第3章(一元线性回归模型)3 (1)
- 格式:ppt
- 大小:2.72 MB
- 文档页数:33
第三章 一元线性回归模型一、预备知识(一)相关概念对于一个双变量总体,若由基础理论,变量和变量之间存在因果),(i i x y x y 关系,或的变异可用来解释的变异。
为检验两变量间因果关系是否存在、x y 度量自变量对因变量影响的强弱与显著性以及利用解释变量去预测因变量x y x ,引入一元回归分析这一工具。
y 将给定条件下的均值i x i yi i i x x y E 10)|(ββ+=(3.1)定义为总体回归函数(PopulationRegressionFunction,PRF )。
定义为误差项(errorterm ),记为,即,这样)|(i i i x y E y -i μ)|(i i i i x y E y -=μ,或i i i i x y E y μ+=)|(i i i x y μββ++=10(3.2)(3.2)式称为总体回归模型或者随机总体回归函数。
其中,称为解释变量x (explanatory variable )或自变量(independent variable );称为被解释y 变量(explained variable )或因变量(dependent variable );误差项解释μ了因变量的变动中不能完全被自变量所解释的部分。
误差项的构成包括以下四个部分:(1)未纳入模型变量的影响(2)数据的测量误差(3)基础理论方程具有与回归方程不同的函数形式,比如自变量与因变量之间可能是非线性关系(4)纯随机和不可预料的事件。
在总体回归模型(3.2)中参数是未知的,是不可观察的,统计计10,ββi μ量分析的目标之一就是估计模型的未知参数。
给定一组随机样本,对(3.1)式进行估计,若的估计量分别记n i y x i i ,,2,1),,( =10,),|(ββi i x y E 为,则定义3.3式为样本回归函数^1^0^,,ββi y ()i i x y ^1^0^ββ+=n i ,,2,1 =(3.3)注意,样本回归函数随着样本的不同而不同,也就是说是随机变量,^1^0,ββ它们的随机性是由于的随机性(同一个可能对应不同的)与的变异共i y i x i y x 同引起的。
3.1 多元线性回归模型及古典假定一、判断题1. 在实际应用中,一元回归几乎没什么用,因为因变量的行为不可能仅有一个解释变量来解释。
(T )2. 一元线性回归模型与多元线性回归模型的基本假定是相同的。
(F )二 、单项选择题1.在二元线性回归模型i i i i u X X Y +++=22110βββ中,1β表示( A )。
A .当X2不变时,X1每变动一个单位Y 的平均变动。
B .当X1不变时,X2每变动一个单位Y 的平均变动。
C .当X1和X2都保持不变时,Y 的平均变动。
D .当X1和X2都变动一个单位时,Y 的平均变动。
2.如果两个经济变量X 与Y 间的关系近似地表现为当X 发生一个绝对量变动(ΔX ) 时, Y 有一个固定地相对量(ΔY/Y )变动,则适宜配合的回归模型是( B )。
A .i i 21i u X Y ++=ββB .i i 21i u X Y ++=ββlnC .i i21i u X 1Y ++=ββ D .i i 21i u X Y ++=ln ln ββ3.在多元线性回归模型中对样本容量的基本要求是(k 为解释变量个数):( C )。
A. n ≥k+1 B .n<k+1C. n ≥30 或n ≥3(k+1)D. n ≥304、模型i i 21i u X Y ++=ln ln ββ中 ,2β的实际含义是( B )。
A. X 关于Y 的弹性B. Y 关于X 的弹性C. X 关于Y 的边际倾向D. Y 关于X 的边际倾向三、多项选择题1.下列哪些非线性模型可以通过变量替换转化为线性模型( ABC )A. i 2i 10i u X Y ++=ββB. i i10i u X 1Y ++=ββC. i i 10i u X Y ++=ln ln ββD. i i 210i u X Y ++=ββE. i i 10i u X Y ++=ββ四、简答题1.多元线性回归模型与一元线性回归模型有哪些区别?答:多元线性回归模型与一元线性回归模型的区别表现在如下几个方面:一是解释变量的个数不同;二是模型的经典假设不同,多元线性回归模型比一元线性回归模型多了个“解释变量之间不存在线性相关关系”的假定;三是多元线性回归模型的参数估计式的表达更为复杂。
