第6章-传热过程的分析和计算
- 格式:ppt
- 大小:13.68 MB
- 文档页数:91
第六章 单相流体对流换热及准则关联式第一节 管内受迫对流换热本章重点:准确掌握准则方程式的适用条件和定性温度、定型尺寸的确定。
1-1 一般分析),,,,,,,,(l c t t u f h p f w μαρλ=流体受迫在管内对流换热时,还应考虑以下因素的影响:① 进口段与充分发展段,② 平均流速与平均温度,③ 物性场的不均匀性,④ 管子的几何特征。
一、进口段与充分发展段1.流体在管内流动的主要特征是,流动存在着两个明显的流动区段,即流动进口(或发展)段和流动充分发展段,如图所示。
(1)从管子进口到边界层汇合处的这段管长内的流动称为管内流动进口段。
(2)进入定型流动的区域称为流动充分发展段。
在流动充分发展段,流体的径向速度分量v 为零,且轴向速度u 不再沿轴向变化,即:0=∂∂xu, 0=v 2.管内的流态(1)如果边界层在管中心处汇合时流体流动仍然保持层流,那么进入充分发展区后也就继续保持层流流动状态,从而构成流体管内层流流动过程。
2300Re <用νdu m =Re 判断流态, 式中 m u 为管内流体的截面平均流速, d 为管子的内直径,ν为流体的运动黏度。
(2)如果边界层在管中心处汇合时流体已经从层流流动完全转变为紊流流动,那么进入充分发展区后就会维持紊流流动状态,从而构成流体管内紊流流动过程。
410Re >(3)如果边界层汇合时正处于流动从层流向紊流过渡的区域,那么其后的流动就会是过渡性的不稳定的流动,称为流体管内过渡流动过程。
410Re 2300<<3.热进口段和热充分发展段当流体温度和管壁温度不同时,在管子的进口区域同时也有热边界层在发展,随着流体向管内深入,热边界层最后也会在管中心汇合,从而进入热充分发展的流动换热区域,在热边界层汇合之前也就必然存在热进口区段。
随着流动从层流变为紊流, 热边界层亦有层流和紊流热边界层之分。
热充分发展段的特征对常物性流体,在常热流和常壁温边界条件下,热充分发展段的特征是:)(1x f t f =及)(2x f t w =与管内任意点的温度),(r x f t =组成的无量纲温度⎪⎪⎭⎫⎝⎛--x f x w w t t t t ,,x ,随管长保持不变,即: 0,,x ,=⎪⎪⎭⎫ ⎝⎛--∂∂x f x w w t t t t x 式中,t —管内任意点的温度,),(r x f t = ⇒xf x w w t t tt ,,x ,--仅是r 的函数。
第六章热量传热微分方程一、单相对流传热的一般数学模型对流传热是一种与流体运动及流体内部导热规律均有关的一种传热现象。
所以,对此过程的描述,需要同时采用描述流体流动和传热两方面的基本方程,即传热微分方程、导热微分方程、运动微分方程、连续性方程以及相应的单值条件。
下面分别介绍。
1.传热微分方程当流体流过固体壁面时,总存在一层很薄的流体粘附在表面上,这层流体总是处于静止状态(u=0),则热量只能依靠导热在该表而层传递。
因此,在此流体层任一微元面积dA的传热量dq,可以根据付立叶定律计算:d q = -lrf— dA—— (1)和So紧结固体壁面处(11=0)的流体层屮温度梯度,kf——流体的导热系数。
另外,根据对流传热基木方程,壁面与流体之间的传热量dg乂可写为:dq = h[t s -t f^dA = hAtdA (2)式中:M = t s-t f——固体壁面与流体间的温差。
h——对流传热系数。
由⑴,(2)两式相等得:(3)h亠並丽n=0此式即为传热微分方程。
欲求出对流传热膜系数h,则应先得出在该流体中的温度分布。
其温度分布可由导热微分方程描述。
2.导热微分方程:流体内导热微分方程在前面已有推导,在无内热源时为:上式常称为能量方程。
对于稳态的温度场,里=0。
oO因此式包括有未知量代,仏,冬,因此,欲求解上式,必须知道流体内的速度分布,这就需求解流体的运动微分方程。
3•运动微分方程:粘性流体的运动微分方程,即是奈斯方程:上述三个方程中有4个未知量:u x ,u y ,u :及P,所以述应引入一个方程,才能求解。
该方程就是连续性方程。
4.连续性方程:一般流体的连续性方程在前而已经导出,即:讪 | °(刊J |。
(刊J | 讥以J 二°— (6)dxdydz对于不可压缩性流体lp =常数),稳态流动(叟=0 )时,有:30通过对上述四种方程求解,便可得出对流传热系数h 的一般解。
再加上单值 条件,便可求得具体问题的解。