高中数学人教A版必修三教学案:第三章 第1节 第1课时 随机事件的概率 Word版含答案
- 格式:doc
- 大小:2.34 MB
- 文档页数:12
3.1 随机事件的概率3.1.1 —3.1.2随机事件的概率及概率的意义(第一、二课时)一、教学目标:1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A 出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A 发生的频率f n (A )与事件A 发生的概率P (A )的区别与联系;(3)利用概率知识正确理解现实生活中的实际问题.2、过程与方法:(1)发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.二、重点与难点:(1)教学重点:事件的分类;概率的定义以及和频率的区别与联系;(2)教学难点:用概率的知识解释现实生活中的具体问题.三、学法与教学用具:1、引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;2、教学用具:硬币数枚,投灯片,计算机及多媒体教学.四、教学设想:1、创设情境:日常生活中,有些问题是很难给予准确无误的回答的。
例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。
2、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件;(2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; (5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=nn A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。
问题与情境及教师活动学生活动骰子,结果都是出现1点•你认为这枚骰子的质地均匀吗?为什么?这三个事件在一定的条件下是或者发生或不一定发生的,是模棱两可的.2、活动做抛掷一枚硬币的试验,观察它落地时哪一个面朝上•通过学生亲自动手试验,突破学生理解的难点:“随机事件发生的随机性和随机性中的规律性” •通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义•在这个过程中,重视了掌握知识的过程,体现了试验、观察、探究、归纳和总结的思想方法具体如下:第一步每个人各取一枚硬币,做10次掷硬币试验,记录正面向上的次数和比例,填在下表:试验结果与其他同学比较,你的结果和他们一致吗?为什么?第二步由组长把本小组同学的试验结果统计一下思考:与其他小组试验结果比较,正面朝上的比例一致吗?为什么?通过学生的实验,比较他们实验结果,让他们发现每个人实验的结果、组与组之间实验的结果不完全相同,从而说明实验结果的随机性,但组与组之间的差别会比学生与学生之间的差别小,小组的结果一般会比学生的结果更接近0.5.第三步用横轴为实验结果,仅取两个值:1 (正面)和0 (反面),纵轴为实验结果出现的频率,画出你个人和所在小组的条形图,并进行比较,发现什么?第四步把全班实验结果收集起来,也用条形图表示• 思考:这个条形图有什么特点?引导学生在每组实验结果的基础上统计全班的实验结果,一般情况下,班级的结果应比多数小组的结果更接近0.5,从而让学生体会随着实验次数的增加,频率会稳定在0.5附近•并把实验结果用条形图表示,这样既直观易懂,又可以与第二章统计的内容相呼应,达到温故而知新的目的.学过程及方法第五步请同学们找出掷硬币时“正面朝上”这个事件发生的规律性思考:如果同学们重复一次上面的实验,全班汇总结果与这一次汇总结果一致吗?为什么?出现正面朝上的规律性:随着实验次数的增加,正面朝上的频率稳定在0.5附近.由特殊事件转到一般事件,得出下面一般化的结论:随机事件A在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件A发生的频率会逐渐稳定在区间]0,1 ]中的某个常数上. 从而得出频率、概率的定义,以及它们的关系.3、讨论结果:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件(certain event ),简称必然事件.(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S 的不可能事件(impossible event ),简称不可能事件.(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件.(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件(random event ),简称随机事件;确定事件和随机事件统称为事件,用A,B,C,…表示.