北师版第三章 证明(三)单元测试及答案
- 格式:doc
- 大小:307.00 KB
- 文档页数:5
北师大版数学八年级下册第三章测试题姓名:得分:一、选择题1.如图,若△DEF是由△ABC经过平移后得到的,则平移的距离是()A.线段BC的长度B.线段BE的长度C.线段EC的长度D.线段EF的长度2.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°3.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)4.如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕O旋转,则正方形ABCD 被纸板覆盖部分的面积为()A.a2B.a2C.a2D. a5.关于这一图案,下列说法正确的是()A.图案乙是由甲绕BC的中点旋转180°得到的B.图案乙是由甲绕点C旋转108°得到的C.图案乙是由甲沿AB方向平移3个边长的距离得到的D.图案乙是由甲沿直线BC翻转180°得到的6.如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A.(﹣1,)B.(﹣1,)或(﹣2,0)C.(,﹣1)或(0,﹣2)D.(,﹣1)7.下列图形中,既是中心对称图又是轴对称图形的是()A.B. C.D.8.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B (1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)9.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()A.55°B.60°C.65°D.70°10.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM 的最大值是()A.4 B.3 C.2 D.111.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′12.如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.二、填空题13.线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′的位置关系是.14.如图,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD 分别平移到EF和EG的位置,则△EFG为三角形.15.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=度.16.在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A′的坐标为.17.已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB 的中点,则线段B1D=cm.三、解答题18.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积.19.如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.20.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:②线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF =S△BDE,请直接写出相应的BF的长.21.某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠BAE=30°.(≈1.4,≈1.7)(1)求旋转木马E处到出口B处的距离;(2)求海洋球D处到出口B处的距离(结果保留整数).22.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2.23.如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=;(2)求线段DB的长度.答案与解析1.如图,若△DEF是由△ABC经过平移后得到的,则平移的距离是()A.线段BC的长度B.线段BE的长度C.线段EC的长度D.线段EF的长度【考点】Q2:平移的性质.【专题】选择题【分析】根据平移的性质,结合图形可直接求解.【解答】解:观察图形可知:△DEF是由△ABC沿BC向右移动BE的长度后得到的,∴平移距离就是线段BE的长度.故选B.【点评】本题利用了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.2.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°【考点】R2:旋转的性质;JA:平行线的性质.【专题】选择题【分析】首先证明∠ACC′=∠AC′C;然后运用三角形的内角和定理求出∠CAC′=30°即可解决问题.【解答】解:由题意得:AC=AC′,∴∠ACC′=∠AC′C;∵CC′∥AB,且∠BAC=75°,∴∠ACC′=∠AC′C=∠BAC=75°,∴∠CAC′=180°﹣2×75°=30°;由题意知:∠BAB′=∠CAC′=30°,故选A【点评】该命题以三角形为载体,以旋转变换为方法,综合考查了全等三角形的性质及其应用问题;对综合的分析问题解决问题的能力提出了较高的要求.3.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)【考点】R7:坐标与图形变化﹣旋转.【专题】选择题【分析】如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA 绕点O逆时针旋转90°到RtOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.【解答】解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(﹣3,4).故选C.【点评】本题考查了坐标与图形变化﹣旋转:在直角坐标系中线段的旋转问题转化为直角三角形的旋转,然后利用旋转的性质求出相应的线段长,再根据点的坐标特征确定点的坐标.4.如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕O旋转,则正方形ABCD 被纸板覆盖部分的面积为()A.a2 B.a2 C.a2 D. a【考点】R2:旋转的性质.【专题】选择题【分析】扇形的半径交AD于E,交CD于F,连结OD,如图,利用正方形的性质得OD=OC,∠COD=90°,∠ODA=∠OCD=45°,再利用等角的余角相等得到∠EOD=∠FOC,于是可证明△ODE≌△OCF,得到S△ODE =S△OCF,所以S阴影部分=S△DOC=S正方形ABCD=a2.【解答】解:扇形的半径交AD于E,交CD于F,连结OD,如图,∵四边形ABCD为正方形,∴OD=OC,∠COD=90°,∠ODA=∠OCD=45°,∵∠EOF=90°,即∠EOD+∠DOF=90°,∠DOF+∠COF=90°,∴∠EOD=∠FOC,在△ODE和△OCF中,,∴△ODE≌△OCF,∴S△ODE =S△OCF,∴S阴影部分=S△DOC =S正方形ABCD=a2.故选B.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.5.关于这一图案,下列说法正确的是()A.图案乙是由甲绕BC的中点旋转180°得到的B.图案乙是由甲绕点C旋转108°得到的C.图案乙是由甲沿AB方向平移3个边长的距离得到的D.图案乙是由甲沿直线BC翻转180°得到的【考点】Q5:利用平移设计图案.【专题】选择题【分析】直接利用旋转的性质得出旋转中心进而得出答案.【解答】解:如图所示:可得图案乙是由甲绕BC的中点旋转180°得到的.故选:A.【点评】此题主要考查了旋转变换,正确得出旋转中心是解题关键.6.如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A.(﹣1,)B.(﹣1,)或(﹣2,0)C.(,﹣1)或(0,﹣2) D.(,﹣1)【考点】R7:坐标与图形变化﹣旋转.【专题】选择题【分析】需要分类讨论:在把△ABO绕点O顺时针旋转150°和逆时针旋转150°后得到△A1B1O时点A1的坐标.【解答】解:∵△ABO中,AB⊥OB,OB=,AB=1,∴tan∠AOB==,∴∠AOB=30°.如图1,当△ABO绕点O顺时针旋转150°后得到△A1B1O,则∠A1OC=150°﹣∠AOB ﹣∠BOC=150°﹣30°﹣90°=30°,则易求A1(﹣1,﹣);如图2,当△ABO绕点O逆时针旋转150°后得到△A1B1O,则∠A1OC=150°﹣∠AOB ﹣∠BOC=150°﹣30°﹣90°=30°,则易求A1(﹣2,0);综上所述,点A1的坐标为(﹣1,﹣)或(﹣2,0);故选B.【点评】本题考查了坐标与图形变化﹣﹣旋转.解题时,注意分类讨论,以防错解.7.下列图形中,既是中心对称图又是轴对称图形的是()A.B. C.D.【考点】R5:中心对称图形;P3:轴对称图形.【专题】选择题【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图,不是轴对称图形,故本选项错误;C、既是中心对称图又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B (1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2) B.(5,2) C.(6,2) D.(5,3)【考点】Q3:坐标与图形变化﹣平移.【专题】选择题【分析】根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.【解答】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),∴向右平移4个单位,∴B(1,2)的对应点坐标为(1+4,2),即(5,2).故选:B.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.9.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()A.55°B.60°C.65°D.70°【考点】R2:旋转的性质.【专题】选择题【分析】根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠C AA′=45°,再根据三角形的内角和定理可得结果.【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CA′A=45°,∠CA′B′=20°=∠BAC∴∠BAA′=180°﹣70°﹣45°=65°,故选:C.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.10.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM 的最大值是()A.4 B.3 C.2 D.1【考点】R2:旋转的性质.【专题】选择题【分析】如图连接PC.思想求出PC=2,根据PM≤PC+CM,可得PM≤3,由此即可解决问题.【解答】解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选B.【点评】本题考查旋转变换、解直角三角形、直角三角形30度角的性质、直角三角形斜边中线定理,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,学会利用三角形的三边关系解决最值问题,属于中考常考题型.11.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′A C D.B′C平分∠BB′A′【考点】R2:旋转的性质.【专题】选择题【分析】根据旋转的性质得到∠BCB′=∠ACA′,故A正确,根据等腰三角形的性质得到∠B=∠BB'C,根据三角形的外角的性质得到∠A'CB'=2∠B,等量代换得到∠ACB=2∠B,故B正确;等量代换得到∠A′B′C=∠BB′C,于是得到B′C平分∠BB′A′,故D正确.【解答】解:根据旋转的性质得,∠BCB'和∠ACA'都是旋转角,则∠BCB′=∠ACA′,故A正确,∵CB=CB',∴∠B=∠BB'C,又∵∠A'CB'=∠B+∠BB'C,∴∠A'CB'=2∠B,又∵∠ACB=∠A'CB',∴∠ACB=2∠B,故B正确;∵∠A′B′C=∠B,∴∠A′B′C=∠BB′C,∴B′C平分∠BB′A′,故D正确;故选C.【点评】本题考查了旋转的性质,角平分线的定义,等腰三角形的性质,正确的识别图形是解题的关键.12.如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.【考点】R2:旋转的性质;JB:平行线的判定与性质;KW:等腰直角三角形.【专题】选择题【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D【点评】本题考查等腰直角三角形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.13.线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′的位置关系是.【考点】Q2:平移的性质.【专题】填空题【分析】根据平移的性质可知,线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′平行且相等.【解答】解:∵线段AB沿和它垂直的方向平移到A′B′,∴线段AB和线段A′B′的位置关系是平行且相等.故答案为:平行且相等.【点评】本题考查的是平移的性质,①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.14.如图,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD 分别平移到EF和EG的位置,则△EFG为三角形.【考点】Q2:平移的性质.【专题】填空题【分析】利用平移的性质可以知∠B+∠C=∠EFG+∠EGF,然后根据三角形内角和定理在△EFG中求得∠FEG=90°.【解答】解:∵AB,CD分别平移到EF和EG的位置后,∠B的对应角是∠EFG,∠C的对应角是∠EGF,又∵∠B与∠C互余,∴∠EFG与∠EGF互余,∴在△EFG中,∠FEG=90°(三角形内角和定理),∴△EFG为Rt△EFG,故答案是:直角.【点评】本题考查了平移的性质,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等.15.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=度.【考点】R2:旋转的性质.【专题】填空题【分析】根据旋转的性质可得AB=AB′,∠BA B′=40°,然后根据等腰三角形两底角相等求出∠ABB′,再利用直角三角形两锐角互余列式计算即可得解.【解答】解:∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=40°,在△ABB′中,∠ABB′=(180°﹣∠BAB′)=(180°﹣40°)=70°,∵∠AC′B′=∠C=90°,∴B′C′⊥AB,∴∠BB′C′=90°﹣∠ABB′=90°﹣70°=20°.故答案为:20.【点评】本题考查了旋转的性质,等腰三角形的性质,直角三角形的两锐角互余,比较简单,熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键.16.在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A′的坐标为.【考点】Q3:坐标与图形变化﹣平移.【专题】填空题【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】解:∵点A(2,3)向左平移1个单位长度,∴点A′的横坐标为2﹣1=1,纵坐标不变,∴A′的坐标为(1,3).故答案为:(1,3).【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB 的中点,则线段B1D=cm.【考点】R2:旋转的性质;KP:直角三角形斜边上的中线.【专题】填空题【分析】先在直角△AOB中利用勾股定理求出AB==5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD=AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1﹣OD=1.5cm.【解答】解:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==5cm,∵点D为AB的中点,∴OD=AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故答案为1.5.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理.18.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积.【考点】R8:作图﹣旋转变换;MO:扇形面积的计算;P7:作图﹣轴对称变换.【专题】解答题【分析】(1)分别作出各点关于y轴的对称点,再顺次连接即可;(2)根据图形旋转的性质画出旋转后的图形△A2B2C2即可;(3)利用扇形的面积公式即可得出结论.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)∵OA==5,∴线段OA扫过的图形面积==π.【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.19.如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.【考点】R8:作图﹣旋转变换;Q4:作图﹣平移变换.【专题】解答题【分析】(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;(2)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A2B2C2.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.【点评】此题主要考查了图形的平移和旋转,根据已知得出对应点位置是解题关键.20.