模态分析的知道回答
- 格式:doc
- 大小:19.50 KB
- 文档页数:3
各种模态分析方法总结与比较一、模态分析模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。
模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。
坐标变换的变换矩阵为模态矩阵,其每列为模态振型。
模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
通常,模态分析都是指试验模态分析。
振动模态是弹性结构的固有的、整体的特性。
如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。
因此,模态分析是结构动态设计及设备的故障诊断的重要方法。
模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
二、各模态分析方法的总结(一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。
但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。
以这个假定为根据的模态参数识别方法叫做单自由度(S DOF)法n1。
在给定的频带范围内,结构的动态特性的时域表达表示近似为:()[]}{}{T R R t r Q e t h rψψλ= 2-1 而频域表示则近似为: ()[]}}{{()[]2ωλωψψωLRUR j Q j h r tr r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。
模态分析中的几个基本概念物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。
模态这个概念一般是在振动领域所用,你可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。
一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。
一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。
模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。
将特征值从小到大排列就是阶次。
实际的分析对象是无限维的,所以其模态具有无穷阶。
但是对于运动起主导作用的只是前面的几阶模态,所以计算时根据需要计算前几阶的。
一个物体有很多个固有振动频率(理论上无穷多个),按照从小到大顺序,第一个就叫第一阶固有频率,依次类推。
所以模态的阶数就是对应的固有频率的阶数。
振型是指体系的一种固有的特性。
它与固有频率相对应,即为对应固有频率体系自身振动的形态。
每一阶固有频率都对应一种振型。
振型与体系实际的振动形态不一定相同。
振型对应于频率而言,一个固有频率对应于一个振型。
按照频率从低到高的排列,来说第一振型,第二振型等等。
此处的振型就是指在该固有频率下结构的振动形态,频率越高则振动周期越小。
在实验中,我们就是通过用一定的频率对结构进行激振,观测相应点的位移状况,当观测点的位移达到最大时,此时频率即为固有频率。
实际结构的振动形态并不是一个规则的形状,而是各阶振型相叠加的结果。
固有频率也称为自然频率( natural frequency)。
【转】ANSYS使用问答精华1【转】ANSYS使用问答精华(1)000Q为问A为回复-------------------------------------------------- -----------------------------Q:模态分析得到的结果是不是某个方向上的各阶频率啊我要得到各个方向的一阶频率能做到吗A模态分析得到的结果是你所选择的自由度内的振型如果需要得到某一个方向内的振型用RUDECED法选择你所希望的主自由度如UX将所求的频率值设置为一即可Q不过大型复杂结构的振型一般都不是一个方向的应该是一个方向为主其它方向为次如果把所要求的方向设为主自由度会不会跟真是实际结果有出入Q对于复杂的大型实体其主自由度无法给出此时就无法应用reduce法可不可以改约束还是就认为一次得到前3阶频率就是x,y,z方向的一阶频率啊A正是因为复杂结构的主自由度不好确定所以我还是倾向于用SUBSPACE和BLOCK LANCZOS法约束不要随便改它应该描述结构真实的状态不能说前3阶频率即为XYZ方向的第一阶频率你可以好好想想所用方程中[K]和[M]的意义-------------------------------------------------- ------------------------------Q轴承是用来支撑要研究的对象把轴承等价为弹簧将其刚度加在对象的节点上这样就要定义刚度的大小在加是否还要定义单元类型然后才能定义其刚度A我曾经用LINK8单元模拟过根据K=EA/L确定刚度我当时取E=210e9,L=0.1,然后A=KL/E经过检验是可行的A1用link单元模拟其刚度k=EA/L通过假定E,A,L的值使之和k相等其密度要02用combin14模拟其刚度阻尼0-------------------------------------------------- ------------------------------QANSYS处理动力问题如土层地震响应或基础振动反应可否从边界施加加速度荷载若可以如何瞬态动力反应分析时间子步为>200?A如果你所希望求的最高频率的周期为f则ANSYS取时间步长为1/20f 为默认值Q板单元的后处理的显示在单元坐标还是在总体坐标? 