矩阵分析课后习题解答(整理版)
- 格式:docx
- 大小:81.94 KB
- 文档页数:3
矩阵分析引论第四版课后练习题含答案简介《矩阵分析引论》是矩阵分析领域的经典教材之一,已经发行了四个版本。
该书主要以线性代数、矩阵理论和应用为主要内容,重点介绍了矩阵分析的基本概念、原理和应用。
本文主要介绍该书第四版中的课后练习题及其答案。
提供的资料本文为矩阵分析引论第四版课后练习题及其答案,包含了第一章到第五章的所有习题和答案。
其中,习题从简单到复杂,大部分习题都有详细的解答过程和答案。
内容概述第一章引言第一章主要介绍了矩阵分析的历史和基本概念、性质、符号等。
本章习题主要涉及了矩阵、向量、矩阵运算等基本概念和性质。
第二章基本概念和变换第二章主要介绍了线性变换的基本概念和性质,以及线性代数中的一些重要定理和定理的证明。
本章习题主要涉及了线性变换、矩阵的秩和标准型、特征值和特征向量等内容。
第三章矩阵运算第三章主要介绍了矩阵运算的基本概念和性质,包括矩阵乘法、逆矩阵、行列式等。
本章习题主要涉及矩阵运算的基本操作和应用。
第四章矩阵分解第四章主要介绍了矩阵分解的基本概念和应用,包括特征值分解、奇异值分解、QR分解等。
本章习题主要涉及了矩阵特征值和特征向量、矩阵的奇异值分解等内容。
第五章线性方程组和特征值问题第五章主要介绍了解线性方程组和求特征值的方法,包括高斯消元法、LU分解、带状矩阵、雅可比迭代等。
本章习题主要涉及了线性方程组的解法、矩阵的特征值问题等内容。
结语本文介绍了矩阵分析引论第四版课后练习题及其答案。
对于学习矩阵分析的同学,课后习题是一个非常重要的练习和提升自己能力的途径。
本文所提供的习题和答案可以帮助读者巩固和提高自己的矩阵分析能力。
同时,本文也希望能够帮助更多的人学习矩阵分析,并成为矩阵分析领域的专家。
第一章线性空间与线性变换(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)(此处注意线性变换的核空间与矩阵核空间的区别)1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。
1.10.证明同1.9。
1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)1.13.提示:设),)(-⨯==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行),代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故A A T -=,即A 为反对称阵。
若X 是n 维复列向量,同样有0=ii a ,0=+ji ij a a ,再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(1.15.存在性:令2,2HH A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,唯一性:假设11C B A +=,1111,C C B B HH -==,且C C B B ≠≠11,,由1111C B C B A H H H -=+=,得C A A C B A A B HH =-==+=2,211(矛盾)第二章酉空间和酉变换(注意实空间与复空间部分性质的区别)2.8 法二:设~2121),,()0,0,1,0,0)(,,(X e e e e e e e n T n i ==(1在第i 行);~2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T n j ==(1在第j 行) 根据此题内积定义⎩⎨⎧≠===j i j i X Y e e H j i 01),~~( 故n e e e ,,21是V 的一个标准正交基。
第1章 线性空间和线性变换(详解)1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用ij E (,1,2,,1)i j i n <=-表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵.显然,ii E ,ij E 都是对称矩阵,ii E 有(1)2n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1)2n n +个矩阵线性表示,此即对称矩阵组成(1)2n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1)2n n -.评注:欲证一个集合在加法与数乘两种运算下是一个(1)2n n +维线性空间,只需找出(1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1)2n n +个向量线性表示即可.1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可.1-3 解:方法一 设11223344x x x x =+++A E E E E即123412111111100311100000x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦故 12341231211203x x x x x x x x x x +++++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦于是12341231,2x x x x x x x +++=++=1210,3x x x +==解之得12343,3,2,1x x x x ==-==-即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.