t检验与u检验相关资料
- 格式:pptx
- 大小:1.04 MB
- 文档页数:73
统计中经常会用到各类查验,如何知道什么时候用什么查验呢,按照结合自己的任务来说一说:之五兆芳芳创作t查验有单样本t查验,配对t查验和两样本t查验.单样本t查验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来不雅察此组样本与总体的差别性.配对t查验:是采取配对设计办法不雅察以下几种情形,1,两个同质受试对象辨别接受两种不合的处理;2,同一受试对象接受两种不合的处理;3,同一受试对象处理前后.u查验:t查验和就是统计量为t,u的假定查验,两者均是罕有的假定查验办法.当样本含量n较大时,样本均数合适正态散布,故可用u查验进行阐发.当样本含量n小时,若不雅察值x合适正态散布,则用t查验(因此时样本均数合适t散布),当x为未知散布时应采取秩和查验.F查验又叫方差齐性查验.在两样本t查验中要用到F查验.从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性.若两总体方差相等,则直接用t查验,若不等,可采取t'查验或变量变换或秩和查验等办法.其中要判断两总体方差是否相等,就可以用F查验.复杂的说就是查验两个样本的方差是否有显著性差别这是选择何种T查验(等方差双样本查验,异方差双样本查验)的前提条件.在t查验中,如果是比较大于小于之类的就用单侧查验,等于之类的问题就用双侧查验.卡方查验是对两个或两个以上率(组成比)进行比较的统计办法,在临床和医学实验中应用十分普遍,特别是临床科研中许多资料是记数资料,就需要用到卡方查验.方差阐发用方差阐发比较多个样本均数,可有效地控制第一类错误.方差阐发(analysis of variance,ANOVA)由英国统计学家R.A.Fisher首先提出,以F命名其统计量,故方差阐发又称F查验.其目的是推断两组或多组资料的总体均数是否相同,查验两个或多个样本均数的差别是否有统计学意义.我们要学习的主要内容包含单因素方差阐发即完全随机设计或成组设计的方差阐发(oneway ANOVA):用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等.完全随机设计(completely random design)不考虑个别差别的影响,仅涉及一个处理因素,但可以有两个或多个水平,所以亦称单因素实验设计.在实验研究中按随机化原则将受试对象随机分派到一个处理因素的多个水平中去,然后不雅察各组的试验效应;在不雅察研究(调查)中按某个研究因素的不合水平分组,比较该因素的效应.两因素方差阐发即配伍组设计的方差阐发(twoway ANOVA):用途:用于随机区组设计的多个样本均数比较,其统计推断是推断各样本所代表的各总体均数是否相等.随机区组设计考虑了个别差别的影响,可阐发处理因素和个别差别对实验效应的影响,所以又称两因素实验设计,比完全随机设计的查验效率高.该设计是将受试对象先按配比条件配成配伍组(如动物实验时,可按同窝别、同性别、体重相近进行配伍),每个配伍组有三个或三个以上受试对象,再按随机化原则辨别将各配伍组中的受试对象分派到各个处理组.值得注意的是,同一受试对象不合时间(或部位)重复多次丈量所得到的资料称为重复丈量数据(repeated measurement data),对该类资料不克不及应用随机区组设计的两因素方差阐发进行处理,需用重复丈量数据的方差阐发.方差阐发的条件之一为方差齐,即各总体方差相等.因此在方差阐发之前,应首先查验各样本的方差是否具有齐性.经常使用方差齐性查验(test for homogeneity of variance)推断各总体方差是否相等.本节将介绍多个样本的方差齐性查验,本法由Bartlett于1937年提出,称Bartlett法.该查验办法所计较的统计量从命散布.经过方差阐发若拒绝了查验假定,只能说明多个样本总体均数不相等或不全相等.若要得到各组均数间更详细的信息,应在方差阐发的根本上进行多个样本均数的两两比较.。
