t检验和u检验
- 格式:doc
- 大小:97.50 KB
- 文档页数:1
统计中经常会用到各种检验,如何知道何时用什么检验呢,根据结合自己的工作来说一说:?t检验有单样本t检验,配对t检验和两样本t检验。
单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。
配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。
?u检验:t检验和就是统计量为t,u的假设检验,两者均是常见的假设检验方法。
当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。
当样本含量n小时,若观察值x符合正态分布,则用t检验(因此时样本均数符合t 分布),当x为未知分布时应采用秩和检验。
F检验又叫方差齐性检验。
在两样本t检验中要用到F检验。
从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。
若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。
其中要判断两总体方差是否相等,就可以用F检验。
简单的说就是检验两个样本的方差是否有显着性差异这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。
在t检验中,如果是比较大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。
卡方检验是对两个或两个以上率(构成比)进行比较的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验。
方差分析用方差分析比较多个样本均数,可有效地控制第一类错误。
方差分析(analysis of variance,ANOVA)由英国统计学家首先提出,以F命名其统计量,故方差分析又称F检验。
其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。
我们要学习的主要内容包括单因素方差分析即完全随机设计或成组设计的方差分析( one-way ANOVA):用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。
t检验和u检验简而言之,t检验和u检验就是统计量为t,u的假设检验,两者均是常见的假设检验方法。
当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。
当样本含量n小时,若观察值x符合正态分布,则用t检验(因此时样本均数符合t分布),当x 为未知分布时应采用秩和检验。
一、样本均数与总体均数比较的t检验样本均数与总体均数比较的t检验实际上是推断该样本来自的总体均数µ与已知的某一总体均数µ0(常为理论值或标准值)有无差别。
如根据大量调查,已知健康成年男性的脉搏均数为72次/分,某医生在一山区随即抽查了25名健康男性,求得其脉搏均数为74.2次/分,标准差为6.0次/分,问是否能据此认为该山区成年男性的脉搏均数高于一般成年男性。
上述两个均数不等既可能是抽样误差所致,也有可能真是环境差异的影响,为此,可用t检验进行判断,检验过程如下:1. 建立假设H0:µ=µ0=72次/分,H0:µ>µ0,检验水准为单侧0.05。
2. 计算统计量进行样本均数与总体均数比较的t检验时t值为样本均数与总体均数差值的绝对值除以标准误的商,其中标准误为标准差除以样本含量算术平方根的商。
3. 确定概率,作出判断以自由度v(样本含量n减1)查t界值表,0.025<P<0.05,拒绝H0,接受H1,可认为该山区成年男性的脉搏均数高于一般成年男性。
应注意的是,当样本含量n较大时,可用u检验代替t检验。
二、配对设计的t检验配对设计是一种比较特殊的设计方式,能够很好地控制非实验因素对结果的影响,有自身配对和非自身配对之分。
配对设计资料的t检验实际上是用配对差值与总体均数“0”进行比较,即推断差数的总体均数是否为“0”。
故其检验过程与样本均数与总体均数比较的t检验类似,即:1. 建立假设H0:µd=0,即差值的总体均数为“0”,H1:µd>0或µd<0,即差值的总体均数不为“0”,检验水准为0.05。
统计中经常会用到各种检验,如何知道何时用什么检验呢,根据结合自己的工作来说一说:t检验有单样本t检验,配对t检验和两样本t检验。
单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。
配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。
u检验:t检验和就是统计量为t,u的假设检验,两者均是常见的假设检验方法。
当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。
当样本含量n小时,若观察值x符合正态分布,则用t检验(因此时样本均数符合t 分布),当x为未知分布时应采用秩和检验。
F检验又叫方差齐性检验。
在两样本t检验中要用到F检验。
从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。
若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。
其中要判断两总体方差是否相等,就可以用F检验。
简单的说就是检验两个样本的方差是否有显著性差异这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。
在t检验中,如果是比较大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。