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:③线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF =S△BDE,请直接写出相应的BF的长.【考点】KD:全等三角形的判定与性质.【专题】解答题【分析】(1)①根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;②根据等边三角形的性质可得AC=AD,再根据直角三角形30°角所对的直角边等于斜边的一半求出AC=AB,然后求出AC=BD,再根据等边三角形的性质求出点C到AB的距离等于点D到AC的距离,然后根据等底等高的三角形的面积相等解答;(2)根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明;(3)过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长,即可得解.【解答】解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;故答案为:DE∥AC;S1=S2;(2)如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=×60°=30°,∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,又∵BD=4,∴BE=×4÷cos30°=2÷=,∴BF1=,BF2=BF1+F1F2=+=,故BF的长为或.【点评】本题考查了全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题的关键,(3)要注意符合条件的点F有两个.21.某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠BAE=30°.(≈1.4,≈1.7)(1)求旋转木马E处到出口B处的距离;(2)求海洋球D处到出口B处的距离(结果保留整数).【考点】R2:旋转的性质.【专题】解答题【分析】(1)在Rt△ABE中,利用三角函数即可直接求得BE的长;(2)在Rt△CDE中,利用三角函数求得DE的长,然后利用DB=DE+EB求解.【解答】解:(1)∵在Rt△ABE中,∠BAE=30°,∴BE=AE=×80=40(米);(2)∵在Rt△ABE中,∠BAE=30°,∴∠AEB=90°﹣30°=60°,∴∠CED=∠AEB=60°,∴在Rt△CDE中,DE=≈=40(米),则BD=DE+BE=40+40=80(米).【点评】本题考查了解直角三角形,正确理解三角函数的定义,理解边角关系是关键.22.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2.【考点】R8:作图﹣旋转变换;Q4:作图﹣平移变换.【专题】解答题【分析】(1)根据图形平移的性质画出平移后的△A1B1C1即可;(2)根据图形旋转的性质画出旋转后的△A2 B2C2即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2 B2C2即为所求.【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.23.如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=;(2)求线段DB的长度.【考点】R2:旋转的性质.【专题】解答题【分析】(1)证明△ACD是等边三角形,据此求解;(2)作DE⊥BC于点E,首先在Rt△CDE中利用三角函数求得DE和CE的长,然后在Rt△BDE中利用勾股定理求解.【解答】解:(1)∵AC=AD,∠CAD=60°,∴△ACD是等边三角形,∴DC=AC=4.故答案是:4;(2)作DE⊥BC于点E.∵△ACD是等边三角形,∴∠ACD=60°,又∵AC⊥BC,∴∠DCE=∠ACB﹣∠ACD=90°﹣60°=30°,∴Rt△CDE中,DE=DC=2,CE=DC•cos30°=4×=2,∴BE=BC﹣CE=3﹣2=.∴Rt△BDE中,BD===.【点评】本题考查了旋转的性质以及解直角三角形的应用,正确作出辅助线,转化为直角三角形的计算是关键.。
七年级数学下册北师大版第三单元测试班级 姓名一、选择题1.如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是( ).A .3 B .4 C .5 D .6 2.下面四个图形中,线段BE 是⊿ABC 的高的图是( )3.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cmB .6cmC .5cmD .4cm4.三角形一个外角小于与它相邻的内角,这个三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .属于哪一类不能确定 5.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高, DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( ) A 、3个 B 、4个 C 、5个 D 、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O , 则∠AOC+∠DOB=( )A 、900B 、1200C 、1600D 、18007.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个8.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内。
正确的命题有( )第5题图第6题图A.1个B.2个C.3个D.4个二、填空题9.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。
10.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________.11.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度。
北师大版七年级下册数学第三章三角形单元测试(附答案)学校:___________姓名:___________班级:___________考号:___________一、选择题1.如图,在△ABC中,△ADE的周长为8,DH为AB的中垂线,EF垂直平分AC,则BC的长为()A、4B、6C、8D、162.下列几组数不能作为直角三角形三边长的是().A.8、15、17 B.7、24、25C.30、40、50 D.32、60、803.下列条件中,不能判定△ABC≌△A′B′C′的是()A.∠A=∠A′,∠C=∠C′,AC=A′C′B.∠A=∠A′, BC=B′C′,AB=A′B′C.∠A=∠A′=80O,∠B=60O,∠C=40O,AB=A′B′D.∠C=∠C′=90O, BC=B′C′,AB=A′B′4.到三角形各顶点距离相等的点是三角形三条()A、中线的交点B、角平分线的交点C、高线的交点D、三边垂直平分线的交点5.到△ABC的三个顶点距离相等的点是 ( )A.三条中线的交点B.三条角平分线的交点C.三条高线的交点D.三条边的垂直平分线的交点6.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20o B.120o C.20o或120o D.36o7.如图,两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是()A.2cm B.43cm C.6cm D.8cm8.下列说法正确的是( )A 、全等三角形是指周长和面积都一样的三角形;B 、全等三角形的周长和面积都一样 ;C 、全等三角形是指形状相同的两个三角形;D 、全等三角形的边都相等9.高为3,底边长为8的等腰三角形腰长为 ( ).(A )3 (B )4 (C )5 (D )610.如图,△ABC 中,∠ACB=90°,BA 的垂直平分线交CB 边于D ,若AB=10,AC=5,则图中等于60°的角的个数为( )A 、2B 、3C 、4D 、5二、填空题11.如图:∠B=∠C=90°,E 是BC 的中点,DE 平分∠ADC,∠CED=35°,则∠EAB =12.如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC 为等腰三角形.....,则点C 的个数是 .13.三角形三条中位线围成的三角形的周长为19,则原三角形的周长为 。
北师大版九年级上册第三章证明(三)练习题一、填空题1、如图,平行四边形ABCD ,对角线AC 、BD 交于点O ,请你写出图中三对一定相等的线段 。
2、在上题图中,若平行四边形ABCD 的周长为30cm ,且A O B ∆的周长比BOC ∆的周长小1cm ,那么AB= cm ,BC = cm 。
第1-2题图 第3题图第4题图 3、如图,将两块完全相同的含有30角的三角板一边重合拼在一起,可以得到一个四边形ABCD ,则四边形ABCD 是 (回答是什么四边形);若BC=10 cm ,则对角线BD = cm 。
4、如图平行四边形ABCD 中,AE 、AF 分别是BC 和CD 边上的高,若65EAF ∠=,则B ∠= 度,C ∠= 度。
5、如图,将两根等宽的纸条叠放在一起,重叠的部分(图中阴影部分)是一个四边形,对这个四边形的形状你认为最准确的一个描述是:这个四边形是 四边形。
第7题图 96、菱形ABCD 的面积是503cm 2,其中一条对角线的长是103 cm ,则菱形ABCD 的较小的内角为 ,菱形ABCD 的边长为 。
7、如图,矩形ABCD 中,BE ⊥AC 于E ,DF ⊥AC 于F ,若AE=1,EF =2,则FC = ,AB = 。
8、对角线 的四边形是正方形。
二、择题9、如图,平行四边形ABCD 中,AE=CF ,则图中的平行四边形的个数是( )个 A.2 B.3 C.4 D.510、若第1题的条件中,除原有条件外,再增加FA =FD ,则图中的等腰梯形个数是( )个A.2B.3C.4D.511、下列关于平行四边形的判定中正确的是( ) A. 一组对边相等,另一组对边平行的四边形是平行四边形 B.一组对边相等,一组对角相等的四边形是平行四边形 C.一组对边平行,一组对角相等的四边形是平行四边形OC AD BC AD BE FC A DB FECADBCA DBE FD.一组对边平行,一组邻角互补的四边形是平行四边形12、顺次连接对角线互相垂直且相等的四边形各边中点,得到一个四边形,对这个四边形的形状描述最准确的是( )A. 平行四边形B.矩形C.菱形D.正方形13、已知菱形ABCD 的面积为96cm 2,对角线AC 的长为16 cm ,则此菱形的边长为( )cm A.32 B.10 C.14 D.2014、正方形具有而菱形不一定具有的性质是( )A. 对角线互相平分B.对角线互相垂直C.对角线相等D. 每一条对角线平分一组对角 15、只用一把刻度尺检查一张四边形纸片是否是矩形,下列操作中最为恰当的是( ) A. 先测量两对角线是否互相平分,再测量对角线是否相等 B. 先测量两对角线是否互相平分,再测量是否有一个直角 C. 先测量两组对边是否相等,再测量对角线是否相等D. 先测量两组对边是否互相平行,再测量对角线是否相等16、如图,梯形ABCD 中,AD ∥BC ,90B C ∠+∠=,E 、F分别是AD 、BC 的中点,若AD=5cm ,BC=13cm ,那么EF=( )cmA.4B.5C.6.5D.9三、解答题17、按要求填图下面图中,表达了四边形、平行四边形、矩形、菱形、正方形之间的关系。
北师大版六年级下册《第3章 数与代数》小学数学-有答案-单元测试卷(安徽省宿州市符离三小)一、请你填一填.(只有一空的每题1分,其余每空0.5分,共16分)1. 地球的表面积是________平方千米,横线上的数写作________,改写成用“万”作单位的数是________万,四舍五入到亿位是________亿。
2. 9÷________=()20=0.25=3:________=________%.3. 把一根5米长的铁丝平均分成8段,每段的长度是这根铁丝的________,每段长________米。
4. 37的分数单位是________,再添上________个这样的分数单位就是最小的质数。
5. 甲仓库存粮x 吨,乙仓库存粮是甲仓库的2.5倍,两仓库共存粮________吨。
6. 三(3)班共有学生60人,今天缺席6人,出勤率是________%.7. 分母是12的所有最简真分数的和是________.8. 既是奇数又是合数的最小两位数是________,既有因数2,又是3和5的倍数的最小三位数是________.这两个数的最大公因数是________.9. 在比例尺是1:5000000的地图上,量得甲、乙两地的距离是12cm ,甲、乙两地的实际距离是多少千米?10. 一件衣服打八折后售价比原价便宜了60元,原价是________元。
11. 甲数是乙数的58,乙数比甲数多()().12. 两根钢管的长分别是28米和42米,锯成同样长的小段并且不浪费,每一段钢管最长是________,共可以锯成________段。
13. 5000平方米=________公顷 2时40分=________分。
14. 将0.333、33%、13、0.34、0.4按从小到大的顺序排列。
________.小数的末尾添上0或者去掉0,小数的大小不变。
________.(判断对错)6吨的17和1吨的67一样多。
北师大版七年级数学下册第三章三角形单元测试卷(一)班级姓名学号得分一、选择题1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有() A.4对 B.5对 C.6对 D.7对(注意考虑完全,不要漏掉某些情况)4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.a+1,a+2,a+3(a>0) B.三条线段的比为4∶6∶10C.3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种A.3 B.4 C.5 D.68.△ABC的三边a、b、c都是正整数,且满足a≤b≤c,如果b=4,那么这样的三角形共有()个 A.4 B.6 C.8 D.109.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个 B.2个 C.3个 D.4个10.三角形所有外角的和是()A.180° B.360° C.720° D.540°11.锐角三角形中,最大角α的取值范围是()A.0°<α<90°; B.60°<α<180°; C.60°<α<90°; D.60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为()A.锐角或直角三角形; B.钝角或锐角三角形;C.直角三角形; D.钝角或直角三角形13.已知△ABC中,∠ABC与∠ACB的平分线交于点O,则∠BOC一定()A .小于直角;B .等于直角;C .大于直角;D .大于或等于直角 二、填空题1.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°;(2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________,∠________=∠________=21∠________,AH 叫________;(3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线. 2.如图,∠ABC =∠ADC =∠FEC =90°. (1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________; (3)在△FEC 中,EC 边上的高是________; (4)若AB =CD =3,AE =5,则△AEC 的面积为________. 3.在等腰△ABC 中,如果两边长分别为6cm 、10cm ,则这个等腰三角形的周长为________. 4.五段线段长分别为1cm 、2cm 、3cm 、4cm 、5cm ,以其中三条线段为边长共可以组成________个三角形. 5.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________. 6.一个等腰三角形的周长为5cm ,如果它的三边长都是整数,那么它的腰长为________cm . 7.在△ABC 中,若∠A ∶∠B ∶∠C =5∶2∶3,则∠A =______;∠B =______;∠C =______. 8.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于点I . (1)若∠ABC =70°,∠ACB =50°,则∠BIC =________; (2)若∠ABC +∠ACB =120°,则∠BIC =________; (3)若∠A =60°,则∠BIC =________; (4)若∠A =100°,则∠BIC =________; (5)若∠A =n °,则∠BIC =________. 三、解答题1.在△ABC 中,∠BAC 是钝角. 画出:(1)∠ABC 的平分线; (2)边AC 上的中线; (3)边AC 上的高.2.△ABC 的周长为16cm ,AB =AC ,BC 边上的中线AD 把△ABC 分成周长相等的两个三角形.若BD =3cm ,求AB 的长.3.如图,AB ∥CD ,BC ⊥AB ,若AB =4cm ,212cm =∆ABC S ,求△ABD 中AB 边上的高.4.学校有一块菜地,如下图.现计划从点D 表示的位置(BD ∶DC =2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D 是BC 的中点的话,由此点D 笔直地挖至点A 就可以了.现在D 不是BC 的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?5.在直角△ABC 中,∠BAC =90°,如下图所示.作BC 边上的高,图中出现三个直角三角形(3=2×1+1);又作△ABD 中AB 边上的高1DD ,这时图中便出现五个不同的直角三角形(5=2×2+1);按照同样的方法作21D D 、32D D 、……、k k D D 1-.当作出k k D D 1-时,图中共有多少个不同的直角三角形?6.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.7.一个三角形的周长为36cm,三边之比为a∶b∶c=2∶3∶4,求a、b、c.8.已知△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求△ABC各边的长.9.