(5)频数与频率:在相冋的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数n a为事件A出现的频数(frequency );称事件A出现的比例f n(A)= —A为事件A出现的频率n(relative frequency );对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率f n(A)稳定在某个常数上,把这个常数记作P( A), 称为事件A的概率(probability ).(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A与试验总次数n的比值-A ,它具有一定的稳定性,总在某个常数附近n摆动,且随着试验次数的不断增多,这种摆动幅度越来越小.我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的概率.频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.在实际问题中,通常事件的概率未知,常用频率作为它的估计值.教师课时教案。
教学准备1. 教学目标互斥事件的概念和互斥事件的概率加法公式是重点;互斥事件、对立事件的概念及二者的联系与区别及应用是难点。
2. 教学重点/难点重点难点: 互斥事件的概念和互斥事件的概率加法公式是重点;互斥事件、对立事件的概念及二者的联系与区别及应用是难点。
3. 教学用具4. 标签教学过程一、基本知识概要:1、互斥事件:如果事件A与B不能同时发生(即A发生B必不发生或者B发生A必不发生),那么称事件A,B为互斥事件(或称互不相容事件)。
如果事件A1,A2,…中任何两个都是互斥事件,那么称事件A1,A2,…An彼此互斥。
互斥事件的概率加法公式:如果事件A,B互斥,那么P(A+B)=P(A)+P (B);如果事件A1,A2,…彼此互斥,则P(A1+A2+…+)=P(A1)+P(A2)+…+P ();二、重点难点: 互斥事件的概念和互斥事件的概率加法公式是重点;互斥事件、对立事件的概念及二者的联系与区别及应用是难点。
三、思维方式: 在求某些稍复杂的事件的概率时通常有两种方法:一是将所求事件的概率分化成一些彼此互斥的事件的概率的和;二是先求出此事件的对立事件的概率,即用逆向思维法。
正难则反的思想。
四、特别注意:互斥事件、对立事件的区别。
④8个篮球队中有2个强队,先任意将这8个队分成两个组(每组4个队)进行比赛,则这两个强队被分在一个组内的概率是;解法一:2个强队分在同一组,包括互斥的两种情况:2个强队都分在A组和都分在B组。
2个强队思维点拨:运用互斥事件的概率加法公式解题时,首先要分清事件是否互斥,同时要学会把一个事件分拆为几个互斥事件,做到不重不漏。
三、课堂小结1.互斥事件不一定是对立事件、对立事件一定是互斥事件。
在求用“至少”表达的事件的概率时,先求其对立事件的概率往往比较简便。
2.把一个复杂事件分解成几个彼此互斥的事件时,要做到不重复不遗漏。
3.互斥事件的概率加法公式利用互斥事件的概率加法公式来求概率,首先要确定事件彼此互斥,然后求出事件分别发生的概率,再求其和。
人教A版高中数学必修三随机事件的概率教案高中数学必修三中的随机事件的概率是一个比较重要的概念,也是数学中的一个基础概念。
掌握随机事件的概率,可以帮助学生更好地理解和应用数学中的概率知识。
本文将设计一个针对高中数学必修三中的随机事件的概率的教学案例,旨在帮助学生更好地理解和掌握该概念。
一、教学目标:1.知识与技能:(1)理解随机事件的概念,能够用自己的语言解释什么是随机事件。
(2)掌握随机事件的概率的计算方法,包括简单事件、复合事件、互斥事件和对立事件的概率计算方法。
(3)能够应用所学知识解决实际问题,特别是对混合事件的概率计算能力。
2.过程与方法:(1)通过观察、实验等方式引入随机事件的概念。
(2)通过示例分析,引导学生掌握概率计算方法。
(3)培养学生应用所学知识解决实际问题的能力。
3.情感态度与价值观:(1)培养学生对数学研究的兴趣和热爱。
(2)培养学生的创新思维和解决问题的能力。
二、教学过程:1.引入:通过实验引入随机事件的概念。
(1)指导学生进行简单的实验,如抛硬币、掷骰子等。
(2)让学生观察实验的结果,并总结出现的各种情况。
(3)引导学生理解随机事件的概念,提问学生,什么是随机事件?2.概率的基本定义和性质的讲解。
(1)通过简单的实例,讲解概率的基本定义和性质。
(2)引导学生理解简单事件和复合事件的概念,以及它们的概率计算方法。
(3)提问学生,什么是互斥事件和对立事件?并讲解它们的概率计算方法。
3.示例分析:(1)设计一些示例,引导学生运用所学方法计算概率。
(2)提问学生,如何计算混合事件的概率?并讲解混合事件的概率计算方法。
(3)引导学生通过分析实际问题,灵活运用所学方法解决问题。
4.练习与拓展:(1)设计一些练习题,巩固学生对随机事件的概率计算方法的掌握。
(2)给学生一些拓展性题目,培养学生的创新思维和解决问题的能力。
5.讲解与总结:(1)综合学生的实际操作和计算结果,讲解一些难点和疑惑。
§3.1.1随机事件的概率
一.学习目标
1.了解随机事件、必然事件、不可能事件的概念.