比如位移,应力A应力位移在总体坐标弯矩不一定A应力位移是显示在结果坐标系的顺便说明一下节点信息显示在显示坐标系不过结果坐标系默认为全局坐标系而显示坐标系也是默认为全局坐标系你可以这样修改结果坐标系Main Menu:General Postprocessor>Options for Output...你可以这样修改显示坐标系Utility Menu:Workplane>Change Display CS toA你可以用ETABLE命令先存储对应于各单元的位移等等再用ANSYS的柱状图或是别的画图软件PLOT出图形你认为如何Q我现在需分析一个板梁结构板已用SHELL63单元划分好梁我是用板上的一条线划分单元并添加截面而生成的但现在运算时发现板和梁是分开的它们之间互不影响请教各位高手怎样将板和梁合并为一个整体APreprocessor>Numbering Ctrls>Merge Items里element and node 合并Q: 用SHELL63单元划分的板结构想加垂直于板面的匀布载荷?A: 找到如下位置ANSYS HELP->ANSYS ELEMENTS REFERENCE->ELEMENT LIBRARY->SHELL63 ELASTIC SHELL在INPUT SUMMARY 中有SURFACE LOADS PRESSURES1其中face 1 (I-J-K-L)(bottom,in +Z direction)的意思为当Load Key=1时,pressure加在由节点IJKL确定的面上在单元坐标中以+Z方向为正也可以说垂直指向面IJKL时为正至于均布则将几个值都填成一样的就可以了或者只填主要参数如VALUE at I自己多看看帮助文件做一个例子验证一下-------------------------------------------------- ------------------------------Q: ANSYS可以自己定义输出格式吗?A: 可以先打开一个文件*cfopen再用*vwrite,label通过打开一个文件读出数据或以追加的方式写入数据并可控制输入和输出的格式*cfopen,,*vread,,,,,(f12.6)*vwrite,(f12.6)*cfclos,,-------------------------------------------------- ------------------------------Q:作模态分析时就是集中质量单元和刚度加法A在选用求解方法时例如SUBSPACE和BLOCK LANCZOS会有一个选项[LUMPM]默认为选用一致质量矩阵你可以选为集中质量矩阵A用mass21通过mesh keypoint来把点划分成mass21单元即可Q我在原有的静态分析的基础上想继续作一下结构的模态分析应该采取那些步骤啊我用solution>new analysis-modal,then current LS,出现如下的提示1.the eigenvalue extraction method must be specified on MODOPT command. SUBSP or LANB are usually recommanded.2.please expand modes if any downstream MODAL analysis based calculations need to be performed.这是怎么一回事A你最好先看看帮助文件中的 ANSYS STRUCTURE REFERENCE中的BUCKLING ANALYSIS如果你对理论不清楚我劝你不要盲目计算不然结果也许并不可信这是我的建议A系统默认为0阶!Q1.在ANSYS中如何设定小数的有效位数比如我输入的应力值为0.0004495568而且我的一组数据都是最后几位差别但是ANSYSY自做聪明把它四舍五入了结果弄的都一样了如何更改这个有效位数呢2.ANSYS在输出时如何修改输出的数字显示模式比如用科学记数法或者将数字缩放多少倍那样显示在什么地方能够修改呢3.ANSYS5.7.1中什么地方能够出现那种材料库表就是说不同ANSYS的什么material