已知三角形三边的长分别为:5、10、a-2,求a的取值范围.10.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成15cm和6cm 两部分,求这个等腰三角形的底边的长.11.如图,已知△ABC中,AB=AC,D在AC的延长线上.求证:BD-BC<AD-AB.12.如图,△ABC中,D是AB上一点.求证:(1)AB+BC+CA>2CD;(2)AB+2CD>AC+BC.13.如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G,(1)完成下面的证明:∵ MG平分∠BMN(),1∠BMN(),∴∠GMN=21∠DNM.同理∠GNM=2∵ AB∥CD(),∴∠BMN+∠DNM=________().∴∠GMN+∠GNM=________.∵∠GMN+∠GNM+∠G=________(),∴∠G= ________.∴ MG与NG的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_______________________________________________________________.14.已知,如图D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,∠A=46°,∠D=50°.求∠ACB的度数.15.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,求∠BOC的度数.16.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.17.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC<∠ACE.18.画出图形,并完成证明:已知:AD 是△ABC 的外角∠EAC 的平分线,且AD ∥BC . 求证:∠B =∠C .单元测试卷(一)参考答案:一、1.A ; 2.D ; 3.A ; 4.C ;5.B ; 6.C ; 7.B ; 8.D ; 9.C (提示:边长分别为3、4、5;2、4、5;2、3、4.)10.C ; 11.D ; 12.D ; 13.C ; 二、1.(1)BC 边上,ADB ,ADC ;(2)∠BAC 的角平分线,BAE ,CAE ,BAC ,∠BAF 的角平分线; (3)BF ;(4)△ABH ,△AGF ; 2.(1)AB ; (2)CD ; (3)EF ; (4)7.5; 3.22cm 或26cm ; 4.3; 5.11; 6.2;7.90°,36°,54°;8.(1)120°; (2)120°; (3)120°; (4)140°; (5)290︒+︒n ;三、21.略;2.解法1:AB +BD +DA =DA +AC +CD ,∴ BD =CD ,∵ BD =3cm ,∴ CD =3cm ,BC =6cm ,∵ AB =AC ,∴ AB =5cm . 解法2:△ABD 与△ACD 的周长相等,而AB =AC ,∴ BD =CD , ∴ BC =2BD =6cm ,∴ AB =(16-6)÷2=5cm . 3.212cm =∆ABC S ,∴ 21AB ·BC =12,AB =4,∴ BC =6,∵ AB ∥CD ,∴ △ABD 中AB 边上的高=BC =6cm .4.后一种意见正确.5.不作垂线,一个直角三角形,即:1=2×0+1,作一条垂线,三个直角三角形,即:3=2×1+1,同理,5=2×2+1,找出相应的规律,当作出k k D D 1 时,图中共有2×k +1,即2k +1个直角三角形.6.第一种方案:在BC 上取E 、D 、F ,使BE =ED =DF =FC ,连结AE 、AD 、AF ,则△ABE 、△AED 、△ADF 、△AFC 面积相等;第二种方案:取AB 、BC 、CA 的中点D 、E 、F ,连结DE 、EF 、FD ,则△ADF 、△BDE 、△CEF 、△DEF 面积相等.7.设三边长a =2k ,b =3k ,c =4k ,∵ 三角形周长为36,∴ 2k +3k +4k =36,k =4, ∴ a =8cm ,b =12cm ,c =16cm .8.设三角形中最大边为a ,最小边为c ,由已知,a -c =14,b +c =25,a +b +c =48, ∴ a =23cm ,b =16cm ,c =9cm .9.10-5<a -2<10+5,∴ 7<a <17. 10.设AB =AC =2x ,则AD =CD =x ,(1)当AB +AD =15,BC +CD =6时,2x +x =15,∴ x =5,2x =10,∴ BC =6-5=1cm ;(2)当AB +AD =6,BC +CD =15时,2x +x =6,∴ x =2,2x =4,∴ BC =13cm ;经检验,第二种情况不符合三角形的条件,故舍去. 11.AD -AB =AC +CD -AB =CD ,∵ BD -BC <CD , ∴ BD -BC <AD -AB . 12.(1)AC +AD >CD ,BC +BD >CD , 两式相加:AB +BC +CA >2CD . (2)AD +CD >AC ,BD +CD >BC , 两式相加:AB +2CD >AC +BC . 13.(1)已知,角平分线定义,已知,180°,两直线平行同旁内角互补,90°,180°,三角形内角和定理,90°,互相垂直.(2)两平行直线被第三条直线所截,它们的同旁内角的角平分线互相垂直. 14.94°; 35.120°; 36.10°;17.∠EBC <∠DCE ,而∠DCE =∠ACE ,∴ ∠EBC <∠ACE . 18.略.北师大版七年级数学下册第三章三角形单元测试卷(二)班级姓名学号得分一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为 ( ) A.10 B.12 C.14 D.162.在△ABC中,AB=4a,BC=14,AC=3a.则a的取值范围是 ( )A.a>2 B.2<a<14 C.7<a<14 D.a<143.一个三角形的三个内角中,锐角的个数最少为 ( )[A.0 B.1 C.2 D.34.下面说法错误的是 ( )A.三角形的三条角平分线交于一点 B.三角形的三条中线交于一点C.三角形的三条高交于一点 D.三角形的三条高所在的直线交于一点5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( )A.中线B.角平分线 C.高线D.三角形的角平分线6.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是 ( )A.∠ 1 B.∠ 2 C.∠ B D.∠ 1、∠ 2和∠ B 7.点P是△ABC内任意一点,则∠APC与∠B的大小关系是( ) A.∠APC>∠B B.∠APC=∠B C.∠APC<∠B D.不能确定8.已知:a 、b 、c 是△ABC 三边长,且M =(a +b +c)(a +b -c)(a -b -c),那么 ( ) A .M >0 B . M =0 C .M <0 D .不能确定9.周长为P 的三角形中,最长边m 的取值范围是 ( )A .23P m P <≤B .23P m P <<C .23P m P ≤<D .23P m P ≤≤10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A .5个B .4个C .3个D .2个 二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________.3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形. 4.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________.5.在△ABC 中,三边长分别为正整数a 、b 、c ,且c ≥b ≥a >0,如果b =4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 7.在△ABC 中,∠A -∠B =30°、∠C =4∠B ,则∠C =________.8.如图5—13,在△ABC 中,AD ⊥BC ,GC ⊥BC ,CF ⊥AB ,BE ⊥AC ,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是 △ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.[来9.如图5—14,△ABC 的两个外角的平分线相交于点D ,如果∠A =50°,那么∠D =_____. 10.如图5—15,△ABC 中,∠A =60°,∠ABC 、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC =_____.11.如图5—16,该五角星中,∠A +∠B +∠C +∠D +∠E =________度. 12.等腰三角形的周长为24cm ,腰长为xcm ,则x 的取值范围是________. 三、解答题1.如图5—17,点B 、C 、D 、E 共线,试问图中A 、B 、C 、D 、E 五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图5—20,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.5.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC 的平分线,求∠DAE的度数.6.如图5—22,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长.7.已知:如图5—23,P是△ABC内任一点,求证:∠BPC>∠A.8.△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,求∠A的度数.9.已知:如图5—24,P 是△ABC 内任一点,求证:AB +AC >BP +PC .10.如图5—25,豫东有四个村庄A 、B 、C 、D .现在要建造一个水塔P .请回答水塔P 应建在何位置,才能使它到4村的距离之和最小,说明最节约材料的办法和理由.单元测试卷(二)参考答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C 二、1.3; 2.32周长20,164<<<<BC ; 3.锐角(等腰锐角); 4.cm 37;5.10; 6.︒65和︒25; 7.︒100;8.GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,;9.︒65; 10.︒120; 11.︒180; 12.126<<x . 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是BAC ∠的平分线3.假设此零件合格,连接BD ,则︒=︒-︒=∠+∠37143180CBD CDB ;可知()︒=︒+︒-︒=∠+∠40203090CBD CDB .这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线,∴ D 为BC 的中点,BD CD =.∵ ADC ∆的周长-ABD ∆的周长=5cm ∴ cm AB AC 5=-. 又∵ cm AB AC 11=+, ∴ cm AC 8=.5.由三角形内角和定理,得︒=∠+∠+∠180BAC ACB B .∴ ︒=︒-︒-︒=∠4210434180BAC . 又∵ AE 平分∠BAC . ∴ ︒=︒⨯=∠=∠21422121BAC BAE .∴ ︒=︒+︒=∠+∠=∠552134BAE B AED . 又∵ ︒=∠+∠90DAE AED ,∴ ︒=︒-︒=∠-︒=∠35559090AED DAE . 6.(1)∵ 在△ABC 中,︒=∠90ACB ,cm AC 5=,cm BC 12=,().3012521212cm BCAC S ABC =⨯⨯=⋅=∴∆[ (2)∵ CD 是AB 边上的高, ∴ CD AB S ABC ⋅=∆21.即CD ⨯⨯=132130.∴ ()cm CD 1360=.7.如图,延长BP 交AC 于D ,∵ A PDC PDC BPC ∠>∠∠>∠,, ∴ A BPC ∠>∠ 8.∵ A C ∠=∠74,∴ C A ∠=∠74,∴ C B C ∠<∠<∠74.又∵ ︒=∠+∠+∠180C B A ,∴ ︒=∠+∠+∠18074C B C .∴ C B ∠-︒=∠711180,∵ C C C ∠<∠-︒<∠71118074,∴ ︒<∠<︒8470C .又∵ C A ∠=∠74为整数,∴ ∠C 的度数为7的倍数.∴ ︒=∠77C ,∴ ︒=∠=∠4474C A .9.如图,延长BP 交AC 于点D .在△BAD 中,BD AD AB >+, 即:PD BP AD AB +>+. 在△PDC 中,PC DC PD >+. ①+②得PC PD BP DC PD AD AB ++>+++, 即PC BP AC AB +>+10.如图,水塔P 应建在线段AC 和线段BD 的交点处.这样的设计将最节省材料.理由:我们不妨任意取一点P ',连结P A '、P B '、P C '、P D '、AB 、BC 、CD 、DA , ∵ 在C P A '∆中,CP AP AC P C P A +=>'+', ① 在D P B '∆中,DP BP BD P D P B +=>'+', ② ①+②得DP CP BP AP P D P C P B P A +++>'+'+'+'. ∵ 点P '是任意的,代表一般性,∴ 线段AC 和BD 的交点处P 到4个村的距离之和最小.北师大版七年级数学下册第三章 三角形 单元测试卷(三)班级 姓名 学号 得分一、选择题(每小题3分,共30分)1. 有下列长度的三条线段,能组成三角形的是( )A 2,3,4B 1,4,2C 1,2,3D 6,2,3 2. 在下列各组图形中,是全等的图形是( )3. 下列条件中,能判断两个直角三角形全等的是( )AB C DE图4图2 图 3 A 、一个锐角对应相等 B 、两个锐角对应相等C 、一条边对应相等D 、两条边对应相等4.已知:如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于O 点, ∠1=∠2.图中全等的三角形共有 ( ) A .4对 B ..3对 C 2对 D .1对5.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B. 带②去C. 带③去D. 带①和②去6.右图中三角形的个数是( )A .6 B .7 C .8 D .97.如果两个三角形全等,那么下列结论不正确的是( ) A .这两个三角形的对应边相等 B .这两个三角形都是锐角三角形C .这两个三角形的面积相等D .这两个三角形的周长相等8.在下列四组条件中,能判定△ABC ≌△A /B /C /的是( )A.AB=A /B /,BC= B /C /,∠A=∠A /B.∠A=∠A /,∠C=∠C /,AC= B /C /C.∠A=∠B /,∠B=∠C /,AB= B /C /D.AB=A /B /,BC= B /C /,△ABC 的周长等于△A /B /C /的周长9.下列图中,与左图中的图案完全一致的是( )10. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900,其中判断正确的有( )A.1个B.2个C.3个D.4个 二、填空题:(每题4分共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 。
第三单元测试一、单选题(共8题;共16分)1.24的因数有( )A .4个B .6个C .8个D .10个2.下面四句话中,错误的一句是( )A .0既不是正数也不是负数B .1既不是素数也不是合数C .假分数的倒数不一定是真分数D .角的两边越长,角就越大3.3a b ¸=(a b 、都是大于0的自然数),下面说法正确的是()A .b 是因数B .a 与b 的最大公因数是3C .b 与3的最小公倍数是aD .a 是3的倍数4.一个数,它既是12的倍数,又是12的因数,这个数是()A .6B .12C .1445.10以内的质数和是( )A .17B .25C .196.把1~200这200个自然数中,既不是3的倍数,又不是5的倍数,从小到大排成一排,那么第100个是几?( )A .193B .187C .123D .407.m 是质数,2m 和2m 相比,()A .22m m >B .22m m =C .22m m<D .2m 大于或等于2m 8.已知三位数“4□1”正好是三个连续自然数的和,□里的数字可能是()A .3B .4C .5D .6二、判断题(共4题;共8分)9.一个数是9的倍数,这个数一定也是3的倍数。
( )10.只有1和它本身两个因数,这样的数是质数。
( )11.45能被9整除,所以45也能被9除尽。
( )12.两个质数的和都是偶数。
()三、填空题(共8题;共21分)13.10以内既是质数又是偶数的数是________,既是合数又是奇数的数是________。
14.把下面的数分解质因数。
(从小到大、从左到右填写)36=________´________´________´________15.在方格纸上画16个单位面积的长方形或者正方形,有________种画法。
16.一个非0自然数的最小因数是________,最大因数是________,最小倍数是________。
2023-2024学年七年级上册数学北师大版
第三章《整式及其加减》单元测试题
一、单选题(共10小题,满分40分)
A .
B .7.已知与A .B .8.某商店把旅游鞋按成本价每双123x x x >>3a b a b x y +-12a x y +4,2a b ==
9.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中的一个正方形剪开得到图③,图③中共有7个正方形;将图③中的一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2019个图中共有正方形的个数为( ).
A .6052
B .6055
C .6058
D .6061
10.如图所示:把两个正方形放置在周长为的长方形内,两个正方形的周长和为,则这两个正方形的重叠部分(图中阴影部分所示)的周长可用代数式表示为( )
A .
B .
C .
D .
; ;2m ABCD 4n m n +42n m -24m n +4m n
+
;;三、解答题(共6小题,每题8分,满分48分)
(1)用含字母的式子表示阴影部分的面积;(2)当a=5,b=3时,阴影部分的面积是多少?
24.观察下列算式:
①;
②;
③.
