【精品课件】激光多普勒血流监测
- 格式:ppt
- 大小:545.00 KB
- 文档页数:19
中国激光医学杂志CHINESE JOURNAL OF LASER MEDICINE& SURGERY1999年 第8卷 第3期 Vol.8 No.3 1999激光多普勒血流测定法吴劲松 陈衔城 陆栋 1975年,Stern[1]首次报道应用激光多普勒血流测定仪(laser-Doppler flowmetry, LDF)监测皮肤微循环血流量。
20多年来,关于LDF在皮肤、肌肉、移植皮瓣、脑和肾脏等组织器官微循环血流监测的实验和临床应用研究不断深入,取得较大进展。
LDF工作原理 一、激光多普勒效应 光本质上是一种电磁波,具有波的基本特征。
应用于生物体的安全激光波长窗为600~1200nm,在这个测量范围内,生物大分子对光线的吸收相对较弱。
生物介质且有非常复杂和强烈的多点散射界面,投射到生物组织表面的激光束只有很小一部分会透入深层后再反射回表面,因此人们通常只能接受来自生物介质表面层的光学信息。
对毛细血管内红细胞(RBC)运动引起的光强度涨落的分析更为复杂,不同于清洁介质(如大气层)中的激光多普勒效应。
从连续波激光器产生的发射光具有极强的空间和时间的相干性,允许人们从散射光的相位和强度变化来分析散射介质内颗粒物质(如RBC)在很小范围(<1μm)的运动,达到的精度类似于其他光干涉仪技术的测量结果。
早期用激光多普勒狭缝灯作非侵入式的多普勒位移(Dopplershift)测量,发现位移与眼底视网膜动静脉中血流有关[2]。
以后各种利用激光多普勒位移效应测量组织微循环血流量的仪器陆续出现。
激光源产生单色激光束通过探头进入生物介质,在测量深度内的活动颗粒(主要是毛细血管网内快速移动的RBC)表面发生光散射而返回,此时反射光频率已经发生改变,即多普勒位移效应。
多普勒位移发生的幅度和强度分别与测量范围内的RBC移动速度和数量密切相关,而与RBC移动方向无关[3]。
多普勒位移幅度公式为: Δf=2υx/λ (1)式中Δf表示位移幅度,υx表示RBC流动速度,λ表示波长。
激光多普勒流速测量技术激光多普勒流速测量技术(LDA)是用来测量气体或液体流速的。
这项技术与传统的测量技术相比具有显著优势,它可以精确测量许多不同粒子的速度,而不需要另外的仪器校正。
这项测量技术是非侵入式的,具有很高的频率响应和大的动态范围。
LDA技术常应用在蒸汽流测量、风洞湍流测量和内燃机燃料流测量当中。
Compuscope82G数据采集卡已被证明非常适用于LDA系统数据的采集、存储和传输。
1LDA原理系统采用连续调制激激光多普勒流速测量技术(LDA)是用来测量气体或液体流速的。
这项技术与传统的测量技术相比具有显著优势,它可以精确测量许多不同粒子的速度,而不需要另外的仪器校正。
这项测量技术是非侵入式的,具有很高的频率响应和大的动态范围。
LDA技术常应用在蒸汽流测量、风洞湍流测量和内燃机燃料流测量当中。
Compuscope82G数据采集卡已被证明非常适用于LDA系统数据的采集、存储和传输。
1 LDA原理系统采用连续调制激光,激光被分成两束,先经光学系统聚焦后相互垂直入射到粒子流中。
在两束激光交叉处便产生了干涉图样。
激光束的后向散射经过接收光学系统后聚焦在探测器上,再由探测器实现光电转换。
LDA原理示意图如图1所示。
2干涉图样为了研究光电探测器接收到的信号,必须知道两束光在交叉点产生的干涉图样。
如图2所示,被测对象是一个椭球体表面对应的干涉图光强分布,光强最大的分布点在干涉图的中心。
需要指出的是?当光束角度K减小时?被测对象将会远离聚焦光束?它的长度将增加而宽度减小。
就像前面提到的那样?信号是由粒子经过干涉图样反射的散射光组成,变化的振幅代表了每个干涉图光强的变化。
多普勒脉冲串的频率称为多普勒频率。
该频率与干涉图空间常数(df)相乘可用来测量速度。
从图3可以看出,干涉图空间常数(df)是由激光波长(λ)除以光束反射角(K)正弦的2倍得到。
由于激光波长可以精确测量(精确到0.01%),因此采用LDA技术可以非常精确地测量流体速度。
中国激光医学杂志CHINESE JOURNAL OF LASER MEDICINE& SURGERY1999年 第8卷 第3期 Vol.8 No.3 1999激光多普勒血流测定法吴劲松 陈衔城 陆栋 1975年,Stern[1]首次报道应用激光多普勒血流测定仪(laser-Doppler flowmetry, LDF)监测皮肤微循环血流量。
20多年来,关于LDF在皮肤、肌肉、移植皮瓣、脑和肾脏等组织器官微循环血流监测的实验和临床应用研究不断深入,取得较大进展。
LDF工作原理 一、激光多普勒效应 光本质上是一种电磁波,具有波的基本特征。
应用于生物体的安全激光波长窗为600~1200nm,在这个测量范围内,生物大分子对光线的吸收相对较弱。
生物介质且有非常复杂和强烈的多点散射界面,投射到生物组织表面的激光束只有很小一部分会透入深层后再反射回表面,因此人们通常只能接受来自生物介质表面层的光学信息。