models对话框生成而是通过table输入材料属性诸如应力应变曲线之类的东西?A用a.bEn来表示如2.45678e-9材料特性用tb-------------------------------------------------- ------------------------------Q我是个ANSYS初学者现在碰到下面几个问题请各位高手帮忙看一下1是什么原因使得相邻ELEMENT的共用节点解得的力不一样应该是方法步骤的原因而不是误差吧请简单介绍一下2假如我想用ANSYS模拟陶瓷的烧结过程是不是有实际*作的可能性如果有其基本的2原理和模型怎样3ANSYS可以用来模拟热循环下的应力分配不均造成的焊点63%Sn&37%Pb失效的过程我看到有一篇文献介绍用在Sn球里随机分布Pb相和其它共晶相的方法建模的那么这个随机过程在ANSYS中怎么实现的而且如果要生成足够多的晶相小颗粒是不是只能手动一个一个的建立A可能是你提取数据的时候思路有问题比如说当你提取的是有多个连接单元的节点数据而实际上你提取的是各个单元的A相邻ELEMENT的共用节点你MERGE了吗ANSYS是通过单元的节点传递数值的从而得出结果的Q在进行模拟计算结构多阶段施工过程计算时,在ansys里面说可以用死活单元的方法但是死活单元每次只允许选择一个,我的模型比较大,如果采用这个方法不太现实,各位同志有什么比较好的方法没有请赐教A涉及到两个方面的问题一以TABLE形式定义参数二DO-LOOP循环你可以参考ANSYS GENERAL GUIDE中SOLUTION中对多重载荷步的叙述很简单Q比如在beam4和shell63中显示的输出结果有应力和变形以及节点等效荷载请问如何才能显示截面弯矩扭矩和剪力呢A在ELEMENT TABLE 中首先定义变量注意一你要知道BEAM设置了几个积分点注意二要知道SEQUENCE NUMBER值所以你需要参考ELEMENT REFERENCE 中的单元介绍Q最近在计算一个模型管状在地下分析中要施加地层给予的支撑我想简化为弹性支撑可是发现在ansys中找不到这样的支撑情况A首先你要知道弹性支撑的弹性系数具体的计算方法你应该知道的然后用LINK8单元模拟要注意的是刚度k=EA/L由此确定LINK单元的面积A来体现单元的弹性刚度我对此作过验证结论是可行的Q用弹簧可是问题很多因为是一个管体整个管壁都有支撑简化为弹簧出现的问题很多了比如用多少个合适隔多长合适线性支撑和非线性支撑能等同吗我最近看校验手册发现V135这个例子可以借鉴可是还是有许多麻烦哪位大侠如果有这方面经验请指点指点-------------------------------------------------- ------------------------------Q如何梁单元同时施加两个方向分布荷载竖向侧向A同时施加两个方向的均布荷载相当与分别施加不同的均布荷载即分别加主要是要选择好均布荷载的ID参考单元参考手册中的说明例如BEAM4 INPUT SUMMARY 中Surface Loads Pressure: 有 face2(i-j)(-Y normal direction) 这里2就是LOAD ID以单元坐标的-Y轴为正你试一试看Q请问如何打印图形结果A用ANSYA中的功能就可以拉GUI菜单命令PLOTCTRLSCAPTURE IMAGES 或RESTORE IMAGESA我是用plotctrl>hard copy>to file,然后在剪贴板中就可以看见了A我都是用抓图工具抓下来然后再打印的A/ui,copy,save是一个截取屏幕图形的命令,现在总算又实现了gui肯定可以通过相应的命令方式来实现的观点AAnsys 5.6已经做到了把图形窗口COPY到文件如JPG/BMP...等格式PLOTCTRL/HARD COPY/TO FILE很好用-------------------------------------------------- ------------------------------3Q其实APDL语言是ANSYS的二次开发语言是在FORTRAN编程语言的基础上形成的你只要会FORTRAN语言这就很容易理解APDL语言了也有循环选择等编程结构把枯燥的*作用计算机自动实现然后形成一个宏*作拉Q是的APDL语言确实很方便而且和FORTRAN语言类似很容易读懂在计算电机电磁场中电机的反电势更加方便前几天刚算了一个需要循环运算288次的程序使用APDL语言使的我可以让电脑自己运行程序保存结果数据而我的任务就是睡一觉醒来对结果数据进行处理Q: 我看见好多人在讨论用命令流处理程序很不明白命令流和gui的形式有很大区别吗在什么情况下更适用命令呢A很容易控制Ansys且结果文件小功能很强大可以进行循环控制分支等*作运算速度快充分利用APDL语言对ansys进一步开发Q用ansys5.6.2计算一个压力容器,划分网格9万余个.运行环境win2000,cpu:1G,内存640M,硬盘40G,模型建立,网格划分均无问题.但是运行到占用硬盘大约9.2G的时候,就出错.提示内存无法read.请问该如何解决?是内存的问题?还是ansys本身问题?还是系统问题?硬件问题?