第五章 相交线与平行线
探究一:平行线的性质 【例1】 (2014益阳)如图EF∥BC,AC平分∠BAF,∠B=80°,求∠C的度数.
【导学探究】 1.由 AC 平分∠BAF,可得∠FAC= 1 FAB .
2
2.由 EF∥BC,可得∠FAB+∠B= 180° , ∠C= ∠FAC .
解:∵EF∥BC,∠B=80°∴∠FAB=180°-80°=100°, ∵AC 平分∠BAF,∴∠FAC= 1 ∠FAB=50°,∴∠C=∠FAC=50°.
第五章 相交线与平行线
5.3 平行线的性质 5.3.1 平行线的性质
1.经历探索平行线性质的过程,掌握平行线的性质. 2.能应用平行线的性质进行简单的推理和计算.
第五章 相Leabharlann 线与平行线1.平行线的性质1 两条 平行线 被第三条直线所截,同位角 相等 .简单说成:两直线平行,同位 角 相等 . 2.平行线的性质2 两条 平行线 被第三条直线所截,内错角 相等 .简单说成:两直线平行,内错 角 相等 . 3.平行线的性质3 两条 平行线 被第三条直线所截,同旁内角 互补 .简单说成:两直线平行,同旁 内角 互补 . 如图,已知a∥b, 则∠1=∠2,∠3=∠2, ∠2+∠4=180°.
第五章 相交线与平行线
变式训练1-2:(2014云南)如图,直线a∥b,直线a、b被直线c所截,∠1=37°, 则∠2= 143° .
解析:∵a∥b, ∴∠1=∠3, 又∵∠3+∠2=180°, ∴∠2=143°.
第五章 相交线与平行线
探究二:平行线的性质和判定的综合应用 【例2】 如图,已知BD⊥AC,EF⊥AC,D、F为垂足,G是AB上一点,且∠FEC=∠GDB, 求证:∠AGD=∠ABC.