(1)请你按照三个算式的规律写出第④个、第⑤个算式:
2213431-⨯=-=2324981-⨯=-=243516151-⨯=-=
参考答案:
24.(1);;(2)254625241-⨯=-=265736351-⨯=-=2(1)(2)1n n n +-+=。
北师大版小学三年级数学上册《第三单元》测试试卷及答案北师大版小学三年级数学上册第三单元测试卷一、填空题。
1.计算683-125+324时,先算( )法,再算( )法。
2.计算891-(91+152)时,先算( )法,再算( )法。
3.721+( )=836,532-( )=365。
|m4.984-650=334,334+109=443,把两个算式合并成一个算式是( )。
5.甲数是3数比它小36,甲数和乙数的和是( )。
二、计算下面各题。
398+502+445 898-288-5005325-226)1000-(125+275)三、在○里填上“>”“(1)买椅子、电风扇、书包各一件要花( )元。
A.94B.294C.304(2)拿400元买电风扇、写字台各一件,求要找回多少元,列式是( )。
A.1B.400-1C.400-(1(3)四样各买一件,要花的钱( )。
A.比500元多B.不到500元C.比400元少(4)用300元可以买( ),并且找回最少的钱。
A.写字台、书包各一件B.椅子、电风扇、写字台各一件C.椅子、电风扇、书包各一件2.学校图书室的书架上有图书1236册,学生借阅了562册没有还回来,今天又运来了530册,求学校图书室书架上现在共有图书多少册,列式是( )。
A.1236-562+530B.1236+562+530C.1236-562-5303.小丽帮妈妈买东西,先到了商店,又到了菜市场,然后沿原路返回距菜市场275米的游乐场。
此时:(1)已经走了( )米。
A.575B.625C.705(2)距家还有( )米。
A.75B.65C.554.有三个数:526、235、102。
请你用“+”“-”和“()”将这三个数连接成有括号的算式,并算一算。
(1)其中最大的得数是( )。
A.863B.659C.763(2)其中最小的得数是( )。
A.393B.659C.189五、下面是小刚家电表读数的记录单。
第三章 整式的加减 单元测试题 2024-2025学年北师大版七年级数学上册A 卷( 共 100 分)第Ⅰ卷(选择题,共 32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,请将答案写在答题表格内)1 . 下列代数式书写规范的是( )A . x12B . x ÷ yC . a(x + y )D . 121xy 2 . 用代数式表示“x 与y 的2倍的和”,正确的是( )A . x + 2yB . 2x + yC . 2x + 2yD . x 2 + y 23 . 在代数式:- π ,0 ,a , 65,1,3ab x y x -- 中,单项式有( ) A . 2 个 B . 3 个 C .4 个 D .5 个4 . 多项式a 3 - 4 a 2 b 2+ 3 ab - 1的项数和次数分别是( )A . 3 和4B . 4 和4C . 3 和3D . 4 和35 . 一个三位数,百位上的数字为x,十位上的数字比百位上的数字少3,个位上的数字是百位上的数字的2倍,这个三位数用含x 的代数式表示为( )A . 112x - 30B . 100x - 30C . 112x + 30D . 102x + 306 . 某产品原价为a 元,提价10% 后又降价了10% ,则现在的价格是( )A . 0 . 9 a 元B . 1 . 1 a 元C . a 元D . 0 . 99 a 元7 . 已知a 2 + 2a - 3 = 0 ,则代数式2a 2+ 4 a - 3 的值是( )A . - 3B . 0C . 3D . 68. 按如图所示的方式摆放圆和三角形,观察图形,则第10 个图形中圆有( )A . 36 个B . 38 个C . 40 个D . 42 个第Ⅱ 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20 分)9 . 去括号:+ ( a - b ) = _______ , - ( a + b) = ________.10 . 单项式-2 πab 2 的系数是________,次数是_________.11 . 若单项式3x m y 与-2x 6 y 是同类项,则m =________.12 . 已知一个多项式与多项式3x 2 + x 的和等于3x 2 + 4x - 1,则这个多项式是________.13 . 已知a 1 = 23-,a 2=55,a 3=107-,a 4 =179,a 5=2611- ,则a 8=_______. . 三、解答题(本大题共5个小题,共48分)14 .(本小题满分12 分,每题3分)计算:( 1 )5 m 2 - 5 m + 7 - 6 m 2- 5 m - 10 ; (2 ) ( 8a - 7 b ) - (4 a - 5 b ) ;(3 )5 (a 2 b - 3 ab 2 ) - 2 (a 2 b - 7 ab 2 ) ; (4 )5 abc - { 2a 2 b - [ 3 abc - (4 ab 2- ab 2 ) ] } .15 .(本小题满分9分)列代数式,并化为最简形式.(1)一个三位数,它的个位数字是m,十位数字比个位数字大1,百位数字比个位数字小2, 用 含m 的代数式表示这个三位数;(2)东方红电影院第一排有15 个座位,后面每排比前一排多2 个座位,用含n 的代数式表示 第n 排的座位数;(3 ) 如图,将长为4m 的长方形沿图中虚线裁剪成四个形状、大小完全相同的小长方形,用含m 的代数式表示每个小长方形的周长.16 .(本小题满分8分)先化简,再求值:(7x + 4y + xy) - 6 (xy x y -+65),其中x-y = 5 , - xy = 3 .17 .(本小题满分9分) 先化简,再求值:a 2 - 10ab -5a 2 + 12ac - c 2+ 3 ab - 8ac + 4a 2 , 其中a 是平方等于它本身倒数的数,且|b + 2|+ (3a + c +21 )2 = 0 .18 .(本小题满分10 分)某商家销售一款定价1200 元的空调和300 元的电扇.“五一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一台空调送一台电扇;方案二:空调和电扇都按定价的90%付款.现某客户要到该商场购买空调6 台,电扇x 台(x > 6).(1)若该客户按方案一购买,则需付款_____元;若该客户按方案二购买,则需付款_________元;(用含x 的代数式表示)(2)当x= 10 时,通过计算说明此时按哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=10时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案并计算需付款多少元.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19 . 一辆公交车原有a 名乘客,到某站后,下去一半乘客,又上来b 名乘客,此时公交车上乘客的人数为_________.20 . 一组按规律排列的式子:,......,,,41138252ab a b a b a b -- 第n 个式子是________(n 为正整数).21 . 若b a b a +-2 = 5,则代数式 b a b a +-)2(2+ ba b a -+2)(3的值为_______ . 22 . 有理数a 、b 、c 在数轴上对应的点的位置如图所示,试化简:|a + c|-|a - b - c| -|b - a| +|b + c|=__________. .23 . 观察下列等式:第一个等式:a 1=22213⨯⨯=211⨯-2221⨯; 第二个等式:a 2=32324⨯⨯=2221⨯-3231⨯; 第三个等式:a 3=22435⨯⨯=3231⨯-4241⨯; 第四个等式:a 4=52546⨯⨯=4221⨯-5251⨯……, 按上述规律,回答以下问题:(1 )用含n 的代数式表示第n 个等式:a n =___________.(2)计算:a 1+ a 2+ a 3+ …+a 20=_________.二、解答题(本大题共3个小题,共30 分)24 .(本小题满分8分)已知代数式2x 2 + ax - y + 6 - bx 2 + 3 x - 5 y - 1 的值与x 的取值无关,且A = 4a 2 - ab + 4b 2,B = 3a 2 - ab + 3b 2,求3A -2(3A - 2B )- 3(4A - 3 B )的值.25 .(本小题满分10 分)(1)探索规律并填空:1 + 2 =2)21(2+⨯;1 + 2 + 3 =2)31(3+⨯;1 + 2 + 3 + 4 =2)41(4+⨯; 则1 + 2 + 3 + …+20 =_________,1 + 2 + 3 + …+ n =__________.(2)将火柴棒按如图所示的方式搭图形.① 填表:②照这样的规律搭下去:(i)第n 个图形的大三角形周长的火柴棒是几根?(ii)第n 个图形的小三角形有几个?第100 个图形的小三角形有几个?(iii)第n 个图形需要多少根火柴棒?26 .(本小题满分12 分)为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费标准如表:(注:水费按月份结算,m3表示立方米)例:若某户居民1月份用水8m3,应交水费2 × 6 + 4 ×(8 - 6)= 20元. 请根据表中信息解答下列问题:(1)若该户居民2月份用水4m3,则应交水费多少元?(2)若该户居民3 月份用水am 3(其中6 < a < 10),则应交水费多少元?(用含a 的代数式表示)(3)若该户居民4、5 两个月共用水15 m3(5 月份用水量超过了4月份),设4月份用水xm 3,求该户居民4、5 两个月共交水费多少元?(用含x的代数式表示)。
北师大版2024-2025学年度八年级上册物理单元测试卷第三章 声现象(本试卷六个大题,24个小题。
满分100分,考试时间90分钟。
)一、选择题(本题共10个小题,每小题3分,共30分。
第1~8题为单项选择题;第9、10题为多项选择题,全选对得3分,选对但不全得1分,选错或不选得0分)1.下列关于描写声的诗词解释正确的是( )A .“谁家玉笛暗飞声”中的笛声是由笛子振动产生的B .“少小离家老大回,乡音无改鬓毛衰”是指声音的响度没变C .“不敢高声语,恐惊天上人”,诗句中的“高”是指声音音调高D .“春眠不觉晓,处处闻啼鸟”,鸟叫声是通过空气传入人耳的 2.如图所示声波的波形图,下列说法正确的是( )A .甲、乙的音色相同B .甲、丙的音调相同C .乙、丁的音调相同D .丙、丁的响度相同 3.这首歌太高了,我唱不上去,这里的“高”来描述声音( ) A .响度 B .音色 C .音调 D .振幅 4.声音可以传递能量与信息。
下列实例利用声传递能量的是( ) A .利用超声波清洗机清洗眼镜 B .医生通过“B 超”检查胎儿的发育情况 C .利用超声波检测锅炉有无裂纹 D .利用次声波判断发生地震方位5.爸爸对小明说:“请把电视声音调小点,不要影响邻居休息。
”这里“调小”的是声音的( ) A .频率 B .音调 C .响度 D .速度 6.在“①女高音”“①男低音”“①引吭高歌”“①低声细语”4个词语中,“高”“低”二字描述的是声音的“音调”的是( ) A .①①①① B .①①① C .①① D .① 7.声纹鉴定技术有助于公安机关破获手机诈骗案件,利用声纹具有唯一性、同一性的特点,可以成功锁定抓捕目标,快速侦破案件。
声纹特征鉴定主要指的是人说话的( ) A .音调 B .音色 C .响度 D .声速 8.2024年春晚开场节目《鼓舞龙腾》,寓意龙腾华夏,福满万家,人们用热情的鼓声、欢快的歌 舞欢度春节。
第三章变量之间的关系一.选择题1.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2)周长为p(m),一边长为a(m),那么S、p、a中,常量是()A.a B.p C.S D.p,a2.弹簧挂上物体后伸长,已知一弹簧的长度y(cm)与所挂物体的质量m(kg)之间的关系如下表:所挂物体的质量m/kg012345弹簧的长度y/cm1012.51517.52022.5下列说法错误的是()A.在没挂物体时,弹簧的长度为10cmB.弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量C.弹簧的长度y(cm)与所挂物体的质量m(kg)之间的关系可用关系式y=2.5m+10来表示D.在弹簧能承受的范围内,当所挂物体的质量为4kg时,弹簧的长度为20cm3.某复印的收费y(元)与复印页数x(页)的关系如下表:则()x(页)1002004001000…y(元)4080160400…A.B.C.y=10x D.y=4x4.某商场自行车存放处每周的存车量为5000辆次,其中变速车存车费是每辆一次1元,普通车存车费为每辆一次0.5元,若普通车存车量为x辆次,存车的总收入为y元,则y与x之间的关系式是()A.y=0.5x+5000B.y=0.5x+2500C.y=﹣0.5x+5000D.y=﹣0.5x+25005.(2018春•岐山县期末)如图所示,长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,余下另一个长方形的面积S(cm2)与x(cm)的关系式可表示为()A .s =6xB .s =8(6﹣x )C .s =6(8﹣x )D .s =8x6.均匀地向一个容器注水,最后将容器注满.在注水过程中,水的高度h 随时间t 的变化规律如图所示,这个容器的形状可能是()A .B .C .D .7.有一天,兔子和乌龟赛跑.比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行.不一会儿,乌龟就被远远的甩在了后面.兔子想:“这比赛也太轻松了,不如先睡一会儿.”而乌龟一刻不停地继续爬行.当兔子醒来跑到终点时,发现乌龟已经到达了终点.正确反映这则寓言故事的大致图象是()A .B .C .D .8.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s (单位:m )与时间t (单位:min )之间函数关系的大致图象是()A .B .C.D.9.如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃10.如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没于水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A.B.C.D.11.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:55评卷人得分二.填空题12.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为℃.13.如图,在△ABC中,∠C=90°,AC=8,BC=6,D点在AC上运动,设AD长为x,△BCD的面积y,则y与x之间的函数表达式为.14.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需分钟到达终点B.15.某日小明步行,小颖骑车,他们同时从小颖家出发,以各自的速度匀速到公园去,小颖先到并停留了8分钟,发现相机忘在了家里,于是沿原路以同样的速度回家去取,已知小明的步行速度为180米/分钟,他们各自距离出发点的路程y与出发时间x之间的关系图象如图所示,则当小明到达公园的时候小颖离家米.16.如图①,在矩形ABCD中,动点P从A出发,以相同的速度,沿A→B→C→D→A方向运动到点A 处停止.设点P运动的路程为x,△PAB面积为y,如果y与x的函数图象如图②所示,则矩形ABCD .的面积为17.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段.BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是评卷人三.解答题18.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示答案及解析1.【分析】根据篱笆的总长确定,即可得到周长、一边长及面积中的变量.【解答】解:根据题意长方形的周长p=60m,所以常量是p,故选:B.2.【分析】因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m,质量为mkg,y弹簧长度;弹簧的长度有一定范围,不能超过.【解答】解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;C、当物体的质量为mkg时,弹簧的长度是y=12+2.5m,故此选项正确,不符合题意;D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;故选:B.3.【分析】待定系数法设一次函数关系式,把任意两点代入,求得相应的函数解析式,看其余点的坐标是否适合即可.【解答】解:设解析式为y=kx+b(k≠0),则,解得,故y=0.4x;故选:B.4.【分析】根据题意可以写出题目中的函数解关系式,从而可以解答本题.【解答】解:由题意可得,y=0.5x+(5000﹣x)×1=﹣0.5x+5000,故选:C.5.【分析】直接利用已知表示出新矩形的长,进而得出其面积.【解答】解:∵长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,∴余下另一个长方形的面积S(cm2)与x(cm)的关系式可表示为:s=6(8﹣x).故选:C.6.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,从图中可以看出,OA上升较快,AB上升较慢,BC上升最快,由此可知这个容器下面容积较大,中间容积最大,上面容积最小,故选:D.7.【分析】根据题意得出兔子和乌龟的图象进行解答即可.