ESS kRSS (n - k -1) n3.3 多元线性回归模型的检验一、判断题1、在线性回归模型中,为解释变量或者被解释变量重新选取单位(比如,元变换成千元), 会影响 t 统计量和 R 2 的数值。
( F )2、在多元线性回归中,t 检验和 F 检验缺一不可。
( T) 3、回归方程总体线性显著性检验的原假设是模型中所有的回归参数同时为零。
( F )4、多元线性回归中,可决系数 R 2 是评价模型拟合优度好坏的最佳标准。
(F )二 、单项选择1、在模型Y t = 0 + 1 X 1t + 2 X 2t + 3 X 3t + t 的回归分析结果中,有 F = 462.58 ,F 的p 值= 0.000000 ,则表明(C )A 、解释变量 X 2t 对Y t 的影响不显著B 、解释变量 X 1t 对Y t 的影响显著C 、模型所描述的变量之间的线性关系总体上显著D 、解释变量 X 2t 和 X 1t 对Y t 的影响显著2、设k 为回归模型中的实解释变量的个数, n 为样本容量。
则对回归模型进行总体显著性 检验( F 检验)时构造的 F 统计量为 (A )A 、 F =B 、 F =C 、 F =ESS RSSD 、 F = 1-RSS TSS3、在多元回归中,调整后的可决系数 R 2与可决系数 R 2 的关系为 ( A )A 、 R 2 < R 2 C 、 R 2= R 2B 、 R 2 > R 2D 、 R 2 与 R 2 的关系不能确定4、根据调整的可决系数 R 2 与 F 统计量的关系可知,当 R 2 = 1 时,有 (C ) A 、F=0B 、F=-1C 、F→+∞D 、F=-∞5、下面哪一表述是正确的 (D )1 nA 、线性回归模型Y i = 0 + 1 X i + i 的零均值假设是指∑i= 0i =1ESS (k -1)RSS (n - k )0 1 1i 2 2ik ki i B 、对模型Y i = 0 + 1 X 1i + 2 X 2i + i 进行方程显著性检验(即 F 检验),检验的零假 设是 H 0 : 0 = 1 = 2 = 0C 、相关系数较大意味着两个变量存在较强的因果关系D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系5、对于Y i = ˆ +ˆ X +ˆ X+… +ˆ X + e ,如果原模型满足线性模型的基本假设则 在零假设 j = 0 下, 统计量 ˆj (B ) s (ˆj ) ( 其中 s (ˆj ) 是 j 的标准误差) 服从A 、t (n - k )B 、t (n - k -1)C 、 F (k -1, n - k )D 、 F (k , n - k -1)6、在由 n = 30 的一组样本估计的、包含 3 个解释变量的线性回归模型中,计算得多重可决系数为 0.8500,则调整后的多重可决系数为( D )A 、8603B 、 0.8389C 、0.8655D 、0.8327 7、可决系数 R 2=0.8,说明回归直线能解释被解释变量总变差的:( A )A 、 80%B 、 64%C 、 20%D 、 89%8、线性回归模型 y t= b 0 + b 1 x 1t + b 2 x 2t + ...... + b k x kt + u tH 0 : b t = 0(i = 0,1, 2,...k ) 时,所用的统计量服从(C )中,检验A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)三、多项选择题1、对模型满足所有假定条件的模型Y i = 0 + 1 X 1i + 2 X 2i + i 进行总体显著性检验,如 果检验结果总体线性关系显著,则很可能出现 ( BCD )A 、1 = 2 = 0 C 、1 ≠ 0,2 ≠ 0 E 、1= 0,2 = 0B 、1 ≠ 0,2 = 0 D 、1= 0,2 ≠ 02、设 k 为回归模型中的参数个数(包含截距项)则总体线性回归模型进行显著性检验时所用的 F 统计量可以表示为( BC )∑(Y ˆ - Y )2/(n - k )∑(Y ˆ - Y )2/(k - 1)A 、 ii 2 ( ) B 、 ii 2 ( ) ∑e i / k- 1 ∑e i/ n- k R 2 /(k - 1)C 、(1 - R 2 )/(n - k )(1 - R 2 )/(n - k )D 、R 2/(k - 1)R2/(n -k )E、(1 -R2)/(k -1)3、在多元回归分析中,调整的可决系数R2与可决系数R2之间(AD )A、R2<R2B、R2≥R2C、R2只可能大于零D、R2可能为负值E、R2不可能为负值四、简答题1.在多元线性回归分析中,为什么用修正的可决系数衡量估计模型对样本观测值的拟合优度?答:因为人们发现随着模型中解释变量的增多,多重可决系数R2的值往往会变大,从而增加了模型的解释功能。