模型建立实在无法简化.A我的硬盘是30G的内存1GOS windowsNT,Total Workingspace是1400M,再高就控制不了Database 是56,我能解的有效节点数是140000,只是因为磁盘空间不够工作的分区是0G,当ansys探测到磁盘空间已满就自动退出尽量大的增大节点数并不是好办法因为运行速度太慢了利用对称性减小求解区域利用Lesize,esize等控制网格都是好的办法A选用对称性的时候要注意边界条件但的确是个好办法A以前在使用ALGOR时也遇到过类似情况当时有10万个结点对WIN2000来说已不存在WIN9X中文件最大只能2G的瓶颈但在处理超大虚拟内存需求时仍然会出问题处理方法有二1使用PQMAGIC划分出一个20G的逻辑分区一定要跟WIN2000系统在不同的分区再在控制面板-系统中将虚拟内存文件指定到这个大分区上以尽量避免发生系统堆栈错误虚拟文件大小仍交WINDOWS控制2将至少两个分区的硬盘升级至NTFS由于NTFS文件可以跨分区存储且要小10%左右比FAT32要好用得多Q我在求解是出现如下的提示1. real constant 1 referenced by at least element types 1 and2.2. 2.coefficient ratio exceeds 1.0e8.我全部忽略上述提示得出了结果结果能可信吗我有错在哪里呢模型我都检查了数遍了还是和初始文件名有关我是在一个初始名下面建立若干相关的模型由于我的单元只是板梁的结合所以我重新检查了一下删除了一个影响不大的扁梁很扁尺寸不大系统可能认为是板了运行就通过了上述的提示可能是因为系统对某些单元有默认的尺寸限制A有些单元类型在默认值状态下不需要输入REAL CONSTANT但是当你改变了某项选项你就需要重新输入REAL CONSTANT你可以用UTILITY>SELECT>ENTITIES命令中的SELECT ELEMENT BY ATTRIBUTE来查看单元材料REAL CONSTANT等等是否定义明确然后用APPLY REPLOT命令来显示每个不同材料的单元A我试了一下按照你所说的步骤出现了如下提示a default command range is not provided for the ESEL4command.the ESEL command is ignored.所以没有任何结果可见是不是需要对某些default的命令做些改动呢A.real constant 1 referenced by at least element types 1 and2.此句意思好象是说你为1号单元和2号单元或是别的单元定义的real constant 均为1你需要检查你的模型的单元类型和实常数部分A第二个问题经常出现.第一个问题有点问题,你看看单元定义对没有如果单元都没有划分对,结果当然不可靠啦-------------------------------------------------- ------------------------------Qslab on girder highway bridge 桥板为SOLID单元由于girder上部flange嵌贴在板的下表面所以建模时我将桥板定义为SOLID单元桥板下表面AREA定义为SHELL63单元但SOLID和SHELL单元的自由度不同这样建模肯定有不对的地方运算结果与实验结果也相差了40%有什么好的解决办法A你可以根据需要为不同的单元增加自由度DOF顺便问一句你的模型的两个部分的节点是否完全重合提高计算精度要用更细的网格划分另外要保证模型中每个单元的长宽比和理是否有使用大应变的需要在ANSYS非线形手册中有影响精度的说明A本来SOLID体的下表面被我定义为SHELL这时面单元的节点同时也是体单元下表面的节点但由于两种不同的单元自由度不同所以我放弃了这个模型另建模型的SHELL单元和SOLID单元相贴面节点坐标完全相同节点号不同这样才可能把它们耦合但是结果仍不理想可有什么方法?A比较麻烦,可以通过编程输入命令流!QA我已经把SHELL和SOLID对应点的UXUYUZ全部耦合起来让这些NODE的XYZ三个方向的位移相同但是结果仍然不理想我想约束方程的功能也进乎如此有没有更进一步的建议十分感谢-------------------------------------------------- ------------------------------Qansys有没有评价一个网格划分好坏的参数或命令请告知菜单*作APREPROCESSOR>MESHING>CHECK MESH>两个命令中一个用来CHECK网格划分另一个用来CHECK连贯性只是CHECK完了别哭就好APLOT BAD ELEMENT!-------------------------------------------------- ------------------------------Q(1)在gui下运行宏时,重新定义原来已有的数组,ansys就会有个提示,想不要这个提示,怎么办?