【解答】解:乌龟运动的图象是一条直线,兔子运动的图象路程先增大,而后不变,再增大,并且乌龟所用时间最短,故选:D.8.【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【解答】解:根据题意得:小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是故选:B.9.【分析】根据齐齐哈尔市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:A、由函数图象知4时气温达到最低,此选项错误;B、最低气温是零下3℃,此选项错误;C、4点到14点之间气温持续上升,此选项错误;D、最高气温是8℃,此选项正确;故选:D.10.【分析】根据题意,利用分类讨论的数学思想可以解答本题.【解答】解:由题意可知,F浮=G,浮力不变,故此过程中弹簧的度数不变,铁块露出水面以前,F拉+当铁块慢慢露出水面开始,浮力减小,则拉力增加,当铁块完全露出水面后,拉力等于重力,故选:D.11.【分析】根据函数图象中各拐点的实际意义求解可得.【解答】解:A、小明吃早餐用时13﹣8=5分钟,此选项正确;B、小华到学校的平均速度是1200÷(13﹣8)=240(米/分),此选项正确;C、小明跑步的平均速度是(1200﹣500)÷(20﹣13)=100(米/分),此选项正确;D、小华到学校的时间是7:53,此选项错误;故选:D.二.填空题(共6小题,满分24分,每小题4分)12.【分析】根据题意得x+32=x,解方程即可求得x的值.【解答】解:根据题意得x+32=x,解得x=﹣40.故答案是:﹣40.13.【分析】根据三角形的面积=×底×高,结合BC=6,CD=(8﹣x),即可得到,△BCD的面积y与AD的长之间的函数表达式.【解答】解:根据题意得:CD的长为:8﹣x,则y=×6(8﹣x)=24﹣3x,即y与x之间的函数表达式为:y=24﹣3x.14.【分析】根据路程与时间的关系,可得甲乙的速度,根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案.【解答】解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得10x+16×=16,解得x=千米/分钟,相遇后乙到达A站还需(16×)÷=2分钟,相遇后甲到达B站还需(10×)÷=80分钟,当乙到达终点A时,甲还需80﹣2=78分钟到达终点B,故答案为:78.15.【分析】先根据题意求得两人在第20分钟相遇时小明的路程为3600米,再根据小颖先到并停留了8分钟且往返速度相等得出小颖的速度及公园距离小颖家的距离,进一步求解可得.【解答】解:由题意知,小颖去往公园耗时10分钟,且停留8分钟,∴小颖原路返回时间为第18分钟,∵小颖往返速度相等,∴小颖返回到达时刻为第28分钟,由小明的速度为180米/分钟知,两人在第20分钟相遇时,小明的路程为20×180=3600(米),∴小颖的速度为3600÷(28﹣20)=450(米/分钟),则公园距离小颖家的距离为450×10=4500(米),∴小明到达公园的时刻为第4500÷180=25(分钟),则当小明到达公园的时候小颖离家450×(28﹣25)=1350(米),故答案为:1350.16.【分析】根据图象②得出AB、BC的长度,再求出面积即可.【解答】解:从图象②和已知可知:AB=4,BC=10﹣4=6,所以矩形ABCD的面积是4×6=24,故答案为:24.17.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12三.解答题(共6小题,满分60分,每小题10分)18.【分析】(1)直接利用常量与变量的定义分析得出答案;(2)直接利用表中数据分析得出答案;(3)利用由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,进而得出答案;(4)由(3)得出当利润为5000元时乘客人数,即可得出答案.【解答】解:(1)在这个变化过程中,每月的乘车人数x是自变量,每月的利润y是因变量;故答案为每月的乘车人数x,每月的利润y;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元;(4)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月利润为5000元时,每月乘车人数为4500人,故答案为4500.19.【分析】(1)由表格可知,开始油箱中的油为50L,每行驶100km,油量减少8L,由此填空;(2)由表格可知,开始油箱中的油为50L,每行驶100km,油量减少8L,据此可得Q与s的关系式;(3)把Q=26代入函数关系式求得相应的s值即可.【解答】解:(1)由表格中的数据可知,该轿车油箱的容量为50L,行驶150km时,油箱剩余油量为:50﹣×8=38(L).故答案是:50;38;(2)由表格可知,开始油箱中的油为50L,每行驶100km,油量减少8L,据此可得Q与s的关系式为Q=50﹣0.08s;故答案是:Q=50﹣0.08s;(3)令Q=26,得s=300.答:A,B两地之间的距离为300km.20.【分析】(1)直接利用自变量以及因变量的定义分析得出答案;(2)直接利用B两站之间距离A站8km处出发,向C站匀速前进,他骑车的速度是16.5km/小时,进而得出离A站的路程;(3)利用出发时间为1小时,进而得出答案.【解答】解:(1)骑车的时间是自变量,所走的路程是因变量;(2)∵小明骑车的速度是16.5km/小时,∴离A站的路程为:y=16.5x+8;(3)当x=1时,y=16.5+8=24.5<26,可知上午9时小明还没有经过B站.21.【分析】(1)依据点P运动的路程为x,△ABP的面积为y,即可得到自变量和因变量;(2)依据函数图象,即可得到点P运动的路程x=4时,△ABP的面积;(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可.【解答】解:(1)∵点P运动的路程为x,△ABP的面积为y,∴自变量为x,因变量为y,故答案为:x,y;(2)由图可得,当点P运动的路程x=4时,△ABP的面积为y=16,故答案为:16;(3)根据图象得:BC=4,此时△ABP为16,∴AB•BC=16,即×AB×4=16,解得:AB=8;由图象得:DC=9﹣4=5,=×BC×(DC+AB)=×4×(5+8)=26.则S梯形ABCD22.【分析】(1)根据图象变化确定a秒时,P点位置,利用面积求a;(2)P、Q两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒.(3)以(2)为基础可知,两个点相距3cm分为相遇前相距或相遇后相距,因此由(2)可列方程.【解答】解:(1)由图象可知,当点P在BC上运动时,△APD的面积保持不变,则a秒时,点P在AB上.∴AP=6则a=6(2)由(1)6秒后点P变速,则点P已行的路程为y1=6+2(x﹣6)=2x﹣6∵Q点路程总长为34cm,第6秒时已经走12cm,点Q还剩的路程为y2=34﹣12﹣=(3)当P、Q两点相遇前相距3cm时,﹣(2x﹣6)=3解得x=10当P、Q两点相遇后相距3cm时(2x﹣6)﹣()=3解得x=∴当t=10或时,P、Q两点相距3cm23.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450米/分。
北师大版三年级上册第三单元测试题及答案1一、填一填(计13分每空1分)1、计算125-57-43时可以先算().再算();也可以先算().再算().结果是()。
3、笑笑九月节余260元.十月节余的钱比九月少30元.两个月一共节余了()元。
4、甲数是550.比乙数少250.甲乙两数和是()。
二、计算我最棒1、直接写出得数:(计10分每题1分)200+150= 400-180= 900-700=1000+200= 300+200= 240-140=300-280= 237+270=400+600= 560-160=2、竖式计算。
(计18分每题3分)109+235+196= 378-210-112=153+170-103= 195-156+198=600-(425-345)= 1000-(350+450)=三、看图列式计算:(计12分每题6分)(1)笑笑跳绳.两次一共跳了多少下?(2)笑笑踢毽子.两次一共踢了多少个?四.解决问题1、希望小学三年级的三个班参加植树活动.一班植树279棵.二班植树334棵.三班植树的棵数比一、二班的总数少300棵.三班植树多少棵?(计5分)2、淘气收集邮票324张.笑笑比淘气少收集102张.淘气和笑笑一共收集了多少张邮票?(计5分)3、妙想读一本书.第一天读了110页.第二天读了108页.第三天读了132页.妙想这三天一共读了多少页?(计5分)4、根据下图回答问题。
(1)一匹马.一头猪和一只大象共重多少千克?(计2分)(2)、一只鲸鱼比一匹马和一只大象重多少千克?(计2分)(3)请你再提出一个数学问题并解答。
(计2分)5、(1)小明要买一盒水彩笔和一本笔记本.一共需要多少元?(计2分)(2)笔记本比水彩笔便宜多少元?(计2分)(3)学校要买3个书包作为奖品发给同学们.一共需要多少元?(计2分)6、下面是“北京——西安”沿线各大站的火车里程表。
(1)北京到保定有()千米. 西安到北京有()千米.(计2分)(2)保定到石家庄有多少千米?(计2分)(3). 郑州到洛阳有多少千米?(计2分)(4)、郑州到西安有多少千米?(计2分)7、运走两车后还剩多少棵白菜?(计5分)8、淘气的叔叔是出租车司机。
北师大版九年级上册单元测试第三章 证明(三)(说明:本试题总分150分,考试时间为90分钟) 班级: 姓名: 成绩:一、选择题:(每小题4分,共40分)1、已知平行四边形ABCD 中,∠B=4∠A ,则∠C=( )A 、18°B 、36°C 、36°D 、144°2、下列四边形中,对角线相等且互相垂直平分的是( )A 、平行四边形B 、正方形C 、等腰梯形D 、矩形3、如图.若要使平行四边形ABCD 成为菱形.则需要添加的条件是( )A 、AB=CDB 、AD=BC C 、AB=BCD 、AC=BD4、如图,在△ABC 中,EF ∥BC ,=,S 四边形BCFE =8,则S △ABC =( )A 、9B 、10C 、12D 、135、如图,矩形ABCD 中,E 为CD 的中点,连接AE 并延长交BC 的延长线于点F ,连接BD 、DF ,则图中全等的直角三角形共有( )A 、3对B 、4对C 、5对D 、6对6、顺次连接矩形四边中点所得的四边形一定是( )A 、正方形B 、矩形C 、菱形D 、等腰梯形7、如图,正方形ABCD 的两边BC ,AB 分别在平面直角坐标系的x 轴、y 轴的正半轴上,正方形A′B′C′D′与正方形ABCD 是以AC 的中点O′为中心的位似图形,已知AC=3,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD 的相似比是( )A 、16B 、13C 、12D 、238、如图,点A 是直线l 外一点,在l 上取两点B 、C ,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D ,分别连接AB 、AD 、CD ,则四边形ABCD 一定是( )A 、平行四边形B 、矩形C 、菱形D 、梯形第3题图第4题图 第5题图 第7题图 第8题图 第9题图9、如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE 绕正方形的对角线交点O按顺时针方向旋转到△BCF,则旋转角是()A、45°B、120°C、60°D、90°10、如图,在▱ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是()A、AE=AFB、EF⊥ACC、.∠B=60°D、AC是∠EAF的平分线二、填空题:(每小题5分,共30分)11、平行四边形ABCD中,已知∠A+∠C=60°,则∠A=度,∠B= 度。
第三章 变量之间的关系 单元检测题(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分) 1.在关于圆的面积的表达式S=πr 2中,变量有( ) A.4个 B.3个 C.2个 D.1个2.“低碳生活,绿色出行”的理念正逐渐被人们所接受,越来越多的人选择骑自行车上下班.赵叔叔家距离单位4千米,某天赵叔叔骑自行车从家出发去单位上班,行进速度为5千米/时.若用s (千米)表示赵叔叔距离单位的距离,行驶时间用t (小时)表示,在这个过程中,下列说法正确的是( )A.s 是自变量,t 是因变量B.s 是自变量,v 是因变量C.t 是自变量,s 是因变量D.5是自变量,s 是因变量3.2015年7月10日,某河流受暴雨的影响,当日该河流的水位记录如下表:则下列描述不正确的是( ) A.上表反应的是时间与水位之间的关系 B.随着时间的逐渐增大,水位逐渐增大 C.20时到24时水位上升最快 D.12时到20时水位上升最慢4.华氏温度F (华氏度)与摄氏温度C (摄氏度)之间的关系为F=C+32,若某地某时温度为20摄氏度,则该温度相当于华氏温度为( ) A.68华氏度 B.-华氏度 C.77华氏度 D.华氏度 5.新农村社区改造中,有一部分楼盘要对外销售. 某楼共30层,从第八层开始,售价x (元/平方米)与楼层n(8≤n <30)之间的关系如下表: 楼层n 8 9 10 11 12 … 售价x(元/平方米) 20002050210021502200…则售价x (元/平方米)与楼层n之间的关系式为( )A.x=2000+50nB.x=2000+50(n-8)C.n=2000+50(x-8)D.n=2000+50x6.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地下列图象能表达这一过程的是( )7.下列说法不正确的是( )A.表格可以准确的表示两个变量的数值关系B.图象能直观的反应两个变量之间的数量关系C.关系式是表示两个变量之间关系的唯一方法D.当关系式中的一个变量的值确定,另一个变量总有唯一的一个值与之对应59320320时间/时 0 4 8 12 16 20 24 水位/米 1.523.55679AB C D8.图1为某一天气温随时间的变化图,则下列说法不正确的是()A.这一天的最高气温为20 ℃B.4时到12时,温度在上升C.这一天的温差为10 ℃D.这一天中,只有8点的温度为14 ℃9.如图2,已知正方形ABCD、正方形CEFG的边长分别为8和4,且点D,C,E 在同一条直线上,动点M从点E向点F移动,连接DM.若ME=x,则阴影部分的面积y 与x之间的关系式为()A.y=6xB.y=12xC.y=6x-80D.y=80-6x10.按如图3的方式用火柴棒摆放正方形,若用n表示正方形个数,y表示摆放正方形所用火柴棒根数,则y与n之间的关系式为()A. y=3n+1B.y=4n-1C.y=4+3nD.y=n+n+(n-1)二、填空题(本大题共8小题,每小题4分,共32分)11.表示两个变量之间的关系常用的三种方法是________、________和________.12.若用一根长16米的铁丝围成一个长方形,长方形的面积S(m2)与长方形的一条边长x(m)之间的关系如下表:根据表格中两个变量之间的关系,写出你发现的一条信息___________________.13.联通公司手机话费收费有一种套餐,该套餐月租费15元,通话费每分钟0.1元.小丽用该套餐月话费为y(元),月通话时间为x分,在这个情境中,自变量为_______,因变量为_________.14.由于地球引力和月球引力的不同,因此,同一物体在地球上的重量和在月球上的重量是不相等的.同一物体在月球上的重量y(千克)与同一物体在地球上的重量x(千克)之间的关系式为y=x,则在地球上重量为120千克的物体,在月球上重量减少了_______千克.15.某汽车生产厂对其生产的A型汽车进行油耗试验,试验中汽车为匀速行驶.汽车行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:61t(小时)0 1 2 3y(升)100 92 84 76 由表格中的数量关系可知,油箱的余油量y(升)与行驶时间t(小时)之间的关系式为____________,当汽车行驶_______小时,油箱的余油量为0.16.亮亮从家跑步到学校,在学校图书馆看了一会书,然后步行回家,亮亮离家的路程y(米)与时间t(分)之间的关系如图4所示,则亮亮回家的速度为__________.17.根据图5所示的计算程序计算变量y的对应值,若输入变量x的值为-0.5,则输出的结果为_______.18.在全民健身环城越野赛中,甲、乙两名选手的行程y(千米)随时间x(时)变化的图象如图6所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).三、解答题(本大题共5小题,共58分)19.(9分)物体从高处自由落下,物体下落的高度h(米)与下落的时间t(秒)之间的关系如下表:h(米) 5 20 45 80 180 …t(秒) 1 2 3 4 5 …(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当物体从80米的高处落下时,大约需要多少秒?(3)随着高度h(米)的变化,下落的时间t(秒)是如何变化的?20.(10分)在数轴上,若点A,B表示的数分别为3和x,则A,B之间的距离y与x之间的关系式为y=.(1)当x的值为-5时,求y的值;(2)根据关系式,完成下表:x -1 0 1 2 3 4 5 6y21.(12分)点燃一根蜡烛后,蜡烛的高度h(厘米)与燃烧时间t(分)之间的关系如下表:t/分0 2 4 6 8 103xh/厘米30 29 28 27 26 25(1)蜡烛未点燃前的长度是多少厘米?(2)写出蜡烛的高度h(厘米)与燃烧时间t(分)之间的关系式;(3)求这根蜡烛能燃烧多长时间.22.(12分)某水库初始的水位高度为5米,水位在10小时内持续匀速上涨,测量可知,经过4小时,水位上涨了1米.(1)写出水库的水位高度y(米)与时间x(小时)(0≤x≤10)之间的关系式;(2)经过______小时,水库的水位上涨到6.5米;(3)当时间由1小时变化到10小时时,水库的水位高度由______米变化到______米.23.