3.3 多元线性回归模型的检验一、判断题1、在线性回归模型中,为解释变量或者被解释变量重新选取单位(比如,元变换成千元),会影响t 统计量和 2R 的数值。
( F )2、在多元线性回归中,t 检验和F 检验缺一不可。
( T )3、回归方程总体线性显著性检验的原假设是模型中所有的回归参数同时为零。
( F )4、多元线性回归中,可决系数2R 是评价模型拟合优度好坏的最佳标准。
( F )二 、单项选择1、在模型0112233t t t t t Y X X X ββββμ=++++的回归分析结果中,有462.58F =,0.000000F p =的值,则表明 ( C )A 、解释变量2t X 对t Y 的影响不显著B 、解释变量1t X 对t Y 的影响显著C 、模型所描述的变量之间的线性关系总体上显著D 、解释变量2t X 和1t X 对t Y 的影响显著2、设k 为回归模型中的实解释变量的个数,n 为样本容量。
则对回归模型进行总体显著性 检验(F 检验)时构造的F 统计量为 ( A )A 、1)ESS k F RSS n k =--B 、(1)()ESS k F RSS n k -=- C 、ESS F RSS = D 、1RSS F TSS=- 3、在多元回归中,调整后的可决系数2R 与可决系数2R 的关系为 ( A ) A 、22R R < B 、22R R >C 、22R R =D 、2R 与2R 的关系不能确定4、根据调整的可决系数2R 与F 统计量的关系可知,当21R =时,有 ( C )A 、F=0B 、F=-1C 、F →+∞D 、F=-∞5、下面哪一表述是正确的 ( D ) A 、线性回归模型01i i i Y X ββμ=++的零均值假设是指110ni i n μ==∑ B 、对模型01122i i i i Y X X βββμ=+++进行方程显著性检验(即F 检验),检验的零假 设是0012:0H βββ===C 、相关系数较大意味着两个变量存在较强的因果关系D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系5、对于01122ˆˆˆˆi i i k ki iY X X X e ββββ=+++++…,如果原模型满足线性模型的基本假设则 在零假设0j β=下,统计量ˆˆ()j j s ββ(其中ˆ()js β是j β的标准误差)服从 (B )A 、()t n k -B 、(1)t n k --C 、(1,)F k n k --D 、(,1)F k n k --6、在由的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重可决系数为0.8500,则调整后的多重可决系数为( D )A 、8603B 、 0.8389C 、0.8655D 、0.83277、可决系数R 2=0.8,说明回归直线能解释被解释变量总变差的:( A )A 、 80%B 、 64%C 、 20%D 、 89%8、线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)三、多项选择题1、对模型满足所有假定条件的模型01122i i i i Y X X βββμ=+++进行总体显著性检验,如果检验结果总体线性关系显著,则很可能出现 ( BCD )A 、120ββ==B 、120,0ββ≠=C 、120,0ββ≠≠D 、120,0ββ=≠E 、120,0ββ==2、设k 为回归模型中的参数个数(包含截距项)则总体线性回归模型进行显著性检验时所 用的F 统计量可以表示为 ( BC )A 、()()()∑∑---1k e k n Y Y 2i 2i i //ˆ B 、()()()∑∑---k n e 1k Y Y 2i2ii //ˆ C 、()()()k n R 11k R 22---// D 、()()()1k R k n R 122---// 30n =E 、()()()1k R 1k n R 22---// 3、在多元回归分析中,调整的可决系数2R 与可决系数2R 之间 ( AD )A 、22R R <B 、22R R ≥C 、2R 只可能大于零D 、2R 可能为负值E 、2R 不可能为负值四、简答题1.在多元线性回归分析中,为什么用修正的可决系数衡量估计模型对样本观测值的拟合优度?答:因为人们发现随着模型中解释变量的增多,多重可决系数2R 的值往往会变大,从而增加了模型的解释功能。