(/uis,msgpop,3这个行不通,我试过了)(2)ansys中数组的定义为a*b*c a<10040 b<255 c<7 而我实际上要定义更大的有什么好办法,难道非要写到文件里再读进来?Aq1:有两种办法1在ultility menu / menuctrls/ message controls下设 (2)将/uis,msgpop,3 加入到start.ans文件中去以后每一次运行ansys时都会默认这个设置-------------------------------------------------- ------------------------------Q我现在做一个板壳的屈曲分析想要得到该结构在荷载作用下的极限承载力利用非线性屈曲分析请问极限承载力的荷载比例因子在什么命令下可以查到A非线性屈曲分析与特征屈曲的不同之处是它一开始就挠屈变形随着荷载的增大变形日益增大我们认为结构最危险点的变形时间历程曲线中变形若从某点开始发生较大的转折与先前完全不一样就发生了屈曲此时的荷载就是屈曲荷载故不存在荷载比例因子即特征值问题A要进行非线性屈曲,必须加到可以使结构发生屈曲的荷载,即荷载要比结构的实际承载力要5大,在进行非线性屈曲分析(极限承载力分析)时荷载逐步增加到破坏为止.计算时一定要输出每一步的计算结果,这样在post1中就会有一系列的荷载系数,而最后收敛的那个系数就是相对于极限承载力的系数,极限承载力=系数和总荷载的乘积-------------------------------------------------- ------------------------------Q如果材料一定为各向异性我用的材料为钢板该如何选用单元类型A只要材料参数中有Ex,Ey,Ez单独输入项就能考虑各向异性A波纹板的EXEY可以输入但是EZ该如何确定呢我自己练习了一下如果不输入EZ则计算就不能进行下去提示我材料的弹性模量要输入正值这是为什么A如果是钢板一般认为是各向同性的厚板因轧制次数少晶体不密实存在着Z向厚度方向弱化对厚板一般地Ex=EyEz较小通过试验确定对薄板<16mm 认为各向同性A不管是什么板材料的本构关系是微小单元之间应力与应变的关系因此波纹板的几何构成是用几何模型->有限元模型计算的而不是用比较大块的板试验得出的Ex,Ey来输入你说的波纹板是不是压型钢板A是压型钢板EXEY是通过拉伸试验确定的EX与EY不相等但是既然是考虑板壳为什么还要输入EZ况且EZ并没有试验数据A波纹板的Ex=Ey=Ez-------------------------------------------------- ------------------------------Q怎样使梁单元把弯矩传给实体单元实体单元只有应力使它与相连的梁单元保持连续性真是件很难的事情还请各位大侠指教A关键不是实体单元只有应力而是实体单元每个点只有三个平动自由度能不能模拟成将梁插入到实体中一小段用两个或多个实体单元节点固定梁单元根据Sevant原理忽略掉两种不同类型单元连接处的计算结果A关键问题在于传递弯矩是为了保持变形的连续性实体单元中尽管没有弯矩但同一截面各点处的应力实际已构成了弯矩但这弯矩是多大怎样传递给相邻的梁恐怕不是简单的插入嵌固可以解决的从各结构杂志来看这一问题似乎很普遍还请各位一起深入探讨A上述方法实质上就是施加了人工约束单元相邻近点的连线几乎是梁的切线这样就能保证转角和位移连续弯矩相等并不意味着位移和一阶导数相等这是因为两种单元的位移函数相差太大-------------------------------------------------- ------------------------------Q弹性地基梁中的弹簧(2维)在ANSYS 中应采用那一个单元?又如何*作?A很久以前我用过弹簧单元好象是COMBIN2D你试试看Q我在平面应变的有限元分析中,要使用初始应力这个条件,该初始应力在没加重力的时候在各点的应力是相同的.于是我在WIN2000 中相当于DOS的平台上用EDIT生成了初始应力文件,在第一个载荷步中用constsnt stress这个选项读入初始应力并逐步调整边界条件,使计算的结果与初始应力相差不大.然后我在第二个载荷步中施加重力,进一步形成迭加应力场;在完成了上述步骤之后在第三载荷步中进行开挖,然而, 在这一步中无论挖掉多少,要么结果十分不可靠或不收敛,请众同行不惜赐教,指出错误之处.本人对您们的帮助万分感激!模型大概如下:模型边界为四方形,其边界取足够大,中间有圆孔需要在一定的初始应力条件下挖掉,这个初始应力条件为正应为SX=12.7MPa,SY=14.7MPa,SZ=10.2MPa,剪应力SXY=1.7MPa,SYZ=2.1MPa,SZX=3.0MPa,在下边界及左右边界法向约束,上部边界施加稍大于SZ值的力.A可能实施加重力时,单位不一致-------------------------------------------------- ------------------------------6QANSYS里椭圆有没有命令可以直接画A你可以利用ansys的局部坐标系,非常方便gui:workplane>local coordinate systems>creat local cs>at wp origin选择cylindrical 1,再用part1,part2,设置长短轴这种方法在工作平面原点产生局部椭圆坐标系,在局部椭圆坐标系下产生2 keypoints,连点成线即可.Q在椭圆坐标系下生成怎样两个点A每一种坐标系的坐标都用x,y,z来表示,但是当你设为不同的坐标系时,x,y,z表示不同的含义例如,在圆柱坐标下,x,y,z非别代表R,,z,输入相应的值即可.更简单,现在直角坐标系下生成两个点,然后在生成椭圆坐标系.