常⽤的假设检验⽅法(U检验、T检验、卡⽅检验、F检验)⼀、假设检验假设检验是根据⼀定的假设条件,由样本推断总体的⼀种⽅法。
假设检验的基本思想是⼩概率反证法思想,⼩概率思想认为⼩概率事件在⼀次试验中基本上不可能发⽣,在这个⽅法下,我们⾸先对总体作出⼀个假设,这个假设⼤概率会成⽴,如果在⼀次试验中,试验结果和原假设相背离,也就是⼩概率事件竟然发⽣了,那我们就有理由怀疑原假设的真实性,从⽽拒绝这⼀假设。
⼆、假设检验的四种⽅法1、有关平均值参数u的假设检验根据是否已知⽅差,分为两类检验:U检验和T检验。
如果已知⽅差,则使⽤U检验,如果⽅差未知则采取T检验。
2、有关参数⽅差σ2的假设检验F检验是对两个正态分布的⽅差齐性检验,简单来说,就是检验两个分布的⽅差是否相等3、检验两个或多个变量之间是否关联卡⽅检验属于⾮参数检验,主要是⽐较两个及两个以上样本率(构成⽐)以及两个分类变量的关联性分析。
根本思想在于⽐较理论频数和实际频数的吻合程度或者拟合优度问题。
三、U检验(Z检验)U检验⼜称Z检验。
Z检验是⼀般⽤于⼤样本(即⼤于30)平均值差异性检验的⽅法(总体的⽅差已知)。
它是⽤标准的理论来推断差异发⽣的概率,从⽽⽐较两个的差异是否显著。
Z检验步骤:第⼀步:建⽴虚⽆假设 H0:µ1 = µ2 ,即先假定两个平均数之间没有显著差异,第⼆步:计算Z值,对于不同类型的问题选⽤不同的计算⽅法,1、如果检验⼀个样本平均数(X)与⼀个已知的总体平均数(µ0)的差异是否显著。
其Z值计算公式为:其中:X是检验样本的均值;µ0是已知总体的平均数;S是总体的标准差;n是样本容量。
2、如果检验来⾃两个的两组样本平均数的差异性,从⽽判断它们各⾃代表的总体的差异是否显著。
其Z值计算公式为:第三步:⽐较计算所得Z值与理论Z值,推断发⽣的概率,依据Z值与差异显著性关系表作出判断。
如下表所⽰:第四步:根据是以上分析,结合具体情况,作出结论。
u检验和t检验u检验和t检验u检验和t检验可⽤于样本均数与总体均数的⽐较以及两样本均数的⽐较。
理论上要求样本来⾃正态分布总体。
但在实⽤时,只要样本例数n 较⼤,或n⼩但总体标准差σ已知时,就可应⽤u检验;n⼩且总体标准差σ未知时,可应⽤t检验,但要求样本来⾃正态分布总体。
两样本均数⽐较时还要求两总体⽅差相等。
⼀、样本均数与总体均数⽐较⽐较的⽬的是推断样本所代表的未知总体均数µ与已知总体均数µ0有⽆差别。
通常把理论值、标准值或经⼤量调查所得的稳定值作为µ0.根据样本例数n⼤⼩和总体标准差σ是否已知选⽤u检验或t 检验。
(⼀)u检验⽤于σ已知或σ未知但n⾜够⼤[⽤样本标准差s作为σ的估计值,代⼊式(19.6)]时。
以算得的统计量u,按表19-3所⽰关系作判断。
表19-3 u值、P值与统计结论α |t|值 P值 统计结论 0.05双侧单侧 <1.96<1.645 >0.05 不拒绝H0,差别⽆统计学意义 0.05双侧单侧 ≥1.96≥1.645 ≤0.05 拒绝H0,接受H1,差别有统计学意义 0.01双侧单侧 ≥2.58≥2.33 ≤0.01 拒绝H0,接受H1,差别有⾼度统计学意义 例19.3根据⼤量调查,已知健康成年男⼦脉搏均数为72次/分,标准差为6.0次/分。
某医⽣在⼭区随机抽查25名健康成年男⼦,求得其脉搏均数为74.2次/分,能否据此认为⼭区成年男⼦的脉搏⾼于⼀般?据题意,可把⼤量调查所得的均数72次/分与标准差6.0次/分看作为总体均数µ0和总体标准差σ,样本均数x为74.2次/分,样本例数n为25. H0: µ=µ0H1: µ>µ0α=0.05(单侧检验)算得的统计量u=1.833>1.645,P<0.05,按α=0.05检验⽔准拒绝H0,可认为该⼭区健康成年男⼦的脉搏⾼于⼀般。
(⼆)t检验⽤于σ未知且n较⼩时。
