C B
归纳
平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 平行公理推论:结果两条直线都与第三条直线平行,那么这条直线 也互相平行. 结合图形教师引导学生用符号语言表达平行公理推论: 如果b∥a,c题. 平行和相交 1.在同一平面内,两条直线的位置关系有_________. 2.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平 相交 行线中的另一边必__________. 3.同一平面内,两条相交直线不可能与第三条直线都平行,这是因为 过直线外一点有且只有一条直线与已知直线平行 _____________________________________. 0 4.两条直线相交,交点的个数是________, 两条直线平行,交点的个数是_____ 一个 个. 二、判断题. 1.不相交的两条直线叫做平行线.(错) 2.如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也互 相平行.(错) 3.过一点有且只有一条直线平行于已知直线.( 错 ) 三、解答题. 1.读下列语句,并画出图形后判断. (1)直线a、b互相垂直,点P是直线a、b外一点,过P点的直线c垂直于直线b. (2)判断直线a、c的位置关系,并借助于三角尺、直尺验证. 2.试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况.
数学活动二 总结平行线定义,学习平行线的表示法
结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a 与直线b不相交的位置,这时直线a与b互相平行.换言之,同一平面内,不相交 的两条直线叫做平行线. 直线a与b是平行线,记作“a∥b”,这里“∥”是平行符号. 教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设 有交点的两条直线.
5.2.1平行线