方法二 应用同构的概念,22R ⨯是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T,1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有1111110003111020100311000001021000300011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.1-4 解:证:设112233440k k k k αααα+++=即1234123412313412411111110110110110k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤==⎢⎥++++⎣⎦于是12341230,0k k k k k k k +++=++= 1341240,0k k k k k k ++=++=解之得12340k k k k ====故1234,,,αααα线性无关. 设123412341231341241111111011011011a b x x x x c d x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤=⎢⎥++++⎣⎦于是12341230,0x x x x x x x +++=++= 1341240,0x x x x x x ++=++=解之得122,x b c d a x a c =++-=-34,x a d x a b =-=-1234,,,x x x x 即为所求坐标.1-5 解:方法一 (用线性空间理论计算)32312233410()121,,,021,1,(1),(1)p x x x x x y y x x x y y ⎡⎤⎢⎥⎢⎥⎡⎤=+=⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤=---⎣⎦⎢⎥⎢⎥⎣⎦又由于23231,1,(1),(1)111101231,,,00130001x x x x x x ⎡⎤---⎣⎦⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥-⎢⎥⎣⎦于是()p x 在基231,1,(1),(1)x x x ---下的坐标为11234111113012306001306000122y y y y -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦方法二 将3()12p x x =+根据幂级数公式按1x -展开可得32323()12(1)(1)(1)(1)(1)(1)(1)2!3!36(1)6(1)2(1)p x x p p p p x x x x x x =+''''''=+-+-+-=+-+-+- 因此()p x 在基231,1,(1),(1)x x x ---下的坐标为[]3,6,6,2T.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些.1-6 解:①设[][]12341234,,,,,,=ββββααααP将1234,,,αααα与1234,,,ββββ代入上式得20561001133611001121011010130011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦P 故过渡矩阵1100120561100133601101121001110131122223514221915223112822-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦P②设1212343410(,,,)10y y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξββββ将1234,,,ββββ坐标代入上式后整理得11234792056181336027112111310130227y y y y -⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦评注:只需将,i i αβ代入过渡矩阵的定义[][]12341234,,,,,,=ββββααααP 计算出P .1-7 解:因为12121212{,}{,}{,,,}span span span +=ααββααββ由于秩1212{,,,}3span =ααββ,且121,,ααβ是向量1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ. 方法一 设1212{,}{,}span span ∈ξααββ,于是由交空间定义可知123411212111011030117k k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦解之得1222122,4,3(k l k l l l l =-==-为任意数)于是11222[5,2,3,4]T k k l =+=-ξαα(很显然1122l l ββ=+ξ)所以交空间的维数为1,基为[5,2,3,4]T-.方法二 不难知12121212{,}{,},{,}{,}span span span span ''==ααααββββ其中2213[2,2,0,1],[,2,1,0]3TT ''=--=-αβ.又12{,}span 'αα也是线性方程组 13423422x x x x x x =-⎧⎨=-⎩ 的解空间.12{,}span 'ββ是线性方程组13423413232x x x x x x ⎧=-+⎪⎨⎪=-⎩ 的解空间,所以所求的交空间就是线性方程组1342341342342213232x x x x x x x x x x x x =-⎧⎪=-⎪⎪⎨=-+⎪⎪=-⎪⎩ 的解空间,容易求出其基础解系为[5,2,3,4]T-,所以交空间的维数为1,基为[5,2,3,4]T -.评注:本题有几个知识点是很重要的.12(1){,,,}n span ααα的基底就是12,,,nααα的极大线性无关组.维数等于秩12{,,,}n ααα.1212(2){,}{,}span span +ααββ1212{,,,}span =ααββ.