卡方检验是对两个或两个以上率(构成比)进行比较的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验。
方差分析用方差分析比较多个样本均数,可有效地控制第一类错误。
方差分析(analysis of variance,ANOVA)由英国统计学家R.A.Fisher首先提出,以F命名其统计量,故方差分析又称F检验。
其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。
我们要学习的主要内容包括单因素方差分析即完全随机设计或成组设计的方差分析(one-way ANOVA):用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。
统计中经常会用到各种检验,如何知道何时用什么检验呢,根据结合自己的工作来说一说:t检验有单样本t检验,配对t检验和两样本t检验。
单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。
配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。
u检验:t检验和就是统计量为t,u的假设检验,两者均是常见的假设检验方法。
当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。
当样本含量n小时,若观察值x符合正态分布,则用t检验(因此时样本均数符合t 分布),当x为未知分布时应采用秩和检验。
F检验又叫方差齐性检验。
在两样本t检验中要用到F检验。
从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。
若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。
其中要判断两总体方差是否相等,就可以用F检验。
简单的说就是检验两个样本的方差是否有显著性差异这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。
在t检验中,如果是比较大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。
卡方检验是对两个或两个以上率(构成比)进行比较的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验。
方差分析用方差分析比较多个样本均数,可有效地控制第一类错误。
方差分析(analysis of variance,ANOVA)由英国统计学家R.A.Fisher首先提出,以F命名其统计量,故方差分析又称F检验。
其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。
我们要学习的主要内容包括单因素方差分析即完全随机设计或成组设计的方差分析(one-way ANOVA):用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。
统计中经常会用到各种检验,如何知道何时用什么检验呢,根据结合自己的工作来说一说:t检验有单样本t检验,配对t检验和两样本t检验。
单样本t检验:是用样本均数代表的未知总体均数和总体均数进行比拟,来观察此组样本与总体的差异性。
配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。
u检验:t检验和就是统计量为t,u的假设检验,两者均是常见的假设检验方法。
当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。
当样本含量n小时,假设观察值x符合正态分布,那么用t检验〔因此时样本均数符合t分布〕,当x为未知分布时应采用秩和检验。
F检验又叫方差齐性检验。
在两样本t检验中要用到F检验。
从两研究总体中随机抽取样本,要对这两个样本进行比拟的时候,首先要判断两总体方差是否相同,即方差齐性。
假设两总体方差相等,那么直接用t检验,假设不等,可采用t'检验或变量变换或秩和检验等方法。
其中要判断两总体方差是否相等,就可以用F检验。
简单的说就是检验两个样本的方差是否有显著性差异这是选择何种T检验〔等方差双样本检验,异方差双样本检验〕的前提条件。
在t检验中,如果是比拟大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。
卡方检验是对两个或两个以上率〔构成比〕进行比拟的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验。
方差分析用方差分析比拟多个样本均数,可有效地控制第一类错误。
方差分析(analysis of variance,ANOVA)由英国统计学家首先提出,以F命名其统计量,故方差分析又称F检验。
其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。
我们要学习的主要内容包括单因素方差分析即完全随机设计或成组设计的方差分析〔one-way ANOVA〕:用途:用于完全随机设计的多个样本均数间的比拟,其统计推断是推断各样本所代表的各总体均数是否相等。
统计中经常会用到各种检验,如何知道何时用什么检验呢,根据结合自己的工作来说一说:t检验有单样本t检验,配对t检验和两样本t检验。
单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。
配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。