2.了解随机事件发生的不确定性和概率的稳定性.
3.理解概率的含义以及频率与概率的区别与联系.
二.学习过程
1.课前准备:
在n 次重复试验中事件A 发生的次数n A 叫做 ,事件A 出现的次数n A 与总实验次数n 的比例叫做事件A 出现的频率()n f A .即()n f A = 。
2. 新课探究:
(1)连续抛一枚硬币10次完成下表:
例1 判断下列事件哪些是必然事件?哪些是不可能事件?哪些是随机事件?
⑴在地球上,抛出的篮球会下落;
⑵瓮中捉鳖;
(3)黄老师煮熟了一只鸭子放在桌上,飞啦;
⑷随意翻一下日历,翻到的日期为2月30日;
(5)守株待兔;
(6)明天,我买一注彩票,得500万大奖;
例2 对某电视机厂生产的电视机进行抽样检测的数据如下:
(1)计算表中优等品的各个频率;
(2)该厂生产的电视机优等品的概率是多少?
例3 天气预报说明天下雨的概率为95%,周六下雨的概率为5%, 于是有位同学说:“明天肯定下雨,周六肯
定不下雨.”这个说法正确吗?
4.当堂练习:
回答下列问题
(1)掷一枚硬币,连续出现5次正面向上,我认为下次出现正面向上的概率小于0.5.
(2)你在美团外卖上点了一份午餐,下单的时候给出了预计送达的时间是12点30分,请问你一定能在这个时间拿到外卖吗?
5.课堂小结:
6.课后作业:。
第课时随机事件的概率[核心必知].预习教材,问题导入根据以下提纲,预习教材~,回答下列问题.()客观世界中,有些事件的发生是偶然的,有些事件的发生是必然的,有些事件可能发生也可能不发生,若把这些事件分类,可分为哪几类?提示:根据这些事件可能发生与否,可将事件分为必然事件、不可能事件、随机事件.()教材所做的抛掷一枚硬币的试验中,每个同学所得试验结果是否一致?提示:不一致,因为正面朝上这个事件是随机事件,可能发生也可能不发生.()事件发生的频率()是不是不变的?事件的概率()是不是不变的?它们之间有什么区别与联系?提示:频率是变化的,而概率是不变的,频率因试验的不同而不同,概率则不然,概率是频率的稳定值,是不随着频率的变化而变化的..归纳总结,核心必记()事件的概念与分类事件错误!()频数与频率在相同的条件下重复次试验,观察某一事件是否出现,称次试验中事件出现的次数为事件出现的频数,称事件出现的比例()=为事件出现的频率.()概率①含义:概率是度量随机事件发生的可能性大小的量.②与频率联系:对于给定的随机事件,由于事件发生的频率()随着试验次数的增加稳定于概率(),因此可以用频率()来估计概率().[问题思考]()事件的分类是确定的吗?提示:事件的分类是相对于条件来讲的,在不同的条件下,必然事件、随机事件、不可能事件可以相互转化.()频率和概率可以相等吗?提示:可以相等.但因为每次实验的频率是多少是不固定,而概率是固定的,故一般是不相等的,但有可能是相等的.()频率与概率有什么区别与联系?提示:[课前反思]通过以上预习,必须掌握的几个知识点:()事件的分类:;()概率的含义:;()概率与频率的联系:.观察下列几幅图片:事件一:常温下石头在一天内能被风化.事件二:木柴燃烧产生热量.事件三:射击运动员射击一次中十环.[思考]以上三个事件一定发生吗?名师指津:事件一在常温下不可能发生,是不可能事件;事件二一定发生,是必然事件;事件三可能发生,也可能不发生,是随机事件.讲一讲.指出下列事件是必然事件、不可能事件还是随机事件:()中国体操运动员将在下届奥运会上获得全能冠军.()出租车司机小李驾车通过几个十字路口都将遇到绿灯.。
2021年高中数学3.1.1随机事件的概率教案新人教A版必修3教学目标(1)了解随机事件、必然事件、不可能事件、确定事件等基本概念;(2)了解随机事件的发生不确定性与大量试验存在着规律性和随机事件概率的定义;(3)理解频率与概率的区别于联系,正确理解概率的含义。
教学重点、难点重点:(1)了解随机事件的发生的不确定性和频率的稳定性;(2)正确理解概率的意义。
难点:(1)概率与频率的关系;(2)对概率的正确理解。
教学过程一、同学们自己看书本108---109页,填空。