(15分)星期天,小宇的爸爸9点钟从家里到附近的一个银行办理业务,他走了一段路后,突然发现忘记带身份证,于是他跑步回家,拿了身份证,跑到银行办理业务,办完业务他步行回到家.他离家的路程s(米)与时间t(分)之间的关系如图7所示.(1)小宇的爸爸几点钟到达银行?他办理业务共用多长时间?(2)几点钟,小宇的爸爸发现忘记带身份证,此时,他离家多远?(3)小宇的爸爸在去银行办理业务的过程中走过的路程为多少米?(4)求小宇爸爸从银行回到家的速度.附加题(15分,不计入总分)24.如图 8所示,梯形的上底AD=4,下底BC=6,CD=8,∠C=∠D=90°,点M从点C出发向点D移动,连接AM,BM,假设阴影部分的面积是y,CM的长度为x. (1)写出变量y与x之间的关系式;(2)当x=2时,阴影部分的面积是多少?(3)在点M的移动过程中,是否存在阴影部分的面积等于梯形面积的,若存在,求出x的值;若不存在,简单说明理由.41参考答案一、1.C 2.C 3.D 4.A 5. B 6.C 7.C 8.D9.D 提示:阴影部分的面积是两个正方形的面积和减去三角形DEM面积.10.A二、11.表格法关系式法图象法 12.答案不唯一,合理即可,略 13. 通话时间月话费 14.100 15.y=100-8t 12.5 16.60米/分17.-1.5 提示:当x=-0.5时,对应关系式是y=x-1,代入计算得y=-0.5-1=-1.5.18.①③④⑤三、19.解:(1)反映了物体下落的高度h(米)与下落的时间t(秒)之间的关系,其中物体下落的高度h(米)是自变量,下落的时间t(秒)是因变量;(2)4秒;(3)随着高度h(米)的逐渐增大,下落的时间t(秒)随着增大.20.解:(1)当x的值为-5时,y==8.(2)21.解:(1)蜡烛未点燃前的长度是30厘米;(2)h=30-0.5t;(3)当h=0时,得0=30-0.5t.解方程,得t=60.所以这根蜡烛能燃烧60分.22.(1)y=0.25x+5(0≤x≤10);(2)6(3)5.25 7.523.(1)小宇的爸爸9:16到达银行,他办理业务共用4分.(5)9:05小宇的爸爸发现忘记带身份证,此时,他离家300米.(3)300×2+800×2=2200(米).所以小宇的爸爸在去银行办理业务的过程中走过的路程2200米.(4)800÷(30-20)=80(米/分).所以小宇爸爸从银行回到家的速度为80米/分.附加题24.(1)y=-x+24;(2)当x=2时,y=-2+24=22;(3)不存在,理由:假设存在,则-x+24=××(4+6)×8.解方程,得x=14>8.所以不存在.第三章变量之间的关系一、选择题(每题3分,共24分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是( )A.沙漠B.体温C.时间D.骆驼2.气温y(℃)随高度x(km)的变化而变化的情况如下表,由表可知,气温y随着高度x 的增大而( )高度x/km 0 1 2 3 4 5 6 7 8气温y/℃28 22 16 10 4 -2 -8 -14 -203 5--4121A.升高B.降低C.不变D.以上答案都不对3.长方形的周长为24 cm,其中一边长为x cm(其中0<x<12),面积为y cm2,则该长方形中y与x的关系式可以写为( )A.y=x2B.y=(12-x)2C.y=(12-x)·xD.y=2(12-x)4.小明骑自行车上学,开始以正常速度匀速行驶,但行至途中自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度.下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是( )5.如图是某市某一天的气温变化图,根据图象,下列说法中错误的是( )A.这一天中最高气温是24 ℃B.这一天中最高气温与最低气温的差为16 ℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中只有14时至24时之间的气温在逐渐降低6.某校组织学生到距学校6 km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:里程数收费/元3 km以下(含3 km) 8.003 km以上每增加1 km 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为( )A.y=8xB.y=1.8xC.y=8+1.8xD.y=2.6+1.8x7.均匀地向如图所示的容器中注满水,能反映在注水过程中水面高度h随时间t变化的图象的是( )8.A,B两地相距20 km,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(km)与时间t(h)之间的关系.下列说法:①乙晚出发1 h;②乙出发3 h后追上甲;③甲的速度是4 km/h;④乙先到达B地.其中正确的个数是()A.1B.2C.3D.4二、填空题(每题5分,共30分)9.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的关系是y=x+32.如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是____________.10.小雨画了一个边长为3 cm的正方形,如果将正方形的边长增加x cm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为____________.11.如图是甲、乙两名运动员在自行车比赛中所走路程与时间的关系图象,则甲的速度____________乙的速度(用“>”“=”或“<”填空).12.小明早晨从家骑车到学校,先上坡,后下坡,行驶情况如图所示,如果返回时上、下坡的速度与去学校时上、下坡的速度相同,那么小明从学校骑车回家用的时间是____________.13.某航空公司行李的托运费按行李的质量收取,30 kg以下免费,30 kg及以上按图中所示的关系来计算,若某人行李的质量为200 kg,则他需要付托运费____________.14.小英、爸爸、妈妈同时从家中出发到达同一目的地后都立即返回,小英去时骑自行车,返回时步行;妈妈去时步行,返回时骑自行车;爸爸往返都步行,三人步行的速度不等,小英与妈妈骑车的速度相等,每个人的行走路程与时间的关系分别是下图中的一个,走完一个往返,小英用时____________,爸爸用时____________,妈妈用时____________.三、解答题(15题10分,16题12分,17,18题每题14分,19题16分,共66分)15.下表是佳佳往表妹家打长途电话的收费记录:时间/min 1 2 3 4 5 6 7电话费/元0.6 1.2 1.8 2.4 3.0 3.6 4.2(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)若佳佳的通话时间是10 min,则需要付多少电话费?16.如图表示某市2016年6月份某一天的气温随时间变化的情况,请观察此图回答下列问题:(1)这天的最高气温是多少摄氏度?(2)这天共有多少个小时的气温在31 ℃以上? (3)这天什么时间范围内气温在上升?(4)请你预测一下,次日凌晨1时的气温大约是多少摄氏度?17.张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离张阳家多少千米?(2)体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3)张阳从文具店到家的速度是多少?18.如图,一个半径为18 cm的圆,从中心挖去一个正方形,当挖去的正方形的边长由小变大时,剩下部分的面积也随之发生变化.(1)若挖去的正方形边长为x(cm),剩下部分的面积为y(cm2),则y与x之间的关系式是什么?(2)当挖去的正方形的边长由1 cm变化到9 cm时,剩下部分的面积由变化到.19.弹簧挂上物体后会伸长.已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:所挂物体的质量/kg 0 1 2 3 4 5 6 7 弹簧的长度/cm 12 12.5 13 13.5 14 14.5 15 15.5(1)当所挂物体的质量为3 kg时,弹簧的长度是___________;(2)如果所挂物体的质量为x kg,弹簧的长度为y cm,根据上表写出y与x的关系式;(3)当所挂物体的质量为5.5 kg时,请求出弹簧的长度;(4)如果弹簧的最大长度为20 cm,则该弹簧最多能挂质量为多重的物体?参考答案一、1.【答案】B解:根据自变量和因变量的定义可知,在这一问题中,体温随时间的变化而变化,时间是自变量,体温是因变量,故选B.2.【答案】B3.【答案】C4.【答案】D5.【答案】D解:由题图可知,这一天中气温在逐渐降低的时段有0时至2时和14时至24时,故选D.6.【答案】D解:由题意知,当出租车行驶里程数x≥3时,y=8+1.8(x-3)=1.8x+2.6,故选D.7.【答案】A8.【答案】C解:①③④正确,②应为乙出发2 h后追上甲.二、9.【答案】77 ℉解:将x=25代入关系式可得y=×25+32=45+32=77,故它的华氏度数是77 ℉.10.【答案】y=x2+6x解:边长为3 cm的正方形的面积是9 cm2,边长为(x+3)cm的正方形的面积为(3+x)2cm2,所以面积的增加值y=(3+x)2-9=x2+6x.11.【答案】>12.【答案】37.2 min 解:由题图可知,上坡速度为 3 600÷18=200(m/min),下坡速度为(9 600-3 600)÷(30-18)=500(m/min),返回途中,上、下坡的路程刚好相反,所用时间为 3 600÷500+(9 600-3 600)÷200=37.2(min).13.【答案】340元14.【答案】21 min;24 min;26 min三、15.解:(1)反映了电话费与通话时间之间的关系;其中通话时间是自变量,电话费是因变量.(2)设电话费为y元,通话时间为t min.则由题意可知,y与t之间的关系式为y=0.6t,故当t=10时,y=6.所以需付6元电话费.16.解:(1)37 ℃.(2)9 h. (3)3时至15时.(4)25 ℃.(答案不唯一,合理即可)17.解:(1)体育场离张阳家2.5 km.(2)因为2.5-1.5=1(km),所以体育场离文具店1 km.因为65-45=20(min),所以张阳在文具店逗留了20 min.(3)文具店到张阳家的距离为1.5 km,张阳从文具店到家用的时间为100-65=35(min),所以张阳从文具店到家的速度为1.5÷=(km/h).18.解:(1)剩下部分的面积=圆的面积-正方形的面积,所以y与x之间的关系式为y=πr2-x2=324π-x2.(2)(324π-1)cm2(324π-81)cm219.解:(1)13.5 cm(2)由表格可知,弹簧的长度y与所挂物体的质量x之间的关系式为y=12+0.5x.(3)当x=5.5时,y=12+0.5×5.5=14.75(cm).(4)当y=20时,20=12+0.5x,解得x=16,故该弹簧最多能挂16 kg重的物体.第3章变量之间的关系一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分)1.下面说法中正确的是【】.A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对2.如果一盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的关系应该是【】.A.y=12x B.y=18x C.y=x D.y=x3. 一辆汽车由韶关匀速驶往广州,下列图象中大致能反映汽车距离广州的路程(千米)和行驶时间(小时)的关系的是【】.A B C D4.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为,则当时,该物体所经过的路程为【】.A.28米 B. 48米 C.57米 D. 88米5.在某次试验中,测得两个变量和之间的4组对应数据如下表:1 2 3 40.01 2.9 8.03 15.1则与之间的关系最接近于下列各关系式中的【】.A.B.C.D.6.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点….用S1,S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是【】.7.正常人的体温一般在左右,但一天中的不同时刻不尽相同,如图1反映了一天24小时内小红的体温变化情况,下列说法错误的是【】.A.清晨5时体温最低B.下午5时体温最高C.这一天小红体温T的范围是36.5≤T≤37.5D.从5时至24时,小红体温一直是升高的8.小王利用计算机设计了一个程序,输入和输出的数据如下表:输入… 1 2 3 4 5 …输出……那么,当输入数据8时,输出的数据是【】.2 332st1232++=tts 4t=m v mvm v22v m=-21v m=-33v m=-1v m=+C037C0122531041752636.517125T/t/h2437.5图1A.B. C. D.9. 如图2,图象(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是【 】. A.第3分时汽车的速度是40千米/时 B.第12分时汽车的速度是0千米/时 C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时10. 向高为10厘米的容器中注水,注满为止,若注水量V (厘米3)与水深h (厘米)之间的关系的图象大致如图3所示,则这个容器是下列四个图中的【 】.二、填一填,要相信自己的能力!(每小题3分,共30分)1.对于圆的周长公式c=2r ,其中自变量是_______,因变量是_______. 2.在关系式y=5x+8中,当y=120时,x 的值是 ___ .3.一蜡烛高20 厘米,点燃后平均每小时燃掉4厘米,则蜡烛点燃后剩余的高度h(厘米)与燃烧时间t(时)之间的关系式是__________(0≤t ≤5).4.等腰三角形的周长为12厘米,底边长为厘米,腰长为厘米. 则与的之间的关系式是 .5.如图4所示的关系图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 千米∕小时.6.小亮帮母亲预算家庭月份电费开支情况,下表是小亮家月初连续天每天早上电表显示的读数.日期︳日 1 2 3 4 5 6 7 8 电表读数︳度2124283339424649(2)估计小亮家月份的用电量是______,若每度电是元,估计他家月份应交的电费是______.7.如图5所示,是护士统计一位病人的体温变化图,这位病人中午12时的体温约为 .8.根据图6中的程序,当输入x =3时,输出的结果y = . 9. 小明早晨从家骑车到学校,先上坡后下坡,行程情况如图7所示,若返回时上、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是_______分 .10. 一根弹簧原长13厘米,挂物体质量不得超过16千克,并861863865867 y x y x 44840.494时间/分1836 3696路程/百米图7图2图3且每挂1千克就伸长0.5厘米,则当挂物体质量为10千克,弹簧长度为________厘米,挂物体X(千克)与弹簧长度y(厘米)的关系式为_______.(不考虑x的取值范围)三、做一做,要注意认真审题呀!(本大题共38分)1.(8分)下表是三发电器厂2007年上半年每个月的产量:x/月 1 2 3 4 5 6y/台10 000 10 000 12 000 13 000 14 000 18 000(2)根据表格你知道哪几个月的月产量保持不变?哪几个月的月产量在匀速增长?哪个月的产量最高?(3)试求2007年前半年的平均月产量是多少?2.(10分)星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的图8中,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的图象.3.(10分)将若干张长为20厘米、宽为10厘米的长方形白纸,按图9所示的方法粘合起来,粘合部分的宽为2厘米.(1)求4张白纸粘合后的总长度;(2)设x张白纸粘合后的总长度为y厘米,写出y与x之间的关系式,并求当x=20时,y的值.4.(10分)甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间关系的图像如图10所示.根据图像解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中?(不包括起点和终点)图8四、拓广探索(本大题共22分)1.(10分)如图11所示,是小杰在上学路上,行车的速度随时间的变化情况,请你运用生动、形象的语言描述一下他在不同的时间里,都做了什么事情.2.(12分)某公司有2位股东,20名工人. 从2006年至2008年,公司每年股东的总利润和每年工人的工资总额如图12所示.(1)填写下表:(2)假设在以后的若干年中,每年工人的工资和股东的利润都按上图中的速度增长,那么到哪一年,股东的平均利润是工人的平均工资的8倍?年 份 2006年 2007年 2008年 工人的平均工资/元 5 000 股东的平均利润/元 25 000图 12时间速度图11参考答案一、1~10 CDB CB DD C CC二、1.r,c. 2.22.4. 3.h=20-4t. 4.y=12-2x. 5.6.12058.86.(1)日期和电表读数;日期;电表读数;(2)度,元.7.38.2. 8.2. 9. 37.2. 10. 18,y=13+0.5x.三、1. (1)随着月份x的增大,月产量y正在逐渐增加;(2)1月、2月两个月的月产量不变,3月、4月、5月三个月的产量在匀速增多,6月份产量最高;(3)约为13 000(台).2.图象略.3.(1)4张白纸粘合后的总长度是20×4-3×2=74(厘米).(2)y=20x-2(x-1).当x=20时,y=20×20-2×(20-1)=362.4.(1)甲先出发;先出发10分钟;乙先到达终点;先到5分钟.(2)甲的速度为每分钟0.2公里,乙的速度为每分钟0.4公里.(3)在甲出发后10分钟到25分钟这段时间内,两人都行驶在途中.四、1. 略.2. (1) 工人的平均工资:2007年6 250元,2008年7 500元.股东的平均利润:2007年37 500元,2008年50 000元.(2)设经过x年每位股东年平均利润是每位工人年平均工资的8倍.由图可知:每位工人年平均工资增长1 250元,每位股东年平均利润增长12 500元,所以(5 000+1 250x)×8=25 000+12 500x. 解得x=6 .所以到2012年每位股东年平均利润是每位工人年平均工资的8倍.。
