弯曲杆的强度计算
- 格式:ppt
- 大小:1.96 MB
- 文档页数:20
杆件承载力计算公式
在工程设计中,经常需要计算杆件的承载力。
杆件承载力的计算公式是根据材料力学理论和结构力学原理推导出来的。
以下是常见的杆件承载力计算公式:
1.压杆的计算公式:
如果杆件为压杆,那么其承载力的计算公式为:
Pc=Ac*Fc*σc
其中,Pc为杆件的承载力,Ac为杆件的截面面积,Fc为截面的调整系数,σc为相应材料的抗压强度。
2.拉杆的计算公式:
如果杆件为拉杆,那么其承载力的计算公式为:
Pt=At*Ft*σt
其中,Pt为杆件的承载力,At为杆件的截面面积,Ft为截面的调整系数,σt为相应材料的抗拉强度。
3.弯曲杆件的计算公式:
如果杆件受到弯曲作用,那么其承载力的计算公式为:
M=σb*W
其中,M为杆件的弯矩,σb为相应材料的弯曲强度,W为截面的抵抗弯曲矩的有效宽度。
4.扭转杆件的计算公式:
如果杆件受到扭转作用,那么其承载力的计算公式为:
T=τt*J
其中,T为杆件的扭矩,τt为相应材料的抗扭强度,J为截面的极
惯性矩。
以上是常见杆件承载力的计算公式,但需要根据具体情况选择适用的
公式。
此外,还应根据杆件的实际情况和要求,结合工程经验和相关规范,考虑到其他因素如安全系数、边界条件等进行修正,以确保杆件的安全可靠。
建筑⼒学常见问题解答4杆件的强度、刚度和稳定性计算建筑⼒学常见问题解答4 杆件的强度、刚度和稳定性计算1.构件的承载能⼒,指的是什么?答:构件满⾜强度、刚度和稳定性要求的能⼒称为构件的承载能⼒。
(1)⾜够的强度。
即要求构件应具有⾜够的抵抗破坏的能⼒,在荷载作⽤下不致于发⽣破坏。
(2)⾜够的刚度。
即要求构件应具有⾜够的抵抗变形的能⼒,在荷载作⽤下不致于发⽣过⼤的变形⽽影响使⽤。
(3)⾜够的稳定性。
即要求构件应具有保持原有平衡状态的能⼒,在荷载作⽤下不致于突然丧失稳定。
2.什么是应⼒、正应⼒、切应⼒?应⼒的单位如何表⽰?答:内⼒在⼀点处的集度称为应⼒。
垂直于截⾯的应⼒分量称为正应⼒或法向应⼒,⽤σ表⽰;相切于截⾯的应⼒分量称切应⼒或切向应⼒,⽤τ表⽰。
应⼒的单位为Pa。
1 Pa=1 N/m2⼯程实际中应⼒数值较⼤,常⽤MPa或GPa作单位1 MPa=106Pa1 GPa=109Pa3.应⼒和内⼒的关系是什么?答:内⼒在⼀点处的集度称为应⼒。
4.应变和变形有什么不同?答:单位长度上的变形称为应变。
单位纵向长度上的变形称纵向线应变,简称线应变,以ε表⽰。
单位横向长度上的变形称横向线应变,以ε/表⽰横向应变。
5.什么是线应变?什么是横向应变?什么是泊松⽐?答:(1)线应变单位长度上的变形称纵向线应变,简称线应变,以ε表⽰。
对于轴⼒为常量的等截⾯直杆,其纵向变形在杆内分布均匀,故线应变为l l?=ε(4-2)拉伸时ε为正,压缩时ε为负。
线应变是⽆量纲(⽆单位)的量。
(2)横向应变拉(压)杆产⽣纵向变形时,横向也产⽣变形。
设杆件变形前的横向尺⼨为a,变形后为a1,则横向变形为aaa-=1横向应变ε/为aa=/ε(4-3)杆件伸长时,横向减⼩,ε/为负值;杆件压缩时,横向增⼤,ε/为正值。
因此,拉(压)杆的线应变ε与横向应变ε/的符号总是相反的。
(3)横向变形系数或泊松⽐试验证明,当杆件应⼒不超过某⼀限度时,横向应变ε/与线应变ε的绝对值之⽐为⼀常数。
第六节 杆件的强度计算由内力图可直观地判断出等直杆内力最大值所发生的截面,称为危险截面,危险截面上应力值最大的点称为危险点。
为了保证构件有足够的强度,其危险点的有关应力需满足对应的强度条件。