(3)方法一的思路,求交1212{,}{,}span span ααββ就是求向量ξ,既可由12,αα线性表示,又可由12,ββ线性表示的那部分向量.(4)方法二是借用“两个齐次线性方程组解空间的交空间就是联立方程组的解空间”,将本题已知条件改造为齐次线性方程组来求解.1-8解:(1):解出方程组1234123420510640x x x x x x x x ---=⎧⎨---=⎩(Ⅰ)的基础解系,即是1V 的基,解出方程组123420x x x x -++=(Ⅱ)的基础解系,即是2V 的基; (2): 解出方程组1234123412342051064020x x x x x x x x x x x x ---=⎧⎪---=⎨⎪-++=⎩的基础解系,即为12V V ⋂的基;(3):设{}{}1121,,,,,k l V span V span ααββ==,则11,,,,,k l ααββ的极大无关组即是12V V +的基. 1-9解:仿上题解.1-10解: 仿上题解.1-11 证:设210121()()()0k k l l l l --++++=ξξξξA AA①用1k -A从左侧成①式两端,由()0k=ξA 可得10()0k l -=ξA因为1()0k -≠ξA,所以00l =,代入①可得21121()()()0k k l l l --+++=ξξξA AA②用2k -A从左侧乘②式两端,由()0k=ξA可得00l =,继续下去,可得210k l l -===,于是21,(),(),,()k -ξξξξA AA线性无关.1-12 解:由1-11可知,n 个向量210,(),(),,()n -≠ξξξξAAA线性无关,它是V 的一个基.又由21212121[,(),(),,()][(),(),,()][(),(),,(),0]000010000100[,(),(),,()]0000010n n n n n n----⨯==⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ξξξξξξξξξξξξξξA A A AA A A A AAA AA 所以A在21,(),(),,()n -ξξξξA AA 下矩阵表示为n 阶矩阵0000100001000000010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦评注:n 维线性空间V 中任何一组n 个线性无关的向量组都可以构成V 的一个基,因此21,(),(),,()n -ξξξξA AA是V 的一个基.1-13证: 设()()()111,,,,,,,,,,,r s m r s A A ξξξββααα==设11,,,,,,r r s ξξξξξ是的极大无关组,则可以证明11,,,,,,r r s ααααα是的极大无关组.1-14 解:(1)由题意知123123[,,][,,]=ααααααA A123123111[,,][,,]011001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦βββααα设A在基123,,βββ下的矩阵表示是B ,则11111123111011103011001215001244346238--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦B P AP (2)由于0A ≠,故0=AX 只有零解,所以A的核是零空间.由维数定理可知A的值域是线性空间3R .1-15解:已知()()2323,,,,A αααααα=11A(1) 求得式()()2323,,,,P εεεααα=11中的过渡矩阵P ,则1B P AP -=即为所求; (2)仿教材例1.5.1.(见<矩阵分析>史荣昌编著.北京理工大学出版社.) 1-16解:设()23,,A ααα=1,则{}23(),,;()R A span N A ααα=1就是齐次方程组0Ax = 的解空间. 1-17证:由矩阵的乘法定义知AB BA 与的主对角线上元素相等,故知AB BA 与的迹相等;再由1-18 题可证.1-18证:对k 用数学归纳法证。
矩阵分析课后习题答案第二章 内积空间14 . 设A , B 均为厄米特矩阵, 证明: AB 为厄米特矩阵的充要条件是AB = BA .证明: H A A =,H B B =()HH H AB AB B A AB =⇔=即 AB BA =17 . 证明:两个正规矩阵相似( 酉等价) 的充要条件是特征多项式相同.证明:设A , B 是两个n 阶的正规矩阵,如果A 与B 是酉等价的,则存在酉矩阵Q ,使得1H B Q AQ Q AQ -==()11E B E Q AQ Q E A Q E A λλλλ--⇒-=-=-=-即A , B 有相同的特征多项式反之,A , B 有相同的特征多项式,因而有相同的特征值集合{}12,,,n λλλA ,B 是正规矩阵,则存在酉矩阵1Q 及2Q ,使得1111122n Q AQ Q BQ λλλ2--⎡⎤⎢⎥⎢⎥==⎢⎥ ⎢⎥ ⎣⎦ 则有 ()()11111121121212B Q Q A Q Q Q QA Q QP A P------=== 易知,112p Q Q -=是酉矩阵,即A , B 是酉相似的。
第三章 矩阵的标准形6 . 