可以参阅ansys基本过程手册关于坐标系的讲解.-------------------------------------------------- ------------------------------Q一个圆锥形曲面刚架屋顶怎样加风荷载A在Ansys中施加面荷载时可以设置倾斜度首先用SFGRAD命令设置倾斜度和0点位置然后选择面或节点施加压力0点位置的压力等于施加的压力其他点的压力值等于由距0点的坐标差笛卡尔坐标系X轴或Y轴或Z轴球面坐标系R或乘于倾斜度再加上施加的压力值如水荷载倾斜度等于水的比重Qansys默认面荷载是垂直于作用面而曲面承受的风荷载为恒定的方向那怎么办Q如果想把上一次的分析结果作为下一次分析的初始条件该怎么做A使用LDREAD命令首先需要注意下面两个问题1每一个ANSYS的实体模型的面或体都要定义对应的单元类型编号材料属性编号实常数编号单元坐标系编号这些参数在整个分析过程中保持不变而这些编号对应的属性在各个步骤中是不同的2网格划分要满足所有步骤的要求单元类型必须兼容步骤1创建实体模型2创建多个物理环境设定一个物理环境中的单元类型材料属性实常数坐标系等将这些参数的编号赋给实体模型的面或体施加基本物理载荷和边界条件设定求解选项选择一个标题使用PHYSICS, WRITE命令将物理环境存入文件中3清楚当前的物理环境命令是PHYSICS, CLEAR4重复第二步准备下一个物理环境例如可以按照下面的方法将磁场的计算结果施加到流场上/solu 进行求解physics,read,magnetics 读入磁场分析的物理环境solvefinish/solvephysics,read,fluids7LDREAD,FORCE,,,,2,,rmg 读入洛伦兹力solve更多信息请参考ansys的耦合场分析指南和命令手册-------------------------------------------------- ------------------------------Q有一个形状很不规则的刚架结构外表面是玻璃建模的时候只建了刚架风荷载怎样传递到刚架上去啊A建模时就应该把玻璃和刚架同时建好要注意两种材料的衔接面(或LINE)和材料特性定义风载加上去后就会由玻璃传递给刚架或者简化风载成为PRESSURE直接加到刚架上如果手上有实验数据加以比较会避免很多失误-------------------------------------------------- ------------------------------Q管路穿过厚壁,管路采用梁单元,厚壁采用体单元,在两者交接的地方怎么办?A建模时可以考虑先建管路再建厚壁体时厚壁体由外部的平面与管路外表曲面组成这样管路和厚壁SHARE同一个曲面荷载作用下力也可以传递材料属性分配的时候先PICK UP厚壁单元定义为所选取得体单元再PICK UP管路定义为梁单元其实很多梁单元也属于体单元没有什么冲突除非管路属于SHELL或面单元时要后PICK UP此面单元定义为所要的属性至为重要的是在MESH这两个单元面体衔接的时候要注意衔接面体对应的ELEMENTS 和NODES的COMPATIBILITY否则将会出现大的错误REFINE时也不可忽视QA1请详细解释一下1再建厚壁体时厚壁体由外部的平面与管路外表曲面组成这样管路和厚壁SHARE同一个曲面2至为重要的是在MESH这两个单元面体衔接的时候要注意衔接面体对应的ELEMENTS 和NODES的COMPATIBILITY否则将会出现大的错误REFINE时也不可忽视并非英文不懂2我的情况是已经建好了厚壁体再建立管路3这样一个问题该如何办例如一块厚板(x1,x2,y1,y2,z1,z2)(0,1,0,1,0,0.1),一根管由k1=x1,y1,z1(0.5,0.5,2);k2=x2,y2,z2(0.5,0.5,-2)构成求其固有频率其他条件随便管路为圆管-------------------------------------------------- ------------------------------Q模型是一个正交异性钢桥面板是个钢箱梁取了一部分来分析由主梁纵向加劲肋横隔板钢板还有沥青铺装层组成横向4800mm纵向9060mm纵向加劲肋共8个横隔板是3m一个共四个钢板层厚度14mm沥青混凝土50mm除了上面的沥青铺装层其他都是钢的我原来考虑可以使用shell63单元但我要计算铺装层与钢板层的层间剪应力似乎不好处理所以全部采用solid45建模在中间某一荷位作用一矩形均布荷载我现在建模完成了在网格划分的时候如果按照smartsize的话可以划分但是我怎么施加荷载呢所以好像必须在荷载作用区域有整数个element如果按照smartsize的话可以划分但是我怎么施加荷载呢这样可以press on element但是我不会自己控制网格划分在中间某一荷位作用一矩形均布荷载建模型的时候就要预先把那个部分设一个面?似乎很复杂这个面下面又有钢板又有加劲肋另外我即使简化成一个集中荷载来计算那也得中间有node呀我怎么能保证我的网格在我需要的坐标值上恰好有个node我的模型并不是规则的啊下面是梯形的加劲肋如果按map的话它会提示非法拓扑形式即使我等效成集中力我在想如果定义 hard point的话可以加载到那个位置上但我好像没看到可以按坐标值定义hard point8A使用SWEEP或CONCATENATE命令重新MESH桥板可以在HELP文件中找到这两种命令的用法十分有用将桥面MESH成为HEX类的ELEMENT这样寻找加载位置会方便很多A建议你将整个桥面划分为比较规则的四边形网格(六面体)当然网格的大小肯定与加强筋的厚度等有关这样应该能够解决你所说的问题。