1.必然事件:在条件S下,_________________的事件,叫相对于条件S的必然事件;2.不可能事件:在条件S下,________________的事件,叫相对于条件S的不可能的事件。
3.确定事件:____________________________统称为相对于条件S的确定事件。
4.随机事件:在条件S下,_________________的事件,叫相对条件S的随机事件。
5.请举出一些现实生活中的必然事件、不可能事件、随机事件的实例。
6.对于随机事件,知道它的可能性大小是非常重要的,用__________来度量随机事件发生的可能性大小能为我们的决策提供关键性的依据。
7.如何获得随机事件发生的概率呢?二、做试验第一步,全班每人各取一枚同样的硬币,做10次掷硬币的试验,每人记录下试验结果,填在下表中组内同学相互比较试验结果,你们的结果一致吗?为什么会出现这样的情况?实用文档第二步,请组长把本组同学的试验结果统计一下,填入下表:第三步,统计所有组的情况,大家观察,各组的结果一致吗?为什么?第四步,把每组的结果收集起来,用条形图表示。
第五步,这个条形图上面有什么特点?抛掷硬币时“正面朝上”这个事件发生有规律吗?如果有,有怎样的规律?探究:如果同学们再重复一次上面的试验,全班的汇总结果还会和这次的汇总结果一致吗?如果不一致,你能说出原因吗?三、概念1、频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数n A为事件A出现的__________;称事件A出现的比例f n(A)= n A/n为事件A出现的__________,频率的取值范围是___________;2、概率:对于给定的随机事件,如果随着试验次数的增加,事件A发生的频率f n(A)稳定在某个常数上,把这个常数记作P(A),称为____________.任何事件的概率总在区间__________内;3、频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A与试验总次数n的比值n A/n,它具有一定的稳定性,总是在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
《3、1、1随机事件的概率》一、目标定位1、知识与技能目标:⑴了解随机事件、必然事件、不可能事件的概念;⑵理解频率与概率的联系和区别;2、过程与方法目标:⑴通过动手试验,体会随机事件发生的随机性和规律性;⑵在试验、探究和讨论过程中,学会利用频率估计概率的思想方法;3、情感态度与价值观目标:通过学生动手实践,培养学生的试验、观察、归纳和总结的技能和团队意识。
重点:了解随机事件、必然事件、不可能事件的概念,理解概率的定义以及与频率的区别和联系;难点:利用频率估计概率,体会随机事件发生的随机性和规律性二、教学过程1、创设情境,引出课题——狄青征讨侬智高故事:北宋仁宗年间,西南蛮夷侬智高起兵作乱,大将狄青奉命征讨.出征之前,他召集将士说:“此次作战,前途未卜,只有老天知道结果.我这里有100枚铜钱,现在抛到地上,如果全部正面朝上,则表明天助我军,此战必胜.”言罢,便将铜钱抛出,100枚铜钱居然全部正面朝上!将士闻讯,欢声雷动、士气大振!宋军也势如破竹,最终全胜而归.2. 【探究新知】(一):必然事件、不可能事件和随机事件思考1:考察下列事件:(1)导体通电时发热;(2)向上抛出的石头会下落;(3)在标准大气压下水温升高到100°C会沸腾.这些事件就其发生与否有什么共同特点?总结:我们把在条件S下,一定会发生的事件,叫做相对于条件S的________事件,简称必然事件。
思考2:考察下列事件:(1)在没有水分的真空中种子发芽;(2)在常温常压下钢铁融化;(3)服用一种药物使人永远年轻.这些事件就其发生与否有什么共同特点?总结:由此,我们把在条件S 下,一定不会发生的事件,叫做相对于条件S 的________事件,简称不可能事件。