一、正应力与切应力强度条件轴向拉(压)杆中的任一点均处于单向应力状态。
塑性及脆性材料的极限应力u σ分别为屈服极限s σ(或2.0σ)和强度极限b σ,则材料在单向应力状态下的破坏条件为u σσ= 材料的许用拉(压)应力[]nuσσ=,则单向应力状态下的正应力强度条件为[]σσ≤ (6-24)同理可得,材料在纯剪切应力状态下的切应力强度条件[]ττ≤ (6-25)二、正应力强度计算由式(6-1)和(6-25)得,拉(压)杆的正应力强度条件为[]σσ≤=AN maxmax (6-26) 由式(6-1)和(6-25)得,梁弯曲的正应力强度条件为[]σσ≤=zW M maxmax (6-27) 应用强度条件可进行强度校核、设计截面、确定许可载荷等三方面的强度计算。
例6-7 如图6-29(a)所示托架,AB 为圆钢杆2.3=d cm ,BC 为正方形木杆a=14cm 。
杆端均用铰链连接。
在结点B 作用一载荷P=60kN 。
已知钢的许用应力[]σ=140MPa 。
木材的许用拉、压应力分别为[]t σ=8MPa ,[]5.3=c σMpa ,试求:(1)校核托架能否正常工作。
(2)为保证托架安全工作,最大许可载荷为多大;(3)如果要求载荷P=60kN 不变,应如何修改钢杆和木杆的截面尺寸。
解 (1)校核托架强度 如图6-29(b)。
图6-29由 0=∑Y ,0sin 1=-P P α解得 100c s c 1==αP P kN 由 0=∑X ,0cos 21=+-P P α 解得 80cos 12==αP P kN杆AB 、BC 的轴力分别为10011==P N kN, 8022-=-=P N kN ,即杆BC 受压、轴力负号不参与运算。
螺杆的抗弯曲强度计算公式引言。
螺杆是一种常见的机械零部件,广泛应用于工程领域中。
在使用过程中,螺杆可能会受到弯曲力的作用,因此了解螺杆的抗弯曲强度是非常重要的。
本文将介绍螺杆的抗弯曲强度计算公式及其应用。
螺杆的抗弯曲强度计算公式。
螺杆的抗弯曲强度可以通过以下公式进行计算:\[σ=\frac{M\cdot c}{I}\]其中,σ为螺杆的抗弯曲应力,M为作用在螺杆上的弯矩,c为螺杆的截面中性轴到最外纤维的距离,I为螺杆的截面惯性矩。
螺杆的截面惯性矩可以通过以下公式进行计算:\[I=\frac{πd^4}{64}\]其中,d为螺杆的直径。
螺杆的抗弯曲强度计算实例。
假设有一根直径为10mm的螺杆,作用在其上的弯矩为100N·m,求螺杆的抗弯曲应力。
首先计算螺杆的截面惯性矩:\[I=\frac{π\cdot(10\times10^{-3})^4}{64}≈4.91\times10^{-8}m^4\]然后根据抗弯曲强度计算公式计算螺杆的抗弯曲应力:\[σ=\frac{100\times10^{-3}\cdot c}{4.91\times10^{-8}}\]假设螺杆的截面中性轴到最外纤维的距离为5mm,则。
\[σ=\frac{100\times10^{-3}\cdot5\times10^{-3}}{4.91\times10^{-8}}≈1.02\times10^8Pa\]因此,螺杆的抗弯曲应力为1.02×10^8Pa。
螺杆的抗弯曲强度计算公式的应用。
螺杆的抗弯曲强度计算公式可以帮助工程师们在设计和选择螺杆时进行合理的计算和评估。
通过计算螺杆的抗弯曲应力,工程师可以确定螺杆是否能够承受特定的弯曲力,从而保证螺杆在使用过程中不会发生弯曲变形或破裂。
此外,螺杆的抗弯曲强度计算公式还可以用于优化螺杆的设计。
通过调整螺杆的直径、截面形状和材料等参数,工程师可以提高螺杆的抗弯曲强度,从而提高螺杆的使用寿命和安全性。