在复数域上, 求下列矩阵的约当标准形:()11 -1 2 3 7 -3 3 0 8 4 5 -2⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ 3 -3 6 ; (2) -2 -5 2; (3) 3 -1 6; (4) -⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥2 -2 4-4 -10 3-2 0 -5⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥2 -2 1 ⎢⎥⎢⎥-1 -1 1⎣⎦解 (1) 特征矩阵为λλλ-1 1 -2⎡⎤⎢⎥-3 +3 - 6⎢⎥⎢⎥-2 2 -4⎣⎦所以行列式因子为()()121D D λλλ==,,()()232D λλλ=-不变因子为()()()()()()()()()231123121,D D d D d d D D λλλλλλλλλλλ== ==, ==-2全部初级因子为()2,,λλλ-故约当标准型为 2J 0 0⎡⎤⎢⎥=0 0 0⎢⎥⎢⎥0 0 0⎣⎦(2) 特征矩阵为λλλ -3 - 7 3⎡⎤⎢⎥ 2 +5 -2⎢⎥⎢⎥ 4 10 - 3⎣⎦所以行列式因子为()()211D D λλ==,()()31()()D i i λλλλ=--+不变因子为()()()()()()()()()231123121,1()()D D d D d d i i D D λλλλλλλλλλλ== ==1, ==--+全部初级因子为1,,i i λλλ- - +故约当标准型为 J i i 1 0 0⎡⎤⎢⎥=0 0⎢⎥⎢⎥0 0 -⎣⎦(3) 特征矩阵为5λλλ -3 0 -8⎡⎤⎢⎥ -3 +1 -6⎢⎥⎢⎥ 2 0 +⎣⎦所以行列式因子为()()()()1231,1,1D D D λλλλλ3= =+ =+不变因子为()()()()()()()()()2231123121,1D D d D d d D D λλλλλλλλλλ== ==+1, ==+全部初级因子为21,1)λλ+ (+故约当标准型为 J -1 0 0⎡⎤⎢⎥= 0 -1 0⎢⎥⎢⎥ 0 1 -1⎣⎦(4) 特征矩阵为λλλ -4 - 5 2⎡⎤⎢⎥ 2 +2 -1⎢⎥⎢⎥ 1 1 - 1⎣⎦所以行列式因子为()()211D D λλ==,()()331D λλ=-不变因子为()()()()()()()()()3231123121,D D d D d d D D λλλλλλλλλ== ==1, ==-1全部初级因子为()31λ-故约当标准型为 J 1 0 0⎡⎤⎢⎥=1 1 0⎢⎥⎢⎥0 1 1⎣⎦8 . 证明: ( 1)方阵A 的特征值全是零的充要条件是存在自然数m ,使得A m = 0; ( 2) 若A m = 0 , 则1A E +=.证明:(1) 如λ为A 的任一特征值,A 为n 阶方阵,则m λ为m A 的特征值,若0m A =则m n E A E λλλ-==,即A 的特征值为0。
矩阵分析第章习题答案第三章1、已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量1212(,,,),(,,,)n n x x x y y y αβ==定义内积为(,)H A αβαβ=(1)证明在上述定义下,n C 是⾣空间;(2)写出n C 中的Canchy-Schwarz 不等式。
2、已知2111311101A --??=?-,求()N A 的标准正交基。
提⽰:即求⽅程0AX =的基础解系再正交化单位化。
3、已知308126(1)316,(2)103205114A A --??=-=-??----试求⾣矩阵U ,使得H U AU 是上三⾓矩阵。
提⽰:参见教材上的例⼦4、试证:在nC上的任何⼀个正交投影矩阵P 是半正定的Hermite 矩阵。
5、验证下列矩阵是正规矩阵,并求⾣矩阵U,使H U AU 为对⾓矩阵,已知131(1)612A=01(2)10000i A i -=??,434621(3)44326962260ii i A i i i i i +--=----?+--??11(4)11A -??=??6、试求正交矩阵Q ,使TQ AQ 为对⾓矩阵,已知220(1)212020A -=---??,11011110(2)01111011A -??-?=-??-??7、试求矩阵P ,使H P AP E =(或T P AP E =),已知11(1)01112i i A i i +=--??,222(2)254245A -??=---8、设n 阶⾣矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1()()H i E U E U -=-+是Hermite 矩阵。
反之,若H 是Hermite 矩阵,则E iH +满秩,且1()()U E iH E iH -=+-是⾣矩阵。
证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,⽭盾,所以矩阵E U +满秩。
第4章1、 求矩阵A 的满秩分解2123111010(1)25141,(2)01111;131212313112101212011101221333614236(3),(4)2431452402227486281061217573A A A A -⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦解:21231(1)2514113121A -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦用行初等变换10806~011010514-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦所以213254132B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,108060110100514C -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,即A B C = 11010(2)0111123131A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦用行初等变换11010~0111100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦所以取100121B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,1101001111C ⎡⎤=⎢⎥⎣⎦,即A B C = 