思考3:考察下列事件:(1)某人射击一次命中目标;(2)王皓能夺取伦敦奥运会男子乒乓球单打冠军;(3)抛掷一个骰子出现的点数为偶数. 这些事件就其发生与否有什么共同特点?总结:我们把在条件S 下, ________也________的事件,叫做相对于条件S 随机事件.2、讨论:在生活中,有许多必然事件、不可能事件及随机事件.你能举出现实生活中随机事件、必然事件、不可能事件的实例吗?3、判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)“抛一石块,下落”;(2) “明天天晴”;(3) “某人射击一次,中靶”;(4) “如果a >b ,那么a -b >0”;(5) “掷一枚硬币,出现正面”;(6) “导体通电后,发热”;(7) “手电筒的的电池没电,灯泡发亮”;(8)“某机在1分钟内收到2次呼叫”;(9)“没有水份,种子能发芽”;(10)“在常温下,焊锡熔化”.(11) “随机选取一个实数x ,得|x|≥0”.(12)“函数xy a =(0a >,且1a ≠)在定义域上为增函数”;(13)“从分别标有号数1,2,3,4,5的5X 标签中任取一X ,得到4号签”(14)“在标准大气压下且温度低于0℃时,冰融化”;3、【探究新知】(二):事件A 发生的频率与概率(1)在三类事件中,必然事件和不可能事件,它的发生与否是很容易确定的,事先就知道它发生或者不发生;而随机事件的发生具有不确定性,可能发生,也可能不发生. 那么,它发生的可能性有多大呢?对于随机事件,知道它发生的可能性大小是非常重要的,能为我们的决策提供关键性的依据. 那么,如何才能获得随机事件发生的可能性大小呢?答:(2)接下来我们具体通过实例来认识通过试验获得随机事件发生可能性的大小。
第1课时 随机事件的概率[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 108~P 112,回答下列问题.(1)客观世界中,有些事件的发生是偶然的,有些事件的发生是必然的,有些事件可能发生也可能不发生,若把这些事件分类,可分为哪几类?提示:根据这些事件可能发生与否,可将事件分为必然事件、不可能事件、随机事件.(2)教材所做的抛掷一枚硬币的试验中,每个同学所得试验结果是否一致?提示:不一致,因为正面朝上这个事件是随机事件,可能发生也可能不发生.(3)事件A 发生的频率f n (A )是不是不变的?事件A 的概率P (A )是不是不变的?它们之间有什么区别与联系?提示:频率是变化的,而概率是不变的,频率因试验的不同而不同,概率则不然,概率是频率的稳定值,是不随着频率的变化而变化的.2.归纳总结,核心必记(1)事件的概念与分类事件⎩⎪⎨⎪⎧ 确定事件⎩⎪⎨⎪⎧ 不可能事件:在条件S 下,一定不会发生的 事件,叫做相对于条件S 的不可能事件必然事件:在条件S 下,一定会发生的事件, 叫做相对于条件S 的必然事件随机事件:在条件S 下可能发生也可能不发生的事件, 叫做相对于条件S 的随机事件(2)频数与频率在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n A n为事件A 出现的频率.(3)概率 ①含义:概率是度量随机事件发生的可能性大小的量.②与频率联系:对于给定的随机事件A ,由于事件A 发生的频率f n (A )随着试验次数的增加稳定于概率P (A ),因此可以用频率f n (A )来估计概率P (A ). [问题思考](1)事件的分类是确定的吗?提示:事件的分类是相对于条件来讲的,在不同的条件下,必然事件、随机事件、不可能事件可以相互转化.(2)频率和概率可以相等吗?提示:可以相等.但因为每次实验的频率是多少是不固定,而概率是固定的,故一般是不相等的,但有可能是相等的.(3)频率与概率有什么区别与联系?提示:[课前反思]通过以上预习,必须掌握的几个知识点:(1)事件的分类: ;(2)概率的含义:;(3)概率与频率的联系: .观察下列几幅图片:事件一:常温下石头在一天内能被风化.事件二:木柴燃烧产生热量.事件三:射击运动员射击一次中十环.[思考]以上三个事件一定发生吗?名师指津:事件一在常温下不可能发生,是不可能事件;事件二一定发生,是必然事件;事件三可能发生,也可能不发生,是随机事件.讲一讲1.指出下列事件是必然事件、不可能事件还是随机事件:(1)中国体操运动员将在下届奥运会上获得全能冠军.