1,ON=2,∴tan ∠ANO=,∴tan ∠MNP 4=,∴P 4M MN=,NP 4=MN=.∴P 4Q 3=.∴P 4E=P 4Q 3=1,EQ3=P 4Q 3=2. ∵OE=OP 4﹣P 4E=4.5﹣1=3.5,∴Q 3的坐标为(2,3.5).∵点Q 3与Q 4关于点N 对称,∴Q 4(﹣2,).综上所述,点Q 的坐标为(0,2+),或(0,2﹣)或(2,3.5)或(﹣2,).25.如图,⊙O 与过点O 的⊙P 交于AB ,D 是⊙P 的劣弧OB 上一点,射线OD 交⊙O 于点E ,交AB 延长线于点C .如果AB=24,tan ∠AOP=.(1)求⊙P 的半径长;(2)当△AOC 为直角三角形时,求线段OD 的长;(3)设线段OD 的长度为x ,线段CE 的长度为y ,求y 与x 之间的函数关系式及其定义域.【考点】圆的综合题.【分析】(1)首先设OP的延长线交AB于点H,连接AP,由垂径定理可求得AH的长,然后由三角函数,求得OH的长,再设⊙P的半径为r,由在Rt△AHP中,AH2+PH2=AP2,即可求得答案;(2)首先过点P作PG⊥OD于点G,求得OA的长,易证得△PGO∽△OHA,然后由相似三角形的对应边成比例,求得答案;(3)首先过点H作HI⊥OC于点I,可得PG∥HI,然后由平行线分线段成比例定理,求得OI,再由△OHI∽△OCH,求得答案.【解答】解:(1)设OP的延长线交AB于点H,连接AP,∵AH=AB=×24=12,tan∠AOP=,∴OH==18,设⊙P的半径为r,在Rt△AHP中,AH2+PH2=AP2,∴(18﹣r)2+122=r2,解得:r=13,答:⊙P的半径长为13;(2)过点P作PG⊥OD于点G,则OA===6,∵∠AOC=90°,∴∠POG+∠AOH=90°,∵∠AOH+∠OAH=90°,∴∠POG=∠OAH,∴△PGO∽△OHA,∴,即=,解得:OD=4;(3)如图2,过点H作HI⊥OC于点I,则OE=OA=6,∴PG∥HI,∴,即,∴OI=x,∵∠O是公共角,∠OUH=∠OHC=90°,∴△OHI∽△OCH,∴,∴,∴y=﹣6(0<x<6).。