桥梁三维模型图
- 格式:doc
- 大小:9.12 MB
- 文档页数:86
目录一、工程背景 (1)二、工程模型 (1)三、ANSYS分析 (2)(一)前处理 (2)(1)定义单元类型 (2)(2)定义材料属性 (3)(3)建立工程简化模型 (3)(4)有限元网格划分 (5)(二)模态分析 (5)(1)选择求解类型 (5)(2)建立边界条件 (6)(3)输出设置 (6)(4)求解 (6)(5)读取结果 (6)(6)结果分析 (8)(三)结构试验载荷分析 (8)(1)第二跨跨中模拟车载分析 (8)(2)边跨跨中模拟车载分析 (9)四、结果分析与强度校核 (10)(一)结果分析 (10)(二)简单强度校核 (10)参考文献 (11)连续刚构桥分析一、工程背景:随着我国经济的发展,对交通运输的要求也不断提高;高速路,高铁线等遍布全国,这就免不了要架桥修路。
截至2014年年底,我国公路桥梁总数已达75.71万座,4257.89万延米i。
进百万的桥梁屹立在我国交通线上,其安全便是头等大事。
随着交通运输线的再扩大,连续刚构桥跨越能力大,施工难度小,行车舒顺,养护简便,造价较低等优点将被广泛应用。
二、工程模型:现有某预应力混凝土连续刚构桥,桥梁全长为184m,宽13m,其中车行道宽11.5m,两侧防撞栏杆各0.75m主梁采用C50混凝土。
桥梁设计载荷为公路—— 级。
图2-1桥梁侧立面图上部结构为48m+88m+48m三跨预应力混凝土边界面连续箱梁。
箱梁为单箱双室箱形截面,箱梁根部高5m,中跨梁高2.2m,边跨梁端高2.2m。
箱梁顶板宽12.7m,底板宽8.7m,翼缘板悬臂长2.0m,箱梁高度从距墩中心3.0m处到跨中合龙段处按二次抛物线变化。
0号至3号块长3m(4x3m),4、5号块长3.5m(2x3.5m),6号块到合龙段长4m(6x4m),合龙段长2m。
边跨端部设1.5m横隔板,墩顶0号块设两道厚1.2m横隔板。
0号块范围内箱梁底板厚度为0.90m,1号块范围内底板厚度由0.90m线性变化到0.557m,2号块到合龙段范围内底板厚度由0.557m 线性变化到0.3m。
Integrated Solution System for Bridge and Civil Strucutres目录一、剪力-柔性梁格理论1. 纵梁抗弯刚度.......................................................................32.横梁抗弯刚度....................................................................... 43.纵梁、横梁抗弯刚度........................................................... 44.虚拟边构件及横向构件刚度.. (5)三、采用梁格建模助手生成梁格模型二、单梁、梁格模型多支座反力与实体模型结果比较1. 前言.......................................................................................72. 结构概况...............................................................................73. 梁格法建模助手建模过程及功能亮点...............................114. 修改梁格..............................................................................225. 在自重、偏载作用下与FEA 实体模型结果比较. (24)四、结合规范进行PSC 设计1.纵梁抗弯刚度【强制移轴(上部结构中性轴)法】一、剪力-柔性梁格理论a.各纵梁中性轴与上部结构中性轴基本重合b.强制移轴,使各纵梁中性轴与上部结构中性轴基本重合,等效纵梁抗弯刚度2.横向梁格抗弯刚度3.纵梁、横梁抗扭刚度4.虚拟边构件及横向构件刚度此处d’为顶板厚度。