121012122133(3)2431454862810A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦121012001121,~00000000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦10112142B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,121012001121C ⎡⎤=⎢⎥⎣⎦12011103614236(4)240222761217573A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦120110001110~00000100⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦1010313620276173B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 12011000111001C ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦2、 已知矩阵(1)111111A ⎡⎤=⎢⎥⎣⎦, (2)212304112524A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦此题计算太繁 求A 的奇异值分解。
解:(1)H A A 的特征值为6、0。
A的奇异值。
H AA 的单位化特征向量为,⎛⎛⎫ ⎪ ⎪ - ⎝⎝。
《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案第1章 线性空间和线性变换(详解)1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用ij E (,1,2,,1)i j i n <=-L 表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵.显然,ii E ,ij E 都是对称矩阵,ii E 有(1)2n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1)2n n +个矩阵线性表示,此即对称矩阵组成(1)2n n +维线性空间.同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1)2n n -.评注:欲证一个集合在加法与数乘两种运算下是一个(1)2n n +维线性空间,只需找出(1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1)2n n +个向量线性表示即可.1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可.1-3 解:方法一 设11223344x x x x =+++A E E E E即123412111111100311100000x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ 故12341231211203x x x x x x x x x x +++++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦于是12341231,2x x x x x x x +++=++=1210,3x x x +==解之得12343,3,2,1x x x x ==-==-即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --.方法二 应用同构的概念,22R ⨯是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T ,1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有1111110003111020100311000001021000300011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --.1-4 解:证:设112233440k k k k αααα+++=即1234123412313412411111110110110110k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤==⎢⎥++++⎣⎦于是12341230,0k k k k k k k +++=++=1341240,0k k k k k k ++=++=解之得12340k k k k ====故1234,,,αααα线性无关. 设123412341231341241111111011011011a b x x x x c d x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤=⎢⎥++++⎣⎦于是12341230,0x x x x x x x +++=++= 1341240,0x x x x x x ++=++=解之得122,x b c d a x a c =++-=-34,x a d x a b =-=-1234,,,x x x x 即为所求坐标.1-5 解:方法一 (用线性空间理论计算)32312233410()121,,,021,1,(1),(1)p x x x x x y y x x x y y ⎡⎤⎢⎥⎢⎥⎡⎤=+=⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤=---⎣⎦⎢⎥⎢⎥⎣⎦又由于23231,1,(1),(1)111101231,,,00130001x x x x x x ⎡⎤---⎣⎦⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥-⎢⎥⎣⎦于是()p x 在基231,1,(1),(1)x x x ---下的坐标为11234111113012306001306000122y y y y -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦方法二 将3()12p x x =+根据幂级数公式按1x -展开可得32323()12(1)(1)(1)(1)(1)(1)(1)2!3!36(1)6(1)2(1)p x x p p p p x x x x x x =+''''''=+-+-+-=+-+-+- 因此()p x 在基231,1,(1),(1)x x x ---下的坐标为[]3,6,6,2T.