第三章 一元经典线性回归模型的基本假设与检验问题 3.1TSS,RSS,ESS 的自由度如何计算?直观含义是什么?答:对于一元回归模型,残差平方和RSS 的自由度是(2)n -,它表示独立观察值的个数。
对于既定的自变量和估计量1ˆβ和2ˆβ,n 个残差 必须满足正规方程组。
因此,n 个残差中只有(2)n -个可以“自由取值”,其余两个随之确定。
所以RSS 的自由度是(2)n -。
TSS 的自由度是(1)n -:n 个离差之和等于0,这意味着,n 个数受到一个约束。
由于TSS=ESS+RSS ,回归平方和ESS 的自由度是1。
3.2 为什么做单边检验时,犯第一类错误的概率的评估会下调一半?答:选定显著性水平α之后,对应的临界值记为/2t α,则双边检验的拒绝区域为/2||t t α≥。
单边检验时,对参数的符号有先验估计,拒绝区域变为/2t t α≥或/2t t α≤-,故对犯第I 类错误的概率的评估下下降一半。
3.3 常常把高斯-马尔科夫定理简述为:OLS 估计量具有BULE 性质,其含义是什么? 答:含义是:(1)它是线性的(linear ):OLS 估计量是因变量的线性函数。
(2)它是无偏的(unbiased ):估计量的均值或数学期望等于真实的参数。
比如22ˆ()E ββ=。
(3)它是最优的或有效的(Best or efficient ):如果存在其它线性无偏的估计量,其方差必定大于OLS 估计量的方差。
3.4 做显著性检验时,针对的是总体回归函数(PRF )的系数还是样本回归函数(SRF )的系数?为什么?答:做显著性检验时,针对的是总体回归函数(SRF )的系数。
总体回归函数是未知的,也是研究者所关心的,所以只能利用样本回归函数来推测总体回归函数,后者是利用样本数据计算所得,是已知的,无需检验。
(习题)3.5 以下陈述正确吗?不论正确与否,请说明理由。
(1)X值越接近样本均值,斜率的OLS估计值就越精确。
3.3 多元线性回归模型的检验一、判断题1、在线性回归模型中,为解释变量或者被解释变量重新选取单位(比如,元变换成千元),会影响t 统计量和 2R 的数值。
( F )2、在多元线性回归中,t 检验和F 检验缺一不可。
( T )3、回归方程总体线性显著性检验的原假设是模型中所有的回归参数同时为零。
( F )4、多元线性回归中,可决系数2R 是评价模型拟合优度好坏的最佳标准。
( F )二 、单项选择1、在模型0112233t t t t t Y X X X ββββμ=++++的回归分析结果中,有462.58F =,0.000000F p =的值,则表明 ( C )A 、解释变量2t X 对t Y 的影响不显著B 、解释变量1t X 对t Y 的影响显著C 、模型所描述的变量之间的线性关系总体上显著D 、解释变量2t X 和1t X 对t Y 的影响显著2、设k 为回归模型中的实解释变量的个数,n 为样本容量。
则对回归模型进行总体显著性 检验(F 检验)时构造的F 统计量为 ( A )A 、1)ESS k F RSS n k =--B 、(1)()ESS k F RSS n k -=- C 、ESS F RSS = D 、1RSS F TSS=- 3、在多元回归中,调整后的可决系数2R 与可决系数2R 的关系为 ( A ) A 、22R R < B 、22R R >C 、22R R =D 、2R 与2R 的关系不能确定4、根据调整的可决系数2R 与F 统计量的关系可知,当21R =时,有 ( C )A 、F=0B 、F=-1C 、F →+∞D 、F=-∞5、下面哪一表述是正确的 ( D ) A 、线性回归模型01i i i Y X ββμ=++的零均值假设是指110ni i n μ==∑ B 、对模型01122i i i i Y X X βββμ=+++进行方程显著性检验(即F 检验),检验的零假 设是0012:0H βββ===C 