(2)出租车司机小李驾车通过几个十字路口都将遇到绿灯.(3)若x∈R,则x2+1≥1.(4)掷一枚骰子两次,朝上面的数字之和小于2.[尝试解答]由题意知(1)(2)中事件可能发生,也可能不发生,所以是随机事件;(3)中事件一定会发生,是必然事件;由于骰子朝上面的数字最小是1,两次朝上面的数字之和最小是2,不可能小于2,所以(4)中事件不可能发生,是不可能事件.判断事件类型的步骤要判定事件是何种事件,首先要看清条件,因为三种事件都是相对于一定条件而言的,第二步再看它是一定发生,还是不一定发生,还是一定不发生,一定发生的是必然事件,不一定发生的是随机事件,一定不发生的是不可能事件.练一练1.(2016·西南师大附中检测)下列事件:①一个口袋内装有5个红球,从中任取一球是红球;②掷两枚骰子,所得点数之和为9;③x2≥0(x∈R);④方程x2-3x+5=0有两个不相等的实数根;⑤巴西足球队会在下届世界杯足球赛中夺得冠军,其中随机事件的个数为()A.1 B.2 C.3 D.4解析:选B在所给条件下,①是必然事件;②是随机事件;③是必然事件;④是不可能事件;⑤是随机事件.小明抛掷一枚硬币100次,出现正面朝上48次.[思考1] 你能计算出正面朝上的频率吗?提示:正面朝上的频率为0.48.[思考2] 抛掷一枚硬币一次出现正面朝上的概率是多少?提示:正面朝上的概率为0.5.[思考3] 随机事件的频率与概率之间有什么关系?名师指津:辨析频率与概率:(1)频率本身是随机的,是一个变量,在试验前不能确定,做同样次数的重复试验得到的事件发生的频率可能会不同.比如,全班每个人都做了10次抛掷硬币的试验,但得到正面朝上的频率可以是不同的.(2)概率是一个确定的数,是客观存在的,与每次试验无关.比如,如果一枚硬币是质地均匀的,则抛掷硬币一次出现正面朝上的概率是0.5,与做多少次试验无关.(3)频率是概率的近似值,随着试验次数的增加,频率会越来越接近于概率,在实际问题中,通常事件发生的概率未知,常用频率作为它的估计值.讲一讲2.某射击运动员进行飞碟射击训练,七次训练的成绩记录如下:(1)(2)该射击运动员击中飞碟的概率约为多少?[尝试解答] (1)计算n A n得各次击中飞碟的频率依次约为0.810,0.792,0.800,0.810,0.793,0.794,0.807.(2)由于这些频率非常地接近0.800,且在它附近摆动,所以运动员击中飞碟的概率约为0.800.利用频率估计概率的步骤(1)依次计算各个频率值;(2)观察各个频率值的稳定值即为概率的估计值,有时也可用各个频率的中位数来作为概率的估计值.练一练2.国家乒乓球比赛的用球有严格标准,下面是有关部门对某乒乓球生产企业某批次产品的抽样检测,结果如表所示:(1)(2)从这批产品中任取一个乒乓球,质量检测为优等品的概率约是多少?解:(1)如下表(2)根据频率与概率的关系,可以认为从这批产品中任取一个乒乓球,质量检测为优等品的概率约是0.95.讲一讲3.某人做试验,从一个装有标号为1,2,3,4的小球的盒子中,无放回地取两个小球,每次取一个,先取的小球的标号为x,后取的小球的标号为y,这样构成有序实数对(x,y).(1)写出这个试验的所有结果;(2)写出“第一次取出的小球上的标号为2”这一事件.[思路点拨]根据日常生活的经验按一定的顺序逐个列出全部结果.[尝试解答](1)当x=1时,y=2,3,4;当x=2时,y=1,3,4;当x=3时,y=1,2,4;当x=4时,y=1,2,3.因此,这个试验的所有结果是(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).(2)记“第一次取出的小球上的标号为2”为事件A,则A={(2,1),(2,3),(2,4)}.列举试验所有可能结果的方法(1)结果是相对于条件而言的,要弄清试验的结果,必须首先明确试验中的条件;(2)根据日常生活经验,按照一定的顺序列举出所有可能的结果,可应用画树形图、列表等方法解决.练一练3.袋中装有大小相同的红、白、黄、黑4个球,分别写出以下随机试验的条件和结果.(1)从中任取1球;(2)从中任取2球.解:(1)条件为:从袋中任取1球.