目录概要1桥梁基本数据/ 2荷载/ 2设定建模环境/ 3定义材料和截面的特性值/ 4成桥阶段分析6结构建模/ 7生成二维模型/ 8建立索塔模型/ 10建立三维模型/ 13建立主梁横向系梁/ 15建立索塔横梁/ 17生成索塔上的主梁支座/ 19生成桥墩上的主梁支座/ 23输入边界条件/ 25计算拉索初拉力/ 28输入荷载条件/ 29输入荷载/ 30运行结构分析/ 33建立荷载组合/ 34计算未知荷载系数/ 35查看成桥阶段分析结果39查看变形形状/ 39施工阶段分析40施工阶段分类/ 41逆施工阶段分类/ 42逆施工阶段分析/ 42输入拉索初拉力/ 45定义施工阶段/ 49定义结构群/ 50指定边界群/ 53指定荷载群/ 56建立施工阶段/ 59输入施工阶段分析数据/ 61运行结构分析/ 61查看施工阶段分析结果62查看变形形状/ 62查看弯矩/ 63查看轴力/ 64施工阶段分析变化图形/ 65概要斜拉桥将拉索和主梁有机地结合在一起,不仅桥型美观,而且根据所选的索塔型式以及拉索的布置能形成多种多样的结构形态,易与周边环境融合,是符合环境设计理念的桥梁形式之一。
斜拉桥对设计和施工技术的要求非常严格,斜拉桥的结构分析与设计与其它桥梁形式有很大不同,设计人员需具有较深厚的理论基础和较丰富的设计经验。
在斜拉桥设计中,不仅要对恒荷载和活荷载做静力分析,而且必须做特征值分析、移动荷载分析、地震分析和风荷载分析。
为了决定各施工阶段中设置拉索时的张力,首先要决定在成桥阶段自重作用下的初始平衡状态,然后按顺序做施工阶段分析。
在本例题中将介绍建立斜拉桥分析模型的方法、计算拉索初拉力的方法、施工阶段分析的步骤以及查看分析结果的方法。
本例题中的桥梁模型如图1所示为三跨连续斜拉桥,中间跨径为220m、边跨跨径为100m。
图1 斜拉桥分析模型桥梁基本数据为了说明斜拉桥分析的步骤,本例题桥梁采用了比较简单的分析模型,可能与实际桥梁设计内容有所不同。
1.纵梁抗弯刚度【强制移轴(上部结构中性轴)法】一、剪力-柔性梁格理论a.各纵梁中性轴与上部结构中性轴基本重合b.强制移轴,使各纵梁中性轴与上部结构中性轴基本重合,等效纵梁抗弯刚度MIDAS-桥梁梁格2.横向梁格抗弯刚度3.纵梁、横梁抗扭刚度4.虚拟边构件及横向构件刚度此处d’为顶板厚度。
此处d为顶板厚度。
二、单梁、梁格模型多支座反力与实体模型结果比较比较结果:与实体模型结果相比较,可得出在自重荷载作用下,单梁模型计算的多支座反力结果失真,而梁格模型结果较合理。
多支座单梁模型50010001500梁格模型(kN)梁格模型(kN)050010001500实体模型(kN)实体模型(kN)050010001500支座1支座2支座3支座4支座5支座6单梁模型(kN)单梁模型(kN)多支座梁格模型多支座实体模型1.前言采用梁格建模助手生成梁格模型宽梁桥、斜交桥、曲线桥的单梁模型无法正确计算横向支座的反力、荷载的横向分布、斜交桥钝角处的反力以及内力集中效应,利用梁格法模型可以非常方便的解决以上问题。
梁格法建模的关键在于采用合理的梁格划分方式和正确的等效梁格刚度。
用等效梁格代替桥梁上部结构,将分散在板、梁每一区段内的弯曲刚度和抗扭刚度集中于最邻近的等效梁格内,实际结构的纵向刚度集中于纵向梁格构件内,横向刚度集中于横向梁格内。
理想的刚度等效原则是:当原型实际结构和对应的等效梁格承受相同的荷载时,两者的挠曲将是恒等的,并且每一梁格内的弯矩、剪力和扭矩等于该梁格所代表的实际结构部分的内力。
由于实际结构和梁格体系在结构特性上的差异,这种等效只是近似的,但对一般的设计,梁格法的计算精度是足够的。
梁格法作为桥梁空间分析的一种简化方法,虽然较比板壳、实体有限元方法建模简单、求解方便,但是前期的截面特性计算量大,且对于新手来讲容易出错,非常耗时。
midas Civil的梁格法建模助手功能可以帮助用户轻松实现上述功能。
梁格法建模助手,对于单箱多室箱梁桥、斜交桥、曲线梁桥可自动生成梁格模型。
midas cim三维桥梁结构分析