, 北师大版七年级数学下册第 3 章《三角形》单元测试试卷及答案(3)一、填空题(共 10 小题)1.一个等腰三角形的两边长分别是 3cm 和 7cm ,则它的周长是_________ cm .△2.若∠A=∠B=2∠C ,则 ABC 是 _________ 三角形.(填“钝角”、“锐角”或“直 角”)△3.如图, ABC≌△DEF ,△ABC 的周长为 25cm AB=6cm ,CA=8cm ,则 DE= _________ , DF= _________ ,EF= _________ .4.如图,AB=AD ,BC=DC ,要证∠B=∠D ,则需要连接 _________ ,从而可证 _________和 _________ 全等.5.如图,AD ,AE 分别是△ABC 的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD= _________ .△6.如图,CA⊥BE ,且 ABC≌△ADE ,则 BC 与 DE 的关系是 _________ .7.如图,有一块边长为 4 的正方形塑料模板 ABCD ,将一块足够大的直角三角板的直角顶 点落在 A 点,两条直角边分别与 CD 交于点 F ,与 CB 延长线交于点 E .则四边形 AECF 的 面积是 _________ .8.如图,BA∥CD,∠A=90°,AB=CE,BC=ED,则△CED≌_________,根据是_________.△9.如图,ABC中,AB=AC,BC=8,BD是AC边上的中线,△ABD与△BDC的周长的差是2,则AB=_________.10.如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA,得到A B C,至点A,B,C,使得A B=2AB,B C=2BC,C A=2CA,顺次连接A,B,C△1 11111111111记其面积为S;第二次操作,分别延长A B,B C,C A至点A,B,C,使得A B=2A B,11111112222111,得到A B C,记其面积为S;…;按B C=2B C,C A=2C A,顺次连接A,B,C△221112111222222B C,则其面积S=_________.此规律继续下去,可得到A△5555二、选择题(共8小题)11.在下列四组线段中,能组成三角形的是()A.2,2,5B.3,7,10C.3,5,9D.4,5,7△12.(2011•宿迁)如图,已知∠1=∠2,则不一定能使ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 13.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A14.如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交B C,AB,BC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高B.DE,DC都是△BCD的高C.DE是△DBE和△ABE的高D.AD,CD都是△ACD的高15.角α和β互补,α>β,则β的余角为()A.α﹣βB.180°﹣α﹣βC.D.△16.根据下列已知条件,能唯一画出ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=6△17.下列各组条件中,能判定ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F△18.如图,DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个三、解答题(共7小题)19.如图,在小河的同侧有A,B,C,D四个村庄,图中线段表示道路.邮递员从A村送信到B村,总是走经过C村的道路,不走经过D村的道路,这是为什么呢?请你用所学的数学知识说明其中的道理.20.如图,AB=AD,BC=DC,AC与BD相交于点E,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母.不写推理过程,只要求写出四个你认为正确的结论即可)21.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD 沿着角的两边放正,沿AC画一条射线AE,AE就是角平分线,请说明它的道理.22.如图,A、B两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,则DE的长就是A、B之间的距离,请说明理由..23.如图,公园有一条“Z”字形道路 ABCD ,其中 AB∥CD ,在 E 、M 、F 处各有一个小 石凳,且 BE=CF ,M 为 BC 的中点,请问三个小石凳是否在一条直线上?说出你推断的理 由.△24.如图, ABC 中,AB=BC=CA ,∠A=∠ABC=∠ACB ,在△ABC 的顶点 A ,C 处各有 一只小蚂蚁,它们同时出发,分别以相同速度由 A 向 B 和由 C 向 A 爬行,经过 t (s )后, 它们分别爬行到了 D ,E 处,设 DC 与 BE 的交点为 F .(△1)证明 ACD≌△CBE ;(2)小蚂蚁在爬行过程中,DC 与 BE 所成的∠BFC 的大小有无变化?请说明理由.25.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什 么情况下,它们会全等? (1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略) 对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知: ABC 、 A △1B C 均为锐角三角形,AB=A B ,BC=B C ,∠C=∠C .1 1 1 1 1 l l求证:ABC≌ A △1B C .1 1(请你将下列证明过程补充完整.)证明:分别过点 B ,B 作 BD⊥CA 于 D , 1B D ⊥C A 于D .1 11 11 则∠BDC=∠B D C =90°, 1 1 1∵BC=B C ,∠C=∠C , 1 11∴ BCD≌ B △1C D ,1 1∴BD=B D .1 1(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.参考答案与试题解析一、填空题(共10小题)1.一个等腰三角形的两边长分别是3cm和7cm,则它的周长是17cm.考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.解答:解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17cm.故答案为:17.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.△2.若∠A=∠B=2∠C,则ABC是锐角三角形.(填“钝角”、“锐角”或“直角”)考点:三角形内角和定理.专题:计算题.分析:根据三角形的内角和为180°和已知条件设未知数,列方程求解,再判断形状.解答:解:设三角分别是∠A=a°,∵∠A=2∠B=3∠C,∴∠B=a°,∠B=a°,则a+a+a=180°,解a≈98°.所以三角形是钝角三角形.故答案为钝角.点评:此题主要考查了三角形的内角和定理:三角形的内角和为180°.正确的设出一个角并表示出其他角是解决此题的关键.△3.如图,ABC≌△DEF,△ABC的周长为25cm,AB=6cm,CA=8cm,则DE=6cm,DF=8cm,EF=11cm.考点:全等三角形的性质.分析:根据△ABC的周长求出BC,然后根据全等三角形对应边相等解答即可.解答:解:∵△ABC的周长为25cm,AB=6cm,CA=8cm,∴BC=25﹣6﹣8=11cm,∵△ABC≌△DEF,∴DE=AB=6cm,DF=AC=8cm,EF=BC=11cm.故答案为:6cm;8cm;11cm.点评:本题考查了全等三角形对应边相等的性质,熟记性质并准确找出对应边是解题的关键.4.如图,AB=AD,BC=DC,要证∠B=∠D,则需要连接AC,从而可证△ABC和△ADC全等.考点:全等三角形的判定与性质.分析:连接AC,根据AB=AD,BC=DC,AC=AC即可证明△ABC≌△ADC,于是得到∠B=∠D.解答:解:连接AC,在△ABC和△ADC中,∵,∴△ABC≌△ADC(SSS),∴∠B=∠D.故答案为△AC,ABC,△ADC.点评:本题主要考查全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握其判定定理,此题基础题,比较简单.5.如图,AD,AE分别是△ABC的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD= 10°.考点:三角形内角和定理.分析:根据三角形的内角和等于180°求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠B AE,然后根据∠EAD=∠BAE﹣∠BAD代入数据进行计算即可得解.解答:解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AD是△ABC的角平分线,∴∠BAD=∠BAC=×60°=30°,∵AE是△ABC的高线,∴∠BAE=90°﹣∠B=90°﹣50°=40°,∴∠EAD=∠BAE﹣∠BAD=40°﹣30°=10°.故答案为:10°.点评:本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,是基础题,准确识图找出各角度之间的关系是解题的关键.△6.如图,CA⊥BE,且ABC≌△ADE,则BC与DE的关系是相等且垂直.考点:全等三角形的性质.分析:根据全等三角形对应边相等可得BC=DE,全等三角形对应角相等可得∠C=∠E,根据垂直的定义求出∠BAC=90°,然后求出∠B+∠E=90°,从而得到∠BFE=90°,即BC⊥DE.解答:解:∵△ABC≌△ADE,∴BC=DE,∠C=∠E,∵CA⊥BE,∴∠BAC=90°,∵∠B+∠C=180°﹣∠BAC=180°﹣90°=90°,∴∠B+∠E=90°,∴∠BFE=180°﹣(∠B+∠E)=180°﹣90°=90°,∴BC⊥DE,故BC与DE的关系是相等且垂直.故答案为:相等且垂直.点评:本题考查了全等三角形的性质,主要利用了全等三角形对应边相等,全等三角形对应角相等,垂直的定义,熟记性质是解题的关键.7.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是16.△S AEB =S△=S△ , 考点: 正方形的性质;全等三角形的判定与性质.分析: 由四边形 ABCD 为正方形可以得到∠D=∠B=90°,AD=AB ,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE ,所以可以证明△AEB≌△AFD ,所以 AFD ,那么它们 都加上四边形 ABCF 的面积,即可四边形 AECF 的面积=正方形的面积,从而求出 其面积.解答: 解:∵四边形 ABCD 为正方形,∴∠D=∠ABC=90°,AD=AB , ∴∠ABE=∠D=90°, ∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°, ∴∠DAF=∠BAE , ∴△AEB≌△AFD ,△∴S AEB AFD∴它们都加上四边形 ABCF 的面积,可得到四边形 AECF 的面积=正方形的面积=16.故答案为:16.点评: 本题需注意:在旋转过程中一定会出现全等三角形,应根据所给条件找到.8.如图,BA∥CD ,∠A=90°,AB=CE ,BC=ED ,则△CED≌ △ABC ,根据是HL .考点: 全等三角形的判定.分析: 根据两直线平行,同旁内角互补求出∠DCE=90°,然后利用“HL”证明△CED 和△ABC 全等.解答: 解:∵BA∥CD ,∠A=90°,∴∠DCE=180°﹣∠A=180°﹣90°=90°, ∵在 Rt△CED 和 Rt△ABC 中,,∴ CED≌ ABC (△HL ). 故答案为: ABC ,△HL .点评: 本题考查了全等三角形的判定,平行线的性质,求出∠DCE=90°是解题的关键.△9.如图, ABC 中,AB=AC ,BC=8,BD 是 AC 边上的中线,△ABD 与△BDC 的周长的 差是 2,则 AB= 10 .考点: 等腰三角形的性质.分析: 根据三角形中线的定义可得 AD=CD ,然后求出△ABD 与△BDC 的周长的差=AB﹣BC ,再代入数据进行计算即可得解.解答: 解:∵BD 是 AC 边上的中线,∴AD=CD ,∴△ABD 与△BDC 的周长的差=(AB+AD+BD )﹣(BC+CD+BD )=AB ﹣BC , ∵△ABD 与△BDC 的周长的差是 2,BC=8, ∴AB ﹣8=2, ∴AB=10.故答案为:10.点评: 本题考查了等腰三角形腰上的中线的定义,求出△ABD 与△BDC 的周长的差=AB﹣BC 是解题的关键,也是本题的难点.10.如图,对面积为 1 的△ABC 逐次进行以下操作:第一次操作,分别延长 AB ,BC ,CA 至点 A ,B ,C ,使得 A B=2AB ,B C=2BC ,C A=2CA ,顺次连接 A ,B ,C △1,得到 A B C ,111111111 1 1记其面积为 S ;第二次操作,分别延长 A B ,B C ,C A 至点 A ,B ,C ,使得 A B =2A B , 11 11 11 12222 1 1 1B C =2B C ,C A =2C A ,顺次连接 A ,B ,C △2,得到 A B C ,记其面积为 S ;…;按 2 11 12 11 1222 2 22此规律继续下去,可得到A △5BC ,则其面积 S = 195 .5 5 5考点: 三角形的面积. 专题: 压轴题;操作型.分析: 根据高的比等于面积比推理出A △1BC 的面积是 A △1BC 面积的 2 倍,则 A △1B B 的11面积是A △1BC 面积的 3 倍…,以此类推,得出 A △2BC 的面积.2 2解答: 解:连接 A C ,根据 A B=2AB ,得到:AB :A A=1:3,111因而若过点 B ,A 作△ABC 与 AA △1C 的 AC 边上的高,则高线的比是 1:3, 1因而面积的比是 1:△3,则 A BC 的面积是△ABC 的面积的 2 倍,1设△ABC 的面积是 △a ,则 A BC 的面积是 2a , 1同理可以得到A △1BC 的面积是 A △1BC 面积的 2 倍,是 4a ,1则 A △1B B 的面积是 6a ,1同理B △1C C 和 A △1C A 的面积都是 6a ,11△A B C 的面积是 19a ,1 1 1即 A △1B C 的面积是△ABC 的面积的 19 倍, 1 1同理A △2BC 的面积是 A △1B C 的面积的 19 倍,2 21 1即 A △1B C 的面积是 △19, A B C 的面积 192,1 12 2 2依此类推,AB C的面积是S=195=2476099.△5555点评:正确判断相邻的两个三角形面积之间的关系是解决本题的关键,本题的难度较大.二、选择题(共8小题)11.在下列四组线段中,能组成三角形的是()A.2,2,5B.3,7,10C.3,5,9D.4,5,7考点:三角形三边关系.分析:根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.解答:解:A、∵2+2=4<5,∴2,2,5不能组成三角形,故本选项错误;B、∵3+7=10,∴3,7,10不能组成三角形,故本选项错误;C、∵3+5=8<9,∴3,5,9不能组成三角形,故本选项错误;D、4,5,7能组成三角形,故本选项正确.故选D.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解题的关键.△12.(2011•宿迁)如图,已知∠1=∠2,则不一定能使ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 考点:全等三角形的判定.专题:压轴题.分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解答:解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故本选项正确,不合题意.B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故本选项错误,符合题意.C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故本选项正确,不合题意.D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故本选项正确,不合题意.故选B.点评:此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.13.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形C.∠1和∠B都是∠A的余角B.∠1=∠2 D.∠2=∠A考点:直角三角形的性质.专题:证明题.分析:在△ABC中,∠ACB=90°,CD⊥AB,因而△ACD∽△CBD∽△ABC,根据相似三角形的对应角相等,就可以证明各个选项.解答:解:∵∠ACB=90°,CD⊥AB,垂足为D,∴△ACD∽△CBD∽△ABC.A、∴图中有三个直角三角形Rt△ACD、Rt△CBD、Rt△ABC;故本选项正确;B、应为∠1=∠B、∠2=∠A;故本选项错误;C、∴∠1=∠B、∠2=∠A,而∠B是∠A的余角,∴∠1和∠B都是∠A的余角;故本选项正确;D、∴∠2=∠A;故本选项正确.