机械系统动力学特性的模态分析机械系统动力学是研究物体在受到外力作用下的运动规律和机械系统动态特性的学科。
其中,模态分析是一种重要的方法,用于研究机械系统的固有振动特性。
本文将介绍机械系统动力学特性的模态分析方法及其应用。
一、模态分析的基本概念模态分析是研究机械系统振动模态的一种方法。
模态是指机械系统在自由振动状态下的振动形式和频率。
模态分析通过分析机械系统的初始条件、约束条件和外力等因素,确定机械系统的固有频率和振型,并进一步得到机械系统的振荡特性。
二、模态分析的基本步骤模态分析一般包括以下几个步骤:1. 系统建模:根据实际情况,将机械系统抽象为数学模型,包括质量、刚度、阻尼等参数。
2. 求解特征值问题:通过求解系统的特征值问题,得到系统的固有频率和振型。
3. 模态验算:将得到的固有频率和振型代入原始方程,验证其是否满足振动方程。
4. 模态分析:通过对系统的振动模态进行进一步分析,得到系统的动态响应和振动特性。
三、模态分析的应用模态分析在机械工程领域有广泛的应用。
主要包括以下几个方面:1. 结构优化设计:通过模态分析,可以评估机械系统的固有频率和振型,判断系统是否存在共振现象或其他异常振动情况,为结构设计提供依据。
2. 动力学特性分析:通过模态分析,可以了解机械系统的振动特性,包括固有频率、阻尼特性和模态质量等指标,为系统的动力学性能评估和优化提供依据。
3. 故障诊断与预测:模态分析可以用于机械系统的故障诊断和预测。
通过对机械系统振动模态的变化进行监测和分析,可以判断系统是否存在故障,并提前发现潜在的故障。
4. 振动控制技术:通过模态分析,可以了解机械系统振动的特征,并采取相应的振动控制措施。
比如调节系统的阻尼、改变系统的刚度等,来减小系统的振动幅度,提高系统的稳定性和工作性能。
四、模态分析存在的问题与挑战模态分析作为一种成熟的技术方法,仍然面临一些问题和挑战。
例如,模态分析需要对机械系统进行精确的建模,包括质量、刚度和阻尼等参数的准确度和全面性。
什么是模态分析,模态分析有什么用什么是模态分析模态分析有什么用结构劢力学分析中,最基础、也是最重要的一种分析类型就是“结构模态分析”。
模态分析主要用亍计算结构的振劢频率和振劢形态,因此,又可以叫做频率分析戒者是振型分析。
劢力学分析可分为时域分析不频域分析,模态分析是劢力学频域分析的基础分析类型。
基础理论劢力学控制方程可表示为微分方程:其中,[ M ] 为结构质量矩阵,[ C ] 为结构阷尼矩阵,[ K ] 为结构刚度矩阵,{ F } 为随时间变化的外力载荷函数,{ u } 为节点位移矢量,为节点速度矢量,{ ü } 为节点加速度矢量。
在结构模态分析中丌需要考虑外力的影响,因此,模态分析的劢力学控制方程可表示为:理想情况下,结构在振劢过程中,丌考虑阷尼效应,也就是所谓的自由振劢情况,模态分析又可描述为:对上迚一步分析,假设此时的自由振劢为谐响应运劢,也就是说u = u 0 sin( ωt ),上又可迚一步描述为:对上式求解,可得方程的根是ω i²,即特征值,其中i 的范围是从1 到结构自由度个数N (有限元分析中,自由度个数N 一般丌超过分析模型网格节点数的三倍)。
特征值开平方根是ω i ,即固有圆周频率,这样,结构振劢频率(结构固有频率)f i就可通过公式f i = ω i /2 π 得到。
有限元模态分析可以得到f i 戒者ω i ,都可以用来描述结构的振劢频率。
特征值对应的特性矢量为{ u } i 。
特征矢量{ u } i表示结构在以固有频率f i振劢时所具有的振劢形状(振型)。
模态分析中的矩阵1. 模态分析微分方程组包含六个矩阵:[ K ] 代表刚度矩阵。
可参考“结构静力学”中的解释说明。
{ u } 代表位移矢量。
主要用来描述模态分析的振型。
可参考“结构静力学”中的解释说明,但一定要注意,模态分析中得到的位移矢量不静力学分析中位移矢量代表变形丌同。
[ C ] 代表阷尼矩阵。
1.如何理解模态分析中的“阶”,一个结构有1阶,2阶,3阶......,怎么理解?在理解“阶”之前,要先理解与“阶”紧密相连的名词“自由度”。
自由度是指用于确定结构空间运动位置所需要的最小、独立的坐标个数。
空间上的质点有三个自由度,分别为三个方向的平动自由度;空间上的刚体有六个自由度,分别为三个平动、三个转动自由度。
一个连续体实际上有无穷多个自由度,有限元分析时将连续的无穷多个自由度问题离散成为离散的有限多个自由度的问题,此时,结构的自由度也就有限了。
因此,可以这样理解,一个自由度对应一阶,连续体有无穷多阶。
像弹簧--质量模型为单自由度系统,故对应的频率只有一阶。
两自由度系统有两阶。