对毛细血管内红细胞(RBC)运动引起的光强度涨落的分析更为复杂,不同于清洁介质(如大气层)中的激光多普勒效应。
从连续波激光器产生的发射光具有极强的空间和时间的相干性,允许人们从散射光的相位和强度变化来分析散射介质内颗粒物质(如RBC)在很小范围(<1μm)的运动,达到的精度类似于其他光干涉仪技术的测量结果。
早期用激光多普勒狭缝灯作非侵入式的多普勒位移(Dopplershift)测量,发现位移与眼底视网膜动静脉中血流有关[2]。
以后各种利用激光多普勒位移效应测量组织微循环血流量的仪器陆续出现。
激光源产生单色激光束通过探头进入生物介质,在测量深度内的活动颗粒(主要是毛细血管网内快速移动的RBC)表面发生光散射而返回,此时反射光频率已经发生改变,即多普勒位移效应。
多普勒位移发生的幅度和强度分别与测量范围内的RBC移动速度和数量密切相关,而与RBC移动方向无关[3]。
多普勒位移幅度公式为: Δf=2υx/λ (1)式中Δf表示位移幅度,υx表示RBC流动速度,λ表示波长。
脑血流监测目前监测脑组织血流的方法很多,临床研究中比较常用的有氢清除法、放射核素法、单光子发射计算机断层法(SPECT)和正电子发射扫描(PET)等,但以上方法较复杂,主要应用于诊断而难以用于术中监测。
在手术中和手术后使用的脑血流监测方法主要有激光多普勒血流测定法、热弥散法、经颅多普勒法等。
一、激光多普勒血流测定法激光多普勒血流测定法(laser Doppler flowmeter,LDF)是一种连续、实时、微创和敏感的微循环血流监测技术,适用于神经外科术中rCBF的监测。
1.工作原理LDF的工作原理是利用激光多普勒效应。
激光通过探头照射到脑组织内的快速运动的红细胞表面,使其波长发生改变,产生多普勒位移效应(Doppler shift)。
波长改变的程度及幅度与红细胞的数量和运动速度相关。
通过记录波长改变的幅度和强度,从而可以推测局部脑组织血流(rCBF)。
LDF的测量范围较小,在探头周围1mm3,适合检测大脑皮层的血流量,尤其使用于比较血流的相对变化。
PU值为LDF 的基本测量指标,即流动的红细胞产生多普勒位移值,是一个表示测量深度内rCBF大小的相对单位,PU值的变化反映了rCBF的改变。
2.临床应用(1)监测脑过度灌注:在脑动静脉畸形(AVM)切除前后用LDF连续监测畸形血管团周边脑组织rCBF的动态变化,可及时发现脑过度灌注,指导临床及时处理。
(2)监测局部脑灌注不足:脑动脉瘤手术中有时需暂时阻断颈总动脉或载瘤动脉,此时以LDF连续监测被阻断动脉供血区的rCBF,能准确地反映该区域脑血流的下降程度,则有助于决定动脉阻断时间,减少脑组织不可逆的缺血性损伤的可能。
动脉瘤夹闭术中LDF连续监测邻近脑组织rCBF的实时变化,以免造成夹闭血管狭窄以致出现供血区缺血,减少手术并发症的发生。
(3)观察脑血流反应:LDF持续监测重型颅脑损伤脑皮质rCBF,可了解皮层血液灌注及脑血管自动调节功能,有助于指导治疗和判断预后。
激光多普勒血流仪[背景]激光多普勒是一种无创组织血流检测手段,基于激光遇到血细胞会产生相移的原理。
激光多普勒可以给出血流量、血流速度、血细胞浓度,这些参数是从反射光照射光传感器产生的光电流的功率谱里提取出来的。
从20世纪80年代早期开始,激光多普勒市场销量稳步上升(如图1)。
相比于超声多普勒,激光多普勒除了无创还可以检测组织的微循环和人情绪激动时血液灌注的快速变化。
当然激光多普勒也存在亟待解决的缺陷,如血液灌注信号受到组织光学特性的影响,存在运动伪影,灌注测量缺少定量的单位,不知道检测深度和生物零信号(在不流动条件下进行灌注测量)。
[1]图1 从1980到2006年使用到激光多普勒血流仪的文章[1] [检测原理]图2 MOOR激光多普勒血流仪当一束激光照射到一小块组织上,光子会被静态或者动态的微粒散射。
根据散射角度、波长、被散射物的速度的不同,移动的红细胞会对激光产生不同的相移。
如图3,速度ki ,频率ω的光子被速度为V 的红细胞散射,多普勒相移为 Δω=|V||k1-ks|cos β,k1是入射波向量,ks 是散射波向量,β是速度向量和散射向量(即k1-ks )的夹角,β是散射角,λ是散射光的平均波长,则多普勒相移为Δω=2(2π/λ)|v|sin(α/2)cos β。
在血液中激光会经过多次反射、微血管走向有任意性,所以光会有一定范围内的相移。
图3 速度ki ,频率ω的光子被速度为V 的红细胞散射[1]经过相移后的激光与没经过相移的激光在探头处相干产生斑点干涉纹,从而产生交流电(AC),用直流电的平方(DC^2)做标准化得到<iAC 2><iDC >=1NfD(2-fD) (1) 其中N 是干涉斑的数目,fD 是所有探测到的光子的相移频率。
图4 探头的接收发送为了提取出血流量和血细胞浓度,需要检测探头电流波动的功率谱。
如图4是从人体右脸颊采集,扫出500个数据再求平均得到的。