结果为:红、白、黄、黑4种.(2)条件为:从袋中任取2球.若记(红,白)表示一次试验中,取出的是红球与白球,结果为:(红,白),(红,黄),(红,黑),(白,黄),(白,黑),(黄,黑) 6种.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是了解概率的含义,了解频率与概率的区别与联系,了解随机事件发生的不确定性和频率的稳定性,难点是能列出一些简单试验的所有可能结果.2.本节课要重点掌握的规律方法(1)会判断事件的类型,见讲1.(2)掌握利用频率估计概率的步骤,见讲2.(3)会列举试验所有结果的方法,见讲3.3.本节课的易错点有两个:(1)混淆频率与概率概念,如讲2.(2)列举试验结果时易出现重复或遗漏,如讲3.课下能力提升(十五)[学业水平达标练]题组1事件的分类1.下列事件中,是随机事件的有()①在一条公路上,交警记录某一小时通过的汽车超过300辆;②若a为整数,则a+1为整数;③发射一颗炮弹,命中目标;④检查流水线上一件产品是合格品还是次品.A.1个B.2个C.3个D.4个解析:选C当a为整数时,a+1一定为整数,是必然事件,其余3个为随机事件.2.从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是() A.3个都是正品B.至少有1个是次品C.3个都是次品D.至少有1个是正品解析:选D任意抽取3件的可能情况是:3个正品;2个正品1个次品;1个正品2个次品.由于只有2个次品,不会有3个次品的情况.3 种可能的结果中,都至少有1个正品,所以至少有1个是正品是必然发生的,即必然事件应该是“至少有1个是正品”.3.在下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?①如果a,b都是实数,那么a+b=b+a;②从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签;③没有水分,种子发芽;④某电话总机在60秒内接到15次传呼;⑤在标准大气压下,水的温度达到50 ℃时沸腾;⑥同性电荷,相互排斥.解:由实数运算性质知①恒成立,是必然事件;⑥由物理知识知同性电荷相斥是必然事件,①⑥是必然事件.没有水分,种子不会发芽;标准大气压下,水的温度达到50 ℃时不沸腾,③⑤是不可能事件.从1~6中取一张可能取出4,也可能取不到4;电话总机在60秒内可能接到15次传呼也可能不是15次.②④是随机事件.题组2随机事件的频率与概率4.(2016·洛阳检测)下列说法正确的是()A.任何事件的概率总是在(0,1]之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定解析:选C由概率与频率的有关概念知,C正确.5.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②作7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是nm=37;③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数是()A.0 B.1 C.2 D.3解析:选A由频率与概率之间的联系与区别知,①②③均不正确.6.从存放号码分别为1,2,3,…,10的卡片的盒里,有放回地取100次,每次取一张卡片,并记下号码,统计结果如下:解析:取到奇数号码的次数为58,故取到号码为奇数的频率为58100=0.58.答案:0.587.一个地区从某年起几年之内的新生婴儿数及其中的男婴数如下:(1)(2)这一地区男婴出生的频率是否稳定在一个常数上?解:(1)男婴出生的频率依次约为:0.520 0,0.517 3,0.517 3,0.517 3.(2)各个频率均稳定在常数0.517 3上.8.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩分布:用已有的信息估计她得以下分数的概率(结果保留到小数点后三位):(1)90分以上;(2)60分~69分;(3)60分以下.