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些. 1-6 解:①设[][]12341234,,,,,,=ββββααααP将1234,,,αααα与1234,,,ββββ代入上式得20561001133611001121011010130011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦P 故过渡矩阵1100120561100133601101121001110131122223514221915223112822-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦P②设1212343410(,,,)10y y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξββββ将1234,,,ββββ坐标代入上式后整理得11234792056181336027112111310130227y y y y -⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦评注:只需将,i i αβ代入过渡矩阵的定义[][]12341234,,,,,,=ββββααααP计算出P .1-7 解:因为12121212{,}{,}{,,,}span span span +=ααββααββ由于秩1212{,,,}3span =ααββ,且121,,ααβ是向量1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ.方法一 设1212{,}{,}span span ∈ξααββI ,于是由交空间定义可知123411212111011030117k k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦解之得1222122,4,3(k l k l l l l =-==-为任意数)于是11222[5,2,3,4]T k k l =+=-ξαα(很显然1122l l ββ=+ξ)所以交空间的维数为1,基为[5,2,3,4]T -. 方法二 不难知12121212{,}{,},{,}{,}span span span span ''==ααααββββ其中2213[2,2,0,1],[,2,1,0]3TT ''=--=-αβ.又12{,}span 'αα也是线性方程组13423422x x x x x x =-⎧⎨=-⎩ 的解空间.12{,}span 'ββ是线性方程组13423413232x x x x x x ⎧=-+⎪⎨⎪=-⎩ 的解空间,所以所求的交空间就是线性方程组1342341342342213232x x x x x x x x x x x x =-⎧⎪=-⎪⎪⎨=-+⎪⎪=-⎪⎩ 的解空间,容易求出其基础解系为[5,2,3,4]T -,所以交空间的维数为1,基为[5,2,3,4]T -.评注:本题有几个知识点是很重要的.12(1){,,,}n span αααL 的基底就是12,,,n αααL 的极大线性无关组.维数等于秩12{,,,}n αααL .1212(2){,}{,}span span +ααββ1212{,,,}span =ααββ.(3)方法一的思路,求交1212{,}{,}span span ααββI 就是求向量ξ,既可由12,αα线性表示,又可由12,ββ线性表示的那部分向量.(4)方法二是借用“两个齐次线性方程组解空间的交空间就是联立方程组的解空间”,将本题已知条件改造为齐次线性方程组来求解.1-8解:(1):解出方程组1234123420510640x x x x x x x x ---=⎧⎨---=⎩(Ⅰ)的基础解系,即是1V 的基, 解出方程组123420x x x x -++=(Ⅱ)的基础解系,即是2V 的基; (2): 解出方程组1234123412342051064020x x x x x x x x x x x x ---=⎧⎪---=⎨⎪-++=⎩的基础解系,即为12V V ⋂的基;(3):设{}{}1121,,,,,k l V span V span ααββ==L L ,则11,,,,,k l ααββL L 的极大无关组即是12V V +的基. 1-9解:仿上题解.1-10解: 仿上题解.1-11 证:设210121()()()0k k l l l l --++++=ξξξξL A AA①用1k -A从左侧成①式两端,由()0k=ξA可得10()0k l -=ξA因为1()0k -≠ξA,所以00l =,代入①可得21121()()()0k k l l l --+++=ξξξL A A A②用2k -A从左侧乘②式两端,由()0k=ξA可得00l =,继续下去,可得210k l l -===L ,于是21,(),(),,()k -ξξξξL A AA 线性无关.1-12 解:由1-11可知,n 个向量210,(),(),,()n -≠ξξξξL A AA线性无关,它是V 的一个基.