、相关系数较大意味着两个变量存在较强的因果关系D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系5、对于01122ˆˆˆˆi i i k ki iY X X X e ββββ=+++++…,如果原模型满足线性模型的基本假设则 在零假设0j β=下,统计量ˆˆ()j j s ββ(其中ˆ()js β是j β的标准误差)服从 (B )A 、()t n k -B 、(1)t n k --C 、(1,)F k n k --D 、(,1)F k n k --6、在由的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重可决系数为0.8500,则调整后的多重可决系数为( D )A 、8603B 、 0.8389C 、0.8655D 、0.83277、可决系数R 2=0.8,说明回归直线能解释被解释变量总变差的:( A )A 、 80%B 、 64%C 、 20%D 、 89%8、线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量 服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)三、多项选择题1、对模型满足所有假定条件的模型01122i i i i Y X X βββμ=+++进行总体显著性检验,如果检验结果总体线性关系显著,则很可能出现 ( BCD )A 、120ββ==B 、120,0ββ≠=C 、120,0ββ≠≠D 、120,0ββ=≠E 、120,0ββ==2、设k 为回归模型中的参数个数(包含截距项)则总体线性回归模型进行显著性检验时所 用的F 统计量可以表示为 ( BC )A 、()()()∑∑---1k e k n Y Y 2i 2i i //ˆ B 、()()()∑∑---k n e 1k Y Y 2i2ii //ˆ C 、()()()k n R 11k R 22---// D 、()()()1k R k n R 122---// E 、()()()1k R 1k n R 22---// 3、在多元回归分析中,调整的可决系数2R 与可决系数2R 之间 ( AD )A 、22R R <B 、22R R ≥C 、2R 只可能大于零D 、2R 可能为负值E 、2R 不可能为负值四、简答题30n =1.在多元线性回归分析中,为什么用修正的可决系数衡量估计模型对样本观测值的拟合优度?答:因为人们发现随着模型中解释变量的增多,多重可决系数2R 的值往往会变大,从而增加了模型的解释功能。
3.2 多元线性回归模型的估计一、判断题1.满足基本假设条件下,样本容量略大于解释变量个数时,可以得到各参数的唯一确定的 估计值,但参数估计结果的可靠性得不到保证 ( T )二 、单项选择题1、线性回归模型的参数估计量ˆβ是随机向量Y 的函数,即1ˆ()X X X Y β-''=。
ˆβ是 (A )A 、随机向量B 、非随机向量C 、确定性向量D 、常量2.已知含有截距项的四元线性回归模型估计的残差平方和为∑=800e 2i ,样本容量为25,则其随机误差项i u 的方差的普通最小二乘估计为 (A )。
A 、40B 、32C 、38.095D 、36.364 三 、多项选择题1、对于二元样本回归模型12233ˆˆˆˆi i i iY X X e βββ=+++,下列各式成立的有(ABC ) A 、0e i =∑ B 、0X e i 2i =∑C 、0X e i 3i =∑D 、0Y e i i =∑E 、0X X i3i 2=∑四、计算题1、某地区通过一个样本容量为722的调查数据得到劳动力受教育年数的一个回归方程为10.360.0940.1310.210i i i i edu sibs medu fedu =-++ R 2=0.214式中,edu 为劳动力受教育年数,sibs 为劳动力家庭中兄弟姐妹的个数,medu 与fedu 分别为母亲与父亲受到教育的年数。
问(1)sibs 是否具有预期的影响?为什么?若medu 与fedu 保持不变,为了使预测的受教育水平减少一年,需要sibs 增加多少?(2)请对medu 的系数给予适当的解释。
(3)如果两个劳动力都没有兄弟姐妹,但其中一个的父母受教育的年数均为12年,另一个的父母受教育的年数均为16年,则两人受教育的年数预期相差多少年?解:(1)预期sibs 对劳动者受教育的年数有影响。
因此在收入及支出预算约束一定的条件下,子女越多的家庭,每个孩子接受教育的时间会越短。