解:总人数为43+182+260+90+62+8=645.修李老师的高等数学课的学生考试成绩在90分以上,60分~69分,60分以下的频率分别为:43645≈0.067,90645≈0.140,62+8645≈0.109. ∴用以上信息可以估计出王小慧得分的概率情况:(1)“得90分以上”记为事件A ,则P (A )=0.067.(2)“得60分~69分”记为事件B ,则P (B )=0.140.(3)得“60分以下”记为事件C ,则P (C )=0.109.题组3 试验结果分析9.从含有两个正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果;(2)设A 为“取出两件产品中恰有一件次品”,写出事件A 对应的结果.解:(1)试验所有结果:a 1,a 2;a 1,b 1;a 2,b 1;a 2,a 1;b 1,a 1;b 1,a 2.共6种.(2)事件A 对应的结果为:a 1,b 1;a 2,b 1;b 1,a 1;b 1,a 2.10.指出下列试验的结果:(1)从装有红、白、黑三种颜色的小球各1个的袋子中任取2个小球;(2)从1,3,6,10四个数中任取两个数(不重复)作差.解:(1)结果:红球,白球;红球,黑球;白球,黑球.(2)结果:1-3=-2,3-1=2,1-6=-5,6-1=5,1-10=-9,10-1=9,3-6=-3,6-3=3,3-10=-7,10-3=7,6-10=-4,10-6=4.即试验的结果为:-2,2,-5,5,-9,9,-3,3,-7,7,-4,4.[能力提升综合练]1.根据山东省教育研究机构的统计资料,今在校中学生近视率约为37.4%,某眼镜商要到一中学给学生配镜,若已知该校学生总数为600人,则该眼镜商应带眼镜的数目为( )A .374副B .224.4副C .不少于225副D .不多于225副解析:选C 根据概率相关知识,该校近视生人数约为600×37.4%=224.4,结合实际情况,眼镜商应带眼镜数不少于225副,选C.2.某人将一枚硬币连续抛掷了10次,正面朝上的情形出现了6次,若用A 表示正面朝上这一事件,则A 的( )A .概率为35B .频率为35C .频率为6D .概率接近0.6解析:选B 事件A ={正面朝上}的概率为12,因为试验的次数较少,所以事件的频率为35,与概率值相差太大,并不接近.故选B. 3.(2016·深圳调研)“一名同学一次掷出3枚骰子,3枚全是6点”的事件是( )A .不可能事件B .必然事件C .可能性较大的随机事件D .可能性较小的随机事件解析:选D 掷出的3枚骰子全是6点,可能发生,但发生的可能性较小.4.“连续掷两枚质地均匀的骰子,记录朝上的点数”,该试验的结果共有( )A .6种B .12种C .24种D .36种解析:选D 试验的全部结果为(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3)(6,4),(6,5),(6,6),共36种.5.(2016·济南检测)如果袋中装有数量差别很大而大小相同的白球和黑球(只是颜色不同),从中任取一球,取了10次有9个白球,估计袋中数量多的是________.解析:取了10次有9个白球,则取出白球的频率是910,估计其概率约是910,那么取出黑球的概率约是110,因为取出白球的概率大于取出黑球的概率,所以估计袋中数量多的是白球.答案:白球6.在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如下表:(1)(2)估计纤度落在[1.38,1.50)中的概率及纤度小于1.40的概率是多少?解:(1)频率分布表如下表.频率分布直方图如图所示.(2)纤度落在[1.38,1.50)中的频数是30+29+10=69,则纤度落在[1.38,1.50)中的频率是69100=0.69,所以估计纤度落在[1.38,1.50)中的概率为0.69.纤度小于1.40的频数是4+25+12×30=44,则纤度小于1.40的频率是44100=0.44,所以估计纤度小于1.40的概率是0.44.。