现代桥梁设计需要通过3D高精度模型来进行分析和计算,以期确保结构的特性和行为。
MIDAS Civil是一款强大的桥梁结构分析软件,可以创建精细的三维结构模型,提供精细的桥梁分析和设计。
MIDAS Civil可以模拟各种荷载条件下桥梁结构的变形、承载能力和安全性。
它采用动力学分析方法来模拟物理动力作用在该结构上时出现的变形和损坏。
它还可以模拟桥梁结构对结构内部损坏的内部动力分析,如裂纹扩展、拉伸和切割。
MIDAS Civil还可以为桥梁结构的模型分析、试验分析和数字仿真进行高精度的分析和计算,从而保证桥梁结构的各种特性和行为。
MIDAS Civil的众多功能包括:基础结构参数分析、基础地形分析、荷载对等变形分析、桥梁结构振动分析。
结构模型分析与数值模拟等。
此外,MIDAS Civil还可以根据荷载的数量和地理位置来为振动和抗裂纹等其它加载设置空间分析区域,并加载总参数分析。
同时,MIDAS Civil还能够在具体的桥梁结构的基础上,进行桥梁参数分析,以精确计算、优化和校核它们的结构参数。
MIDAS Civil桥梁结构分析一方面提供了强大的3D桥梁结构模型和分析功能,可以进行准确的桥梁结构分析,提高设计和施工的安全性与可靠性。
另一方面,它还能够计算桥梁结构的承载能力、稳定性和耐久性,以确保它们能够在恶劣的环境条件下稳健运行。
因此,MIDAS Civil桥梁结构分析是目前最为可靠的桥梁结构分析的高精度软件。
它能够以一种最高的精度来模拟并测试复杂的桥梁结构,并为建造安全和可靠的桥梁结构提供了有力的保证。
简支T梁施工过程之一——主梁的浇筑
T梁内部设置普通钢筋,形成钢筋骨架,完成部分构造功能。
梁内部设置普通钢筋,形成钢筋骨架,完成部分构造功能。
在T梁两端,为适应内部预应力束的抬高,要将马蹄抬高。
在T梁两端,为适应内部预应力束的抬高,要将马蹄抬高。
拉端设置锚头构件预留张拉位置。
锚头可设置在梁端、梁顶等位置。
拉端设置锚头构件预留张拉位置。
锚头可设置在梁端、梁顶等位置。
拉端设置锚头构件预留张拉位置。
锚头可设置在梁端、梁顶等位置。
多数T梁在梁内部设置通长的预应力钢束。
由于梁的两端剪力较大,所以要将预应力钢束在两端抬起。
这和钢筋混凝土梁很相似。
由于梁的两端剪力较大,所以要将预应力钢束在两端抬起。
这和钢筋混凝土梁很相似。
预应力钢束要套波纹管,在锚头处要加锚垫板,以克服由于局部受力所引起的应力集中。
预应力钢束要套波纹管,在锚头处要加锚垫板,以克服由于局部受力所引起的应力集中。
T梁施工过程之二——穿束
简支T梁施工过程之二——穿束
预应力筋穿入孔道的方法有先穿束法和后穿束法两种。
先穿束法即在浇注混凝土之前穿束。
这种穿束法较省力,但束端保护不当易生锈。
后穿束法即在混凝土浇筑之后穿束。
穿束可在混凝土养护期内进行,不占工期,便于用通孔器或高压水通孔,穿束后及时张拉,易于防锈,但穿束较为费力。
后穿束法可用人工穿束、卷扬机穿束和穿束机穿束。
穿束前应全面检查孔道是否完整无缺
T梁施工过程之二——穿束
T梁施工过程之二——穿束
T梁施工过程之二——穿束
T梁施工过程之二——穿束
T梁施工过程之二——穿束
T梁施工过程之二——穿束
T梁施工过程之二——穿束
T梁施工过程之二——穿束
T梁施工过程之三——张拉
预应力T梁一般采用后张法(先浇筑混凝土,后张拉预应力钢筋)。
后张法是利用构件自身作为加力台座进行预应力筋的张拉,并用锚夹具将张拉完毕的预应力筋锚固在构件的两端,再在预应力筋的管道内压入水泥浆,使预应力筋与混凝土粘结成整体。
后张法主要是靠锚夹具来传递和保持预加应力的。
预应力筋张拉时的混凝土强度直接影响构件的安全度、锚固区的局部承压、徐变引起的损失等,是施加预应力成败的关键。
施加预应力的方法很多,除常用的一端张拉、两端张拉、对称张拉、超张拉等以外,还有分批张拉、分段张拉、分阶段张拉、补偿张拉等。
T梁施工过程之三——张拉
T梁施工过程之三——张拉
T梁施工过程之三——张拉
T梁施工过程之三——张拉
预应力筋张拉时的混凝土强度直接影响构件的安全度、锚固区的局部承压、徐变引起的损失等,是施加预应力成败的关键。