故选B.点评:本题主要考查了直角三角形的性质,直角三角形斜边上的高,把这个三角形分成的两个三角形与原三角形相似.14.如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交B C,AB,BC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高C.DE是△DBE和△ABE的高B.DE,DC都是△BCD的高D.AD,CD都是△ACD的高考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的一个顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解答:解:A、AC是△ABC和△ABE的高,正确;B、DE,DC都是△BCD的高,正确;C、DE不是△ABE的高,错误;D、AD,CD都是△ACD的高,正确.故选C.点评:考查了三角形的高的概念.15.角α和β互补,α>β,则β的余角为()A.α﹣βB.180°﹣α﹣βC.D.考点:余角和补角.分析:根据互为补角的两个角的和等于180°表示出α+β,再根据互为余角的两个角的和等于90°列式整理即可得解.解答:解:∵角α和β互补,∴α+β=180°,∴β的余角为:90°﹣β=(α+β)﹣β=(α﹣β).故选C.点评:本题考查了余角和补角,利用90°和180°的倍数关系消掉常数是解题的关键.△16.根据下列已知条件,能唯一画出ABC的是()A.AB=3,BC=4,AC=8C.∠A=60°,∠B=45°,AB=4B.AB=4,BC=3,∠A=30°D.∠C=90°,AB=6考点:全等三角形的判定.专题:作图题;压轴题.分析:要满足唯一画出△ABC,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有C选项符合ASA,是满足题目要求的,于是答案可得.解答:解:A、因为AB+BC<AC,所以这三边不能构成三角形;B、因为∠A不是已知两边的夹角,无法确定其他角的度数与边的长度;C、已知两角可得到第三个角的度数,已知一边,则可以根据ASA来画一个三角形;D、只有一个角和一个边无法根据此作出一个三角形.故选C.点评:此题主要考查了全等三角形的判定及三角形的作图方法等知识点;能画出唯一三角形的条件一定要满足三角形全等的判定方法,不符合判定方法的画出的三角形不确定,当然不唯一.△17.下列各组条件中,能判定ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F考点:全等三角形的判定.分析:根据全等三角形的判定(三组对应边分别相等的两个三角形全等(简称SSS))可得当AB=DE,BC=EF,AC=DF可判定△ABC≌△DEF,做题时要对选项逐个验证.解答:解:A、满足SSA,不能判定全等;B、AC=EF不是对应边,不能判定全等;C、符合SSS,能判定全等;D、满足AAA,不能判定全等.故选C.点评:本题考查了全等三角形的判定方法,在应用判定方法做题时找准对应关系,对选项逐一验证,而AAA,SSA不能作为全等的判定方法.△18.如图,DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个考点:全等三角形的判定与性质;等边三角形的性质.分析:根据等边三角形性质得出AC=CD,BC=CE,∠ACD=∠BCE=60°,求出∠ACE=∠BCD,根据SAS证△ACE≌△BCD,推出∠NDC=∠CAM,求出∠DCE=∠ACD,证△ACM≌△DCN,推出CM=CN,AM=DN,即可判断各个结论.解答:解:∵△DAC和△EBC均是等边三角形,∴AC=CD,BC=CE,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠BCD,在△ACE和△BCD中∴△ACE≌△BCD(SAS);∴①正确;∵∠ACD=∠BCE=60°,∴∠DCE=180°﹣60°﹣60°=60°=∠ACD,∵△ACE≌△BCD,∴∠NDC=∠CAM,在△ACM和△DCN中∴△ACM≌△DCN(ASA),∴CM=CN,AM=DN,∴②正确;∵△ADC是等边三角形,∴AC=AD,∠ADC=∠ACD,∵∠AMC>∠ADC,∴∠AMC>∠ACD,∴AC>AM,即AC>DN,∴③错误;故选B.点评:本题考查了等边三角形的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力和辨析能力.三、解答题(共7小题)19.如图,在小河的同侧有A,B,C,D四个村庄,图中线段表示道路.邮递员从A村送信到B村,总是走经过C村的道路,不走经过D村的道路,这是为什么呢?请你用所学的数学知识说明其中的道理.考点:三角形三边关系.分析:延长AC交BD于E,根据三角形的任意两边之和大于第三边可得AD+DE>AC+CE,CE+BE>BC,然后整理得到AD+BD>AC+BC,从而得解.解答:解:如图,延长AC交BD于E,在△ADE中,AD+DE>AC+CE,在△CBE中,CE+BE>BC,∴AD+DE+CE+BE>AC+CE+BC,∴AD+BD>AC+BC,因此,邮递员由A村到B村送信,经过C村路程近些,所以,他总是走经过C村的道路,不走经过D村的道路.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解题的关键.20.如图,AB=AD,BC=DC,AC与BD相交于点E,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母.不写推理过程,只要求写出四个你认为正确的结论即可)考点:全等三角形的判定与性质.专题:开放型.分析:由AB=AD,BC=DC知,AC是BD的中垂线,∴DE⊥AC,可由SSS证得△ABC≌△ADC及AC平分∠BAD等.解答:解:由已知得,AC垂直平分BD,即直线AC为四边形ABCD的对称轴,由对称性可知:DE=BE,DE⊥AC于△E,ABC≌ADC,△AC平分∠BAD等.点评:本题考查了三角形全等的判定和性质.做题时要从已知开始思考,结合全等的判定方法进行取舍.21.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD 沿着角的两边放正,沿AC画一条射线AE,AE就是角平分线,请说明它的道理.考点:全等三角形的应用.专题:证明题.分析:AC为公共边,其中AB=AD,BC=DC,利用SSS判断两个三角形全等,根据全等三角形的性质解题.解答:证明:△ABC与△ADC中,∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.即AE平分∠BAD.不论∠DAB是大还是小,始终有AE平分∠BAD.点评:本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.22.如图,A、B两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,则DE的长就是A、B之间的距离,请说明理由.考点:全等三角形的应用.分析:可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,证明出这两个三角形全等,从而可得到结论.解答:解:∵∠ACB=∠DCE,BC=CD,∠B=∠EDC=90°,∴△ACB≌△ECD,∴AB=DE.点评:本题考查全等三角形的应用,关键是证明三角形全等,从而得到线段相等,得到结论.23.如图,公园有一条“Z”字形道路ABCD,其中AB∥CD,在E、M、F处各有一个小石凳,且BE=CF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.考点:全等三角形的应用.分析:首先连接EM、△MF,再证明BEM≌△CFM可得∠BME=∠FMC,再根据∠BME+∠EMC=180°,可得∠FMC+∠EMC=180,进而得到三个小石凳在一条直线上.解答:解:连接EM、MF,∵AB∥CD,∴∠B=∠C,又∵M为BC中点,∴BM=MC.,∴在△BEM和△CFM中∴△BEM≌△CFM(SAS),∴∠BME=∠FMC,∵∠BME+∠EMC=180°,∴∠FMC+∠EMC=180°,∴三个小石凳在一条直线上.点评:此题主要考查了全等三角形的应用,证明△BEM≌△CFM,证明出∠FMC+∠EMC=180°是解决问题的关键.△24.如图,ABC中,AB=BC=CA,∠A=∠ABC=∠ACB,在△ABC的顶点A,C处各有一只小蚂蚁,它们同时出发,分别以相同速度由A向B和由C向A爬行,经过t(s)后,它们分别爬行到了D,E处,设DC与BE的交点为F.(△1)证明ACD≌△CBE;(2)小蚂蚁在爬行过程中,DC与BE所成的∠BFC的大小有无变化?请说明理由.考点:全等三角形的应用.分析:(1)根据小蚂蚁的速度相同求出AD=CE,再利用“边角边”证明△ACD和△CBE 全等即可;(2)根据全等三角形对应角相等可得∠EBC=∠ACD,然后表示出∠BFC,再根据等边三角形的性质求出∠ACB,从而得到∠BFC.解答:(1)证明:∵小蚂蚁同时从A、C出发,速度相同,∴t(s)后两只小蚂蚁爬行的路程AD=CE,∵在△ACD和△CBE中,,∴△ACD≌△CBE(SAS);(△2)解:∵ACD≌△CBE,∴∠EBC=∠ACD,∵∠BFC=180°﹣∠EBC﹣∠BCD,∴∠BFC=180°﹣∠ACD﹣∠BCD,=180°﹣∠ACB,∵∠A=∠ABC=∠ACB,∴∠ACB=60°,∴∠BFC=180°﹣60°=120°,∴∠BFC无变化.点评:本题考查了全等三角形的应用,主要利用了全等三角形对应角相等的性质,等边三角形的性质,根据小蚂蚁的速度相同求出AD=CE是证明三角形全等的关键.25.(2006•绍兴)我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?.△1B △1(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略) 对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知: ABC 、 A △1B C 均为锐角三角形,AB=A B ,BC=B C ,∠C=∠C .1 1 1 1 1 l l 求证:ABC≌ A △1B C . 1 1 (请你将下列证明过程补充完整.) 证明:分别过点 B ,B 作 BD⊥CA 于 D ,1 B D ⊥C A 于 D . 1 1 1 1 1则∠BDC=∠B D C =90°,1 1 1 ∵BC=B C ,∠C=∠C ,1 1 1 ∴ BCD≌ B △1C D ,1 1 ∴BD=B D . 1 1 (2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.考点: 全等三角形的判定.专题: 压轴题;阅读型.分析: 本题考查的是全等三角形的判定,首先易证得 ADB≌ A △1B C 然后易证出 1 1 ABC≌ A C .1 1解答: 证明:(1)证明:分别过点 B ,B 作 BD⊥CA 于 D ,1 B D ⊥C A 于 D . 1 1 1 1 1 则∠BDC=∠B D C =90°,1 1 1∵BC=B C ,∠C=∠C ,1 1 1 ∴ BCD≌ B △1C D ,1 1 ∴BD=B D . 1 1 补充:∵AB=A B ,∠ADB=∠A D B =90°.1 1 1 1 1 ∴ ADB≌ A △1D B (HL ),1 1 ∴∠A=∠A , 1又∵∠C=∠C ,BC=B C ,1 1 1 在△ABC 与 A △1B C 中,1 1∵,∴ ABC≌ A △1B C (AAS );1 1(△2)解:若两三角形( ABC 、 AB C )均为锐角三角形或均为直角三角形或均 1 1为钝角三角形,则它们全等(AB=A B,BC=B C,∠C=∠C△1,则ABC≌A△1B C).111111点评:命题立意:考查三角形全等的判定,阅读理解能力及分析归纳能力.做题时要认真读题,明白题意,然后按要求答题.。
第三章证明(三)单元测试
班级:_______ 姓名:__________ 得分:________
一、填空题:
1.以长为8,宽为6的矩形各边中点为顶点的四边形的周长为_________.
2.已知正方形的一条对角线长为4 cm,则它的面积是_________ cm2.
3.菱形的两条对角线长为6和8,则菱形的边长为_________,面积为_________.
4.□ABCD中,若∠A∶∠B=2∶3,则∠C=_________,∠D=_________.
5.矩形ABCD中,AB=8,BC=6,E、F是AC的三等分点,则△BEF的面积是_________.
6.菱形ABCD中,AB=4,高DE垂直平分边AB,则BD=_________,AC=_________.
7.□ABCD中,周长为20 cm,AB=4 cm,那么CD=________ cm,AD=________ cm.
8.菱形两邻角的度数之比为1∶3,高为7,则边长=______,面积=_______.
9.如图1,等边△ABC中,D、E、F分别是AB、BC、CA边上的中点,那么图中有_________个等边三角形,有_________个菱形.
图1 图2 图3
10.矩形ABCD的周长是56 cm,它的两条对角线相交于O,△AOB的周长比△BOC的周长短4 cm,则AB=_________,BC=_________.
11.如图2,E、F是□ABCD对角线AC上两点,且AE=CF,则四边形DEBF是_________.
12.如图3,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于点O,则图中全等三角形共有_________对.
二、选择题
13.在□ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于G、H,请判断下列
结论:(1)BE=DF;(2)AG=GH=HC; (3)EG=BG;(4)S
△ABE =3S
△AGE
,其中正确的结论有()
A.1个
B.2个
C.3个
D.4个
14.如图4,□ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为()
A.8.3
B.9.6
C.12.6
D.13.6
15.给出下列命题:①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形;③有一个角是直角的平行四边形是矩形;④矩形、线段都是轴对称图形.其中错误命题的个数是()
A.1
B.2
C.3
D.4
16.同学们玩过万花筒,它是由三块等宽等长的玻璃片围成的,如图5,是看到的万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中菱形AEFG可以看成是把菱形ABCD以A为中心_________得到的.()
A.顺时针旋转60°;
B.顺时针旋转120°;
C.逆时针旋转60°;
D.逆时针旋转120°
图4 图5 图6
17.某人设计装饰地面的图案,拟以长为22 cm,16 cm,18 cm的三条线段中的两条为对角线,另一条为边,画出不同形状的平行四边形,他可以画出形状不同的平行四边形个数为()
A.1
B.2
C.3
D.4
18.若等腰梯形两底的差等于一腰的长,则最小的内角是()
A.30°
B.45°
C.60°
D.75°
19.如图6,在矩形ABCD中,AB=3,AD=4,P是AD上的动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为()
A. B. C.2 D.
20.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一
个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()
A.1处
B.2处
C.3处
D.4处
21.在课外活动课上,某同学做了一个对角线互相垂直的等腰梯形形状的风筝,其面积为450 cm2,则两条对角线共用的竹条至少需()
A.30cm
B.30 cm
C.60 cm
D.60 cm
22.给出五种图形:①矩形②菱形③等腰三角形(腰与底边不相等) ④等边三角形
⑤平行四边形(不含矩形、菱形),其中可用两块能完全重合的含有30°角的三角板拼成的所有图形是()
A.①②③;
B.②④⑤;
C.①③④⑤;
D.①②③④⑤
三、解答题
23.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落在点E处,求证:EF=DF.
24.已知:如图,□ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.
求证:四边形AFCE是菱形.
25.已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足.
求证:AP=EF.
26.如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.
(1)求证:△ACD≌△CBF.
(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.
27.已知:□ABCD的周长为60 cm,对角线AC、BD相交于点O,△AOB的周长比△DOA的周长长5 cm,求这个平行四边形各边的长.
28.已知等腰梯形ABCD,AD∥BC,E为梯形内一点,且EA=ED,求证:EB=EC.
29.如图所示,以△ABC的三边为边在BC的同侧分别作三个等边三角形△ABD、△BCE、△ACF,猜想:四边形ADEF是什么四边形,试证明你的结论.
答案:
一、1.20 2.8 3.5 24 4.72° 108° 5.8 6.4 4 7.4 6
8.14 98 9.5 3 10.12 cm 16 cm 11.平行四边形12.3
二、13.C 14.B 15.B 16.D 17.B 18.C 19.D 20.D 21.C 22.C
三、23.略 24.略 25.略
26.(1)略(2)D为BC的中点时
27.AB=CD= cm AD=BC= cm
28.略 29.四边形ADEF是平行四边形。