秩和检验一、学习背景和方法简介1. 问题的提出:在实践中我们常常遇到以下一些资料,如需比较患者和正常人的血铁蛋白、血铅值、不同药物的溶解时间、实验鼠发癌后的生存日数、护理效果评分等,这类资料有如下特点:(1)资料的总体分布类型未知;或(2)资料分布类型已知,但不符合正态分布;或(3)某些变量可能无法精确测量。
对于此类资料,除了进行变量变换或t’检验外,可采用非参数统计方法。
2. 参数统计与非参数统计的区别:参数统计:即总体分布类型已知,用样本指标对总体参数进行推断或作假设检验的统计分析方法。
非参数统计:即不考虑总体分布类型是否已知,不比较总体参数,只比较总体分布的位置是否相同的统计方法。
下面我们将介绍非参数统计中一种常用的检验方法--秩和检验,其中“秩”又称等级、即按数据大小排定的次序号。
上述次序号的和称“秩和”,秩和检验就是用秩和作为统计量进行假设检验的方法。
二、不同设计和资料类型的秩和检验1. 配对比较的资料:对配对比较的资料应采用符合秩和检验(Sighed rank test),其基本思想是:若检验假设成立,则差值的总体分布应是对称的,故正负秩和相差不应悬殊。
检验的基本步骤为:(1)建立假设;H0:差值的总体中位数为0;H1:差值的总体中位数不为0;检验水准为0.05。
(2)算出各对值的代数差;(3)根据差值的绝对值大小编秩;(4)将秩次冠以正负号,计算正、负秩和;(5)用不为“0”的对子数n及T(任取T+或T-)查检验界值表得到P值作出判断。
应注意的是当n>25时,可用正态近似法计算u值进行u检验,当相同秩次较多时u值需进行校正。
2. 两样本成组比较:两样本成组资料的比较应用Wilcoxon秩和检验,其基本思想是:若检验假设成立,则两组的秩和不应相差太大。
其基本步骤是:(1)建立假设;H0:比较两组的总体分布相同;H1:比较两组的总体分布位置不同;检验水准为0.05。
(2)两组混合编秩;(3)求样本数最小组的秩和作为检验统计量T;(4)以样本含量较小组的个体数n1、两组样本含量之差n2-n1及T值查检验界值表;(5)根据P值作出统计结论。
均值的检验方法均值的检验方法主要有两种:U检验和T检验。
以下是这两种方法的具体介绍:U检验:U检验是用样本的均值和标准差来检验总体均值的一种方法。
当样本量较大时(一般要求n≥30),样本均值服从正态分布,这时可以使用U检验。
U检验的统计量计算公式为U=(X1-μ0)/(S/√n),其中X1为样本均值,μ0为总体均值,S为样本标准差,n为样本量。
在给定的显著性水平下,通过查U分布表可以得到临界值,然后将计算得到的U统计量与临界值进行比较,从而判断总体均值是否显著不同于给定的μ0。
T检验:T检验是另一种常用的均值检验方法。
当样本量较小(一般要求n<30)或者总体标准差σ未知时,可以使用T检验。
T检验的统计量计算公式为t=(X1-μ0)/(S/√n),其中各符号的含义与U检验相同。
不同的是,T检验的统计量服从t分布,而不是正态分布。
因此,在给定的显著性水平下,需要查t分布表得到临界值,然后将计算得到的t统计量与临界值进行比较,从而判断总体均值是否显著不同于给定的μ0。
另外,关于您提到的“岩石引伸计三轴”的均值检验,这可能涉及到在特定实验条件下收集的数据分析。
在这种情况下,您可能需要根据实验设计和数据收集的具体情况来确定最合适的均值检验方法。
同时,进行这类复杂的统计分析时,使用专业的统计软件(如SPSS、R等)可能会更方便和准确。
除了U检验和T检验之外,还有一些其他的均值检验方法,这些方法在不同的情境和数据分布下可能更为适用。
以下是一些额外的均值检验方法:Welch's T-test(韦尔奇T检验):当两个独立样本的方差不同且样本量也可能不相等时,可以使用Welch's T-test。
这种方法对方差不齐性(异方差性)较为稳健。
Mann-Whitney U Test(曼-惠特尼U检验):也称为Wilcoxon Rank-Sum Test,是一种非参数检验方法,用于比较两个独立样本是否来自具有相同分布的总体。