对流扩散与相间传质复习进程
- 格式:ppt
- 大小:743.50 KB
- 文档页数:26
化工原理传质知识点总结一、基本概念1.1 传质的意义传质是指物质在不同相之间的传递过程。
在化工工程中,传质是指溶质在溶剂中的扩散、对流、传热、反应等传输现象。
1.2 传质的分类传质可以根据溶质与溶剂之间的接触方式分为不同的分类:(1)扩散传质:溶质在溶剂中的自由扩散过程,不需要外力的帮助。
(2)对流传质:通过溶剂的对流运动,加快溶质的扩散速率。
(3)辐射传质:发射源释放的辐射物质在空气中传输的过程。
1.3 传质的单位在化工工程中,我们通常使用质量通量或摩尔通量来描述传质的速率。
质量通量用kg/(m^2·s)或g/(cm^2·min)表示,摩尔通量用mol/(m^2·s)或mol/(cm^2·min)表示。
1.4 传质的驱动力传质的驱动力可以通过浓度差、温度差、压力差等来实现。
在传质过程中,驱动力越大,传质速率越快。
1.5 传质的应用传质在化工工程中有着广泛的应用,例如在化学反应中,传质过程可以影响反应速率和产物浓度。
在洗涤、脱水、吸附等过程中,传质也起到重要的作用。
二、传质过程2.1 扩散传质扩散传质是指溶质在溶剂中的自由扩散过程,不需要外力的帮助。
扩散传质的速率与溶质浓度梯度成正比,与扩散距离成反比,与传质物质的性质、温度等因素有关。
2.2 对流传质对流传质是指通过溶剂的对流运动,加快溶质的扩散速率。
对流传质速率与对流速度和溶质浓度梯度成正比,与传质物质的性质、温度等因素有关。
2.3 质量传递系数质量传递系数是评价传质速率的重要参数,表示单位时间内溶质通过单位面积的传质速率。
它与溶质的性质、溶剂的性质、温度、压力等因素有关。
2.4 传质速率传质速率是指单位时间内溶质通过单位面积的传质量。
它由传质物质的性质、浓度梯度、温度、压力等因素决定。
三、传质原理3.1 扩散传质的原理扩散传质的原理是由于溶质在溶剂中的无规则热运动。
在热运动的影响下,溶质会沿着浓度梯度自行扩散,直到浓度均匀。
第四章、质量传递1、传热过程主要有两种:强化传热、削弱传热2、热传递主要有三种方式:热传导、对流传热、辐射传热3、热传导:通过分子、原子和电子的振动、位移和相互碰撞发生的热量传递过程4、对流传热:流体中质点发生相对位移而引起的热量传递过程(流体与固体壁面之间的热传递过程)5、自然对流传热:流体内部温度的不均匀分布形成密度差,在浮力的作用下流体发生对流而产生的传热过程。
6、强制对流传热:由于水泵、风机或其他外力引起流体流动而产生的传热过程。
7、辐射传热的过程:物体将热能变为辐射能,以电磁波的形式在空中传播,当遇到另一个物体时,又被物体全部或者部分吸收而变成热能。
(不需要任何介质作媒体,可以在真空中传播)8、导热系数:反映温度变化在物体中传播的能力。
9、气体的导热系数随温度的升高而增高,在气体中氢气的导热系数最高。
10、液体的导热系数随温度的升高而减小(水和甘油除外)11、晶体的导热系数随温度的升高而减小(非晶体相反)12、多孔性固体的导热系数与孔隙率、孔隙微观尺寸以及其中所含流体的性质有关,干燥的多孔性固体导热性很差,通常作为隔热材料,但材料受潮后,由于水比空气的导热系数大得多,其隔热性能将大幅度下降,因此,露天保温管道必须注意防潮。
14、对流传热与热传导的区别:对流传热存在流体质点的相对位移,而质点的位移将是对流传热速率加快。
15、影响对流传热的因素:物理特征、几何特征、流动特征16、湍流边界层内,存在层流底层、缓冲层和湍流中心三个区域,流体处于不同的流动状态。
17、传热边界层:壁面附近因传热而使流体温度发生变化的区域(存在温度梯度的区域)18、传热过程的阻力主要取决于传热边界层的厚度19、普兰德数:分子动量传递能力和分子热量传递能力的比值20、对流传热系数大小取决于流体物性、壁面情况、流动原因、流动状况、流体是否相变等21、对流传热微分方程式可以看出,温度梯度越大,对流传热系数越大22、求解湍流传热的对流传热系数有两个途径:量纲分析法并结合实验、应用动量传递与热量传递的类似性建立对流传热系数与范宁摩擦因子之间的定量关系23、自然对流:在固体壁面与静止流体之间,由于流体内部存在温差而造成密度差,是流体在升浮力作用下流动。
第三节扩散和单相传质〔Diffusion & Mass transfer between phase〕对于任何过程都需要解决两个基本问题:一是过程的极限,另一是过程的速率。
吸收过程的极限取决于吸收的相平衡关系,上节已作讨论。
本节讨论吸收过程的速率吸收过程涉与两相间的物质传递,它包括三个步骤:一、溶质由气相主体传递到两相界面,即气相内的物质传递。
二、溶质在界面上的溶解,由气相转入液相,即界面上发生的溶解过程三、溶质自界面被传递至液体主题,即液相内的物质传递。
一般来说,第②步界面上发生的溶解过程是很易进行的,其阻力很小。
因此,通常认为界面上气液两相的溶质浓度满足平衡关系。
这样,总传质过程速率将由两个单相即气相与液相内的传质速率所决定。
不论气相或液相,物质传递的机理有两种:一、分子扩散:当流体内部存在着某一组分的浓度差,则因分子的无规律的热运动使该组分由浓度较高处传递至浓度较低处,这种现象称为分子扩散。
如香水的气味扩散。
分子扩散也可由温度梯度、压力梯度产生,由温度梯度产生的分子扩散叫热扩散,如湿木棍一头加热,另一端会冒出热气或水滴。
在此讨论的分子扩散仅因浓度梯度产生的。
分子扩散与传热中由于温度差而引起的热传导相似。
二、对流扩散:在流动的流体中的传质不仅会有分子扩散,而且有流体的宏观运动也将导致物质的传递,这种现象称为对流传质。
对流传质与对流传热类似,且通常是指流体与某一界面之间的传质。
§5.3.1双组分混合物中的分子扩散一、费克定律1855年,费克揭示了分子扩散的基本规律对于T、P一定的一维定态的分子扩散速率与浓度梯度成正比,即or—扩散速率通量,—组分A在A、B双组分混合物中的扩散系数,—浓度梯度,费克定律的形式与傅立叶热传导定律相类似。
费克定律表明只要混合物中存在浓度梯度,必产生物质的扩散流。
对于气体混合物,费克定律也常用分压梯度来表示∵∴=对于双组分混合物,若则即〔浓度梯度相等,方向相反〕在双组分混合物中,产生物质A的扩散流的同时,必伴有方向相反的物质B 的扩散流。