又由21212121[,(),(),,()][(),(),,()][(),(),,(),0]000010000100[,(),(),,()]00000010n n n n n n----⨯==⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ξξξξξξξξξξξξξξL L L L L L L M M M M L LA A A AA A A A AAA A A 所以A在21,(),(),,()n -ξξξξL A AA下矩阵表示为n 阶矩阵00001000010000000010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦L L L M M M M L L评注:n 维线性空间V 中任何一组n 个线性无关的向量组都可以构成V 的一个基,因此21,(),(),,()n -ξξξξL A A A是V 的一个基.1-13证: 设()()()111,,,,,,,,,,,r s m r s A A ξξξββααα==L L L L L 设11,,,,,,r r s ξξξξξL L L 是的极大无关组,则可以证明11,,,,,,r r s αααααL L L 是的极大无关组. 1-14 解:(1)由题意知123123[,,][,,]=ααααααA A123123111[,,][,,]011001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦βββααα 设A在基123,,βββ下的矩阵表示是B ,则11111123111011103011001215001244346238--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦B P AP (2)由于0A ≠,故0=AX 只有零解,所以A的核是零空间.由维数定理可知A的值域是线性空间3R .1-15解:已知()()2323,,,,A αααααα=11A(1) 求得式()()2323,,,,P εεεααα=11中的过渡矩阵P ,则1B P AP -=即为所求; (2)仿教材例1.5.1.(见<矩阵分析>史荣昌编著.北京理工大学出版社.) 1-16解:设()23,,A ααα=1,则{}23(),,;()R A span N A ααα=1就是齐次方程组0Ax = 的解空间. 1-17证:由矩阵的乘法定义知AB BA 与的主对角线上元素相等,故知AB BA 与的迹相等;再由1-18 题可证. 1-18证:对k 用数学归纳法证。
第一章 线性空间与线性变换
(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)
(此处注意线性变换的核空间与矩阵核空间的区别)
1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。
1.10.证明同1.9。
1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)
1.13.提示:设),)(-
⨯==n j i a A n
n ij (,分别令T
i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行)
,代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故
A A T -=,即A 为反对称阵。
若X 是n 维复列向量,同样有0=ii a ,
0=+ji ij a a ,
再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于
0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A
1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(
1.15.存在性:令2
,2H
H A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,
唯一性:假设11C B A +=,1111,C C B B H H -==,且C C B B ≠≠11,,由
111
1C B C B A H
H H -=+=,得C A A C B A A B H
H =-==+=
2
,211(矛盾) 第二章 酉空间和酉变换
(注意实空间与复空间部分性质的区别)
2.8 法二:设~
2121),,()0,0,1,0,0)(,,(X e e e e e e e n T
n i ==(1在第i 行);
~
2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T
n j ==(1在第j 行)
根据此题内积定义⎩
⎨
⎧≠===j i j
i X Y e e H j i 01),~
~( 故n e e e ,,21是V 的一个标准正交基。
(注意,在无特别定义的情况下,内积的定义默认为X Y Y X H =),() 2.15 先求得C 使Λ=AC C H ,假设CB P =,使I AP P H =,则有Λ=-1)(H BB ,依次式求得B ,进而求得P 。
(此方法不一定正确)
2.16 将),,(321ααα进行列变换化为阶梯型知可取21αα,为其中两个
基,另两个基可取T T
)1,0,0,0(,0,1,0,043==
αα)(,化标准正交基略。
2.17 略
第二章 矩阵的分解
注:例2.9(1)中的Jordan 标准型有误,⎥⎥⎥⎦
⎤
⎢⎢
⎢⎣
⎡=111
1
J ,Jordan 标准型不唯一,各Jordan 块之间可以互换,互换的原则是:同一特征值对应的Jordan 块之间可以互换;不同特征值对应的Jordan 块整体可以互换。
3.7、3.8同3.1 3.11 方法同上
3.12 由O A k =知A 的特征值全为0(x x A x Ax x k k λλ=⇒=≠∀,0),则I A +的特征值全为1,根据行列式与特征值的关系,则1=+I A 3.27 略
3.29 见课本P67例3.17 3.30 见课本P69例3.19
第三章 范数及其应用
4.12 (1)22
A A A m F ≥=,{}22222,min
B A B A B A AB F F ≤≤
(2)22
221
)()(m ax A A n
A A A tr A A n A n F F H H i ≤⇒
=≥=λ ∞
≤≤≤m m F A n A A A 1
2易证。
第七章 广义逆矩阵。