施加预应力的方法很多,除常用的一端张拉、两端张拉、对称张拉、超张拉等以外,还有分批张拉、分段张拉、分阶段张拉、补偿张拉等。
T梁施工过程之三——张拉
T梁施工过程之四——截断
由于预应力筋要设置工作区而预留长度(70cm),在预应力筋张拉后钢筋又被拉长,从而在端部产生多余的钢筋长度为。
便于封锚,必须将这部分截断。
以下为截断后的T梁:
T梁施工过程之四——截断
T梁施工过程之四——截断
T梁施工过程之四——截断
T梁施工过程之五——封堵
钢筋张拉完成后即可进行孔道灌浆。
孔道灌浆用的水泥标号不应低于425号普通硅酸盐水泥。
灌浆后,应用人工再从泌水管内徐徐补入水泥浆,并用细铁丝不断插捣,直至密实。
对于埋置在梁体内的锚具,在预加应力完毕后,应先在其周围设置钢筋网,然后浇筑混凝土。
混凝土的标号不宜低于构件本身标号的80%,亦不宜低于构件本身标号的80%,亦不低于30号。
T梁施工过程之五——封堵
T梁施工过程之五——封堵
T梁施工过程之五——封堵
T梁施工过程之五——封堵
T梁施工过程之五——封堵
T梁施工过程之五——封堵
T梁施工过程之五——封堵
梁施工过程之六——成型
以下即为成桥后的预应力简支T梁的外部和内部构造图。
从图中可以看出,它的特点是外形简单,制造方便,横向藉横隔梁联结,整体性也较好。
从受力来看,对钢筋混凝土结构而言,T形截面顶板宽翼缘受压,下部开裂后不参与工作,只要能有布置钢筋的足够面积即可,有利于承受正弯矩。
在承受负弯矩时,顶上翼缘处于受拉区,而肋部处于受压区,要提高抗负弯矩的能力,必须加大底部成马蹄形。
显然,T形截面在钢筋混凝土结构中,T形截面重心位置偏上,核心距虽较大,但因上核心离顶面距离远远小于下核心离底面的距离。
它标志承受正弯矩能力的力臂距远远大于承受负弯矩的力臂矩。
所以,它也是有利于承受正弯矩。
总之,无论是钢筋混凝土或预应力混凝土结构,T形截面有利于承受单向弯矩(正弯矩),不利于承受双向弯矩(正、负弯矩)。
因而在简支梁式桥中,跨径从13~50m,大多数的横截面型式布置成多T梁截面型式。
T梁施工过程之六——成型
T梁施工过程之六——成型
T梁施工过程之六——成型
T梁施工过程之六——成型
T梁施工过程之六——成型
T梁施工过程之六——成型
T梁施工过程之六——成型
T梁施工过程之六——成型
T梁施工过程之六——成型
T梁施工过程之六——成型
T梁施工过程之六——成型
波纹管详图
预应力筋的预留管道可采用金属波纹管预埋的方法。
波纹管的接长可采用大一号同型波纹管作为接头管。
接头管的长度为200~300cm。
接头管的两端用密封胶带或塑料热缩管封裹,以防接缝处漏浆。
波纹管在安装就位的过程中应尽量避免反复弯曲,以防管壁开裂。
同时,还应防止电焊火花烧伤管壁。
发现管壁破损,应及时用粘胶带修补。
波纹管详图
波纹管详图
波纹管详图
波纹管详图
波纹管详图
桥墩浇筑
桥墩浇筑
支座安装
板式橡胶支座
支座位置
支座位置
中部T梁的吊装
中部T梁的吊装
中部T梁的吊装
中部T梁的吊装
边梁吊装
边梁吊装
边梁横移就位
边梁横移就位
边梁吊装完成
边梁吊装完成
边梁吊装完成
边梁吊装完成
桥面板现浇
桥面板现浇
防撞护栏浇筑
防撞护栏浇筑
桥面铺装
桥面铺装
栏杆安装
栏杆安装
沥青路面
沥青路面
细部观察
细部观察
细部观察
简支空心板梁
简支空心板梁——边梁
简支空心板梁——边梁
简支空心板梁——边梁配筋
简支空心板梁——边梁配筋
简支空心板梁——边梁配筋
简支空心板梁——边梁配筋
简支空心板梁——预应力筋布置
简支空心板梁——箍筋
简支空心板梁——盖梁配筋
简支空心板梁——桥墩配筋
简支空心板梁——桥墩
简支空心板梁——桥墩与盖梁的连接
简支空心板梁——桥墩与盖梁的连接
简支空心板梁——桥台
简支空心板梁施工过程——原始地形
简支空心板梁施工过程——设置桥台
简支空心板梁施工过程——设置桥墩
简支空心板梁施工过程——浇注盖梁
简支空心板梁施工过程——边梁架设
简支空心板梁施工过程——铺设中部梁板
简支空心板梁施工过程——桥面铺装
简支空心板梁施工过程——两岸施工
简支空心板梁施工过程——中部合龙。