第7章-传热过程的分析和计算
- 格式:ppt
- 大小:15.88 MB
- 文档页数:85
热学基础热传导与热平衡的分析与计算热学是物理学的一个重要分支,它研究热量传递和热平衡等热现象。
本文将对热传导和热平衡进行详细的分析和计算。
一、热传导热传导是指热量通过物质的传递,常见的方式有导热、导热和辐射等。
导热是最常见的传热方式,它依赖于物质内部的分子热运动。
导热可以通过热传导方程来描述:q = -kA∆T/∆x其中,q表示单位时间内通过物体的热量,k是热导率,A是传热面积,∆T是温度差,∆x是传热距离。
根据热传导方程,我们可以计算物体的热传导率和传热功率。
二、热平衡热平衡是指两个物体之间的温度差为0,不再存在热量传递。
当两个物体之间达到热平衡时,它们的温度相等。
热平衡的条件可以通过热平衡方程来表达:q1 = q2其中,q1和q2分别代表两个物体的热量。
热平衡方程告诉我们,当两个物体之间的热量相等时,它们达到热平衡状态。
三、热传导与热平衡的计算在实际问题中,我们常常需要计算热传导和热平衡的相关参数。
下面以一个具体的例子来说明如何进行计算。
考虑一个铜棒,长度为L,横截面积为A,温度分布随传热方向x变化。
假设铜棒的热导率为k,铜棒上端温度为T1,下端温度为T2,我们希望计算出铜棒内各点的温度分布。
首先,根据热传导方程,我们可以得到铜棒内各点的温度分布:∆T/∆x = -q/kA其中,∆T是铜棒内两个相邻点的温度差,∆x是相邻点之间的距离。
假设我们已知铜棒上下端的温度,即T1和T2,我们可以利用以上方程进行计算。
首先,选择适当的步长∆x,将铜棒分为N个小段,假设第i段的温度为Ti。
根据以上方程,我们可以得到:(Ti+1 - Ti)/∆x = -q/(kA)其中,i取值从1到N-1。
根据热平衡方程,我们有:q = -kA(T2 - T1)/L将其带入上述方程,可以得到:Ti+1 - Ti = kA(T2 - T1)/(L∆x)根据以上方程,我们可以利用迭代的方法,从上端到下端,求解各段的温度。
四、总结通过上述分析和计算,我们可以详细了解热传导和热平衡的概念、原理和计算方法。
第七章热辐射的基本定律在工程技术中,在日常生活中,辐射换热现象是屡见不鲜的。
太阳对大地的照射是最常见的辐射现象。
高炉中灼热的火焰会烘烤得人们难以忍受‘太阳对人造卫星的辐射,会使卫星的朝阳面的温度明显地高于卫星背阳面的温度;高温发动机部件与飞机机体之间的辐射换热严重地影响着飞机的结构与强度设计,等等。
特别是近年来,人类对太阳能的利用,都大大地促进了人们对辐射换热的研究。
本章首先介绍辐射的基本特性和基本规律;然后重点讨论物体之间的辐射换热规律;最后对气体辐射换热的特点作扼要的介绍。
第一节基本概念1-1 热辐射的本质和特征由于不同的原因,物体能够向其所在的空间发射各种不同波长的电磁波;不同波长的电磁波具有不同的效应,人们可以利用不同波长的电磁波效应达到一定的目的。
比如,人们可以利用无线电波传送信息,利用x射线穿透物质的能力进行零件探伤,利用热射线传递热能,等等。
人们根据电磁波不同效应把电磁波分成若干波段。
波长λ=0.38一0.76μm的电磁波段称为可见光波段λ=0.76—1000 μm的电磁波段称为红外波段(一般将红外波段范围又分为近红外波段和远红外波段,近红外波段为λ=0.7—25μm,远红外波段为λ=25—1000μm);波长大于1000μm的电磁波段称为无线电波段(根据其波长的不同又可分为雷达、视频和广播三个波段);波长小于0.4μm的电磁波依次分为紫外线、x射线和Y射线等。
可见光和红外线以及紫外线的一部分被物体吸收后产生热效应,即波长λ=0.1—1000 μm范围内的电磁技能被物体吸收变为热能,因此,这一波长范围的电磁波称为热射线。
因为在一般常见的工业温度条件下,其辐射波长均在这一范围,所以本课程所感兴趣的将是热射线,下面将专门讨论这一波长范围内电磁波的发射、传播和吸收的规律。
一、热辐射的本质和特点1、发射辐射能是各类物质的固有特性。
当原子内部的电子受温和振动时,产生交替变化的电场和磁场,发出电磁波向空间传播,这就是辐射。