09 纯滞后过程控制
- 格式:ppt
- 大小:981.00 KB
- 文档页数:34
实验五 纯滞后控制系统设计一、实验目的1) 学习使用simulink 实现Dahlin 算法的设计方法。
2) 学习使用simulink 进行Smith 预估补偿控制的设计方法。
二、实验原理1. Dahlin 算法的设计已知被控对象传递函数:102()100s+1s G s e -=(1)采样周期为2s ,选择期望闭环传递函数中的时间常数分别为T τ=5s ,10s ,20s ,设计Dahlin 控制器。
基本原理参见课本P175 7.3节。
2. Smith 预估补偿控制的设计 已知被控对象传递函数:3023()2s +60s+1sG s e -= (2) 应用Smith 预估补偿算法设计控制系统,并采用PID 控制。
基本原理图参见课本P182 7.4节。
三、实验内容1) 按式(1)建立系统的Simulink 模型,设计Dahlin 控制器。
改变期望闭环传递函数中的时间常数,观察不同的仿真结果,记录实验曲线。
当T τ=5s 时,系统的Simulink 仿真图和响应曲线图如下:Simulink仿真图系统响应曲线图当Tτ=10s时,系统的Simulink仿真图和响应曲线图如下:Simulink仿真图系统响应曲线图当Tτ=20s时,系统的Simulink仿真图和响应曲线图如下:Simulink 仿真图系统响应曲线图2) 按式(2)建立系统的Simulink 模型,应用Smith 预估补偿算法设计控制系统,消除滞后时间的影响,并整定好PID 参数。
与同一PID 控制器对无滞后的被控对象控制结果相比较,记录实验曲线。
3023()2s +60s+1s G s e -= Smith 预估预估控制系统仿真框图如下图:Simulink仿真图PID控制器选取P=2,Ti=100,Td=0;响应曲线如下图:系统响应曲线图无滞后的仿真图为:Simulink仿真图响应曲线如下图:系统响应曲线图相比较后曲线几乎一样,只是带Smith预估补偿算法设计控制系统的曲线图为后者的向右平移30s。
纯滞后环节高阶系统的内模控制及仿真摘要:内模控制(IMC)是80年代初提出的,由Garcia和Morari引进,其产生的背景主要有两个方面,一是为了对当时提出的两种预测控制算法MAC和DMC进行系统分析;其次是作为Smith预估器的一种扩展,使设计更为简便,鲁棒及抗扰性大为改善。
内模控制器(IMC)是内部模型控制器(Internal model controller)的简称,由控制器和滤波器两部分组成,两者对系统的作用相对独立,前者影响系统的响应性能,后者影响系统的鲁棒性。
它是一种实用性很强的控制方法,其主要特点是结构简单、设计直观简便,在线调节参数少,且调整方针明确,调整容易。
特别是对于鲁棒及抗扰性的改善和大时滞系统的控制,效果尤为显著。
因此自从其产生以来,不仅在慢响应的过程控制中获得了大量应用,在快响应的电机控制中也能取得了比PID更为优越的效果。
IMC设计简单、跟踪性能好、鲁棒性强,能消除不可测干扰的影响,一直为控制界所重视。
关键词:内模控制;IMC;鲁棒经过十多年的发展,IMC方法不仅已扩展到了多变量和非线性系统,还产生了多种设计方法,较典型的有零极点对消法、预测控制法、针对PID控制器设计的IMC法、有限拍法等。
IMC与其他控制方法的结合也是很容易的,如自适应IMC,采用模糊决策、仿人控制、神经网络的智能型IMC等.值得注意的是,目前已经证明,已成功应用于大量工业过程的各类预测控制算法本质上都属于IMC类,在其等效的IMC结构中特殊之处只是其给定输入采用了未来的超前值(预检控制系统),这不仅可以从结构上说明预测控制为何具有良好的性能,而且为其进一步的深入分析和改进提供了有力的工具。
1.内模控制基本结构及其性质内模控制不仅在工业过程控制中获得了成功的应用,而且表现出在控制系统稳定性和鲁棒性理论分析方面的优势。
在工业过程中,内模控制用于强耦合多变量过程、强非线性过程和大时滞过程。
内模控制基本结构如图1.1所示。