u检验:t检验和就是统计量为t,u的假设检验,两者均是常见的假设检验方法。
当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。
当样本含量n小时,若观察值x符合正态分布,则用t检验(因此时样本均数符合t 分布),当x为未知分布时应采用秩和检验。
F检验又叫方差齐性检验。
在两样本t检验中要用到F检验。
从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。
若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。
其中要判断两总体方差是否相等,就可以用F检验。
简单的说就是检验两个样本的方差是否有显著性差异这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。
在t检验中,如果是比较大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。
卡方检验是对两个或两个以上率(构成比)进行比较的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验。
方差分析用方差分析比较多个样本均数,可有效地控制第一类错误。
方差分析(analysis of variance,ANOVA)由英国统计学家R.A.Fisher首先提出,以F命名其统计量,故方差分析又称F检验。
其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。
我们要学习的主要内容包括单因素方差分析即完全随机设计或成组设计的方差分析(one-way ANOVA):用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。
u检验、t检验、F检验、X2检验常用显著性检验1.t检验适用于计量资料、正态分布、方差具有齐性的两组间小样本比较。
包括配对资料间、样本与均数间、两样本均数间比较三种,三者的计算公式不能混淆。
2.t'检验应用条件与t检验大致相同,但t′检验用于两组间方差不齐时,t′检验的计算公式实际上是方差不齐时t检验的校正公式。
3.U检验应用条件与t检验基本一致,只是当大样本时用U检验,而小样本时则用t检验,t检验可以代替U检验。
4.方差分析用于正态分布、方差齐性的多组间计量比较。
常见的有单因素分组的多样本均数比较及双因素分组的多个样本均数的比较,方差分析首先是比较各组间总的差异,如总差异有显著性,再进行组间的两两比较,组间比较用q检验或LST检验等。
5.X2检验是计数资料主要的显著性检验方法。
用于两个或多个百分比(率)的比较。
常见以下几种情况:四格表资料、配对资料、多于2行*2列资料及组内分组X2检验。
6.零反应检验用于计数资料。
是当实验组或对照组中出现概率为0或100%时,X2检验的一种特殊形式。
属于直接概率计算法。
7.符号检验、秩和检验和Ridit检验三者均属非参数统计方法,共同特点是简便、快捷、实用。
可用于各种非正态分布的资料、未知分布资料及半定量资料的分析。
其主要缺点是容易丢失数据中包含的信息。
所以凡是正态分布或可通过数据转换成正态分布者尽量不用这些方法。
8.Hotelling检验用于计量资料、正态分布、两组间多项指标的综合差异显著性检验。
计量经济学检验方法讨论计量经济学中的检验方法多种多样,而且在不同的假设前提之下,使用的检验统计量不同,在这里我论述几种比较常见的方法。
在讨论不同的检验之前,我们必须知道为什么要检验,到底检验什么?如果这个问题都不知道,那么我觉得我们很荒谬或者说是很模式化。
检验的含义是要确实因果关系,计量经济学的核心是要说因果关系是怎么样的。
那么如果两个东西之间没有什么因果联系,那么我们寻找的原因就不对。
u检验和t检验u检验和t检验u检验和t检验可⽤于样本均数与总体均数的⽐较以及两样本均数的⽐较。
理论上要求样本来⾃正态分布总体。
但在实⽤时,只要样本例数n 较⼤,或n⼩但总体标准差σ已知时,就可应⽤u检验;n⼩且总体标准差σ未知时,可应⽤t检验,但要求样本来⾃正态分布总体。
两样本均数⽐较时还要求两总体⽅差相等。
⼀、样本均数与总体均数⽐较⽐较的⽬的是推断样本所代表的未知总体均数µ与已知总体均数µ0有⽆差别。
通常把理论值、标准值或经⼤量调查所得的稳定值作为µ0.根据样本例数n⼤⼩和总体标准差σ是否已知选⽤u检验或t 检验。
(⼀)u检验⽤于σ已知或σ未知但n⾜够⼤[⽤样本标准差s作为σ的估计值,代⼊式(19.6)]时。
以算得的统计量u,按表19-3所⽰关系作判断。
表19-3 u值、P值与统计结论α |t|值 P值 统计结论 0.05双侧单侧 <1.96<1.645 >0.05 不拒绝H0,差别⽆统计学意义 0.05双侧单侧 ≥1.96≥1.645 ≤0.05 拒绝H0,接受H1,差别有统计学意义 0.01双侧单侧 ≥2.58≥2.33 ≤0.01 拒绝H0,接受H1,差别有⾼度统计学意义 例19.3根据⼤量调查,已知健康成年男⼦脉搏均数为72次/分,标准差为6.0次/分。
某医⽣在⼭区随机抽查25名健康成年男⼦,求得其脉搏均数为74.2次/分,能否据此认为⼭区成年男⼦的脉搏⾼于⼀般?据题意,可把⼤量调查所得的均数72次/分与标准差6.0次/分看作为总体均数µ0和总体标准差σ,样本均数x为74.2次/分,样本例数n为25. H0: µ=µ0H1: µ>µ0α=0.05(单侧检验)算得的统计量u=1.833>1.645,P<0.05,按α=0.05检验⽔准拒绝H0,可认为该⼭区健康成年男⼦的脉搏⾼于⼀般。
(⼆)t检验⽤于σ未知且n较⼩时。