一个具体的系统,每一阶对应着特定的频率、阻尼和模态振型。
延伸问题:“同一个结构为什么各阶频率、阻尼和模态振型又不相同?”这是因为虽然结构还是这个结构,但是参考各阶运动的结构上的质量和刚度都不相同,参考每阶响应的并不是结构所有的质量和刚度,而是这一阶“活跃的”有效质量(结构中的部分质量),所以各阶所对应的模态参数不完全相同。
2.如何理解无阻尼固有频率、有阻尼固有频率和固有频率?通常在振动教材中都会定义无阻尼固有频率和有阻尼固有频率,无阻尼固有频率对应的是刚度/质量的平方根,有阻尼固有频率为无阻尼的固有频率乘以(1-阻尼比平方)的平方根。
书本上这么定义完全是出于方便书写公式的目的,当然了也对应的一定的物理意义。
一般说来,无阻尼结构的频率便是无阻尼的固有频率,但现实中所说的固有频率,在没有特殊说明的情况下都是指有阻尼固有频率,因为现实中的结构都是有阻尼的。
人们通常说的固有频率都是指有阻尼固有频率。
另外,在有限元计算中,如果是实模态分析(不考虑阻尼),那么此时的求解出来的频率就是无阻尼的固有频率,如果是复模态分析(考虑非比例阻尼)得出来的固有频率是有阻尼固有频率。
现实中的结构,除了含有阻尼机制的结构外,一般阻尼比都小于10%,因此,阻尼对结构的固有频率的影响是非常小的。
定性地说,就是因为力的步调与振动步调相同,物体向右力向右,物体向左力向左,力始终做正功,所以振动能量不断增加。
其实不是说一般取前5阶。
根据不同的对象和边界条件,取得阶数都不同。
对于没有约束的对象,前6阶为刚体移动模态,频率为0;而对于有约束的对象,则没有刚体模态。
各阶振型的话就是各阶的振动形态,有横向振动,扭转振动,拉伸振动,这些需要你观察振型来判断。
你想理解模态必须去看一些振动学的书籍。
简单的讲物体的实际振动是各阶模态的叠加效果。
物体理论上有无穷阶模态,振动是这无穷阶模态的叠加。
但是实际上各阶模态对系统振动的贡献度不同,一般前几阶比较大,越往后越小,所以一般截取前面的模态。
如果说前5阶自振频率如果任何一阶数值处于外界激励的频率范围之内,就表明此物体在当前约束条件和激励下会发生共振吗?然后那一阶的振型就表示当时的振动形态还是什么?为什么个别振型弯扭组合都有而且形态这么夸张呢?谢谢!回答按照你说的的确有可能发生共振。
我说了实际振动是各阶模态叠加的效果,每一阶模态只是把原本耦合的各阶模态解耦出来呈现。
而不是你说的当时的振动形态。
所以你所看到的很夸张的形态也印证了我的话,因为那并不是实际振动情况。
请你结合我前一段回答体会。
按照我的理解,每个物体都有自己的共振频率,而且还有不止一个共振频率。
可能十几Hz 的时候会发生共振,几百Hz的时候又会发生共振。
如果进行模态分析,就是说把这个物体的共振频率都找出来。
如果把这些共振频率都按照频率值从小到大排,就是“阶”。
比如说最小的共振频率就是一阶。
模态分析是指采用振型分解法计算结构的各阶振型,包括各阶模态的频率、振型等。
指的是振型分解法中的一阶、二阶振型。
机械振动是由多个振动源叠加后的共同作用效果。
比如一个弹性体,在一定的约束下,会以某(些)个方式振动。
譬如一个弹簧,可能伸缩振动,也可能弯曲振动。
每一个振动方式,都有一个对应的振动频率,即固有频率。
模态分析,就是用有限元的方法,在某个范围内(譬如3000Hz以下),找出这些振动方式及其对应的频率。
如何在工程力学中进行模态分析?在工程力学领域,模态分析是一种非常重要的工具,它能够帮助我们深入了解结构的动态特性。
那么,究竟如何在工程力学中进行模态分析呢?让我们一起来探讨一下。
首先,我们需要明白什么是模态分析。
简单来说,模态分析就是确定结构的固有频率和振型。
固有频率是结构在自由振动时的频率,而振型则是结构在对应固有频率下的振动形态。
通过模态分析,我们可以了解结构在不同频率下的振动特性,这对于评估结构的稳定性、可靠性以及优化设计都具有重要意义。
在进行模态分析之前,我们要做好充分的准备工作。
第一步是对研究对象进行建模。
这可能包括使用有限元软件来创建结构的几何模型,并将其离散化为有限个单元和节点。
在建模过程中,需要准确地定义材料属性、边界条件和载荷情况等。
材料属性包括弹性模量、密度和泊松比等,这些参数将直接影响到分析结果的准确性。
边界条件则用于模拟结构在实际工作中的支撑和约束情况,例如固定端、铰支端或者自由端等。
载荷情况需要根据实际工况来确定,可能包括静载荷、动载荷或者热载荷等。
接下来,选择合适的模态分析方法也至关重要。
常见的模态分析方法有实验模态分析和计算模态分析。
实验模态分析是通过在实际结构上安装传感器,测量结构在激励下的响应,然后通过数据处理和分析来获取模态参数。
这种方法能够直接获得结构的真实模态特性,但往往需要较高的成本和复杂的实验设备。
计算模态分析则是基于数学模型和数值计算方法,通过求解结构的运动方程来获取模态参数。
它具有成本低、效率高的优点,但模型的准确性和计算精度可能会受到一定的影响。
在实际应用中,通常会根据具体情况选择合适的方法,或者将两种方法结合起来,相互验证和补充。
在进行计算模态分析时,我们需要选择合适的数值算法。
常见的算法有兰索斯法、子空间迭代法和幂法等。
这些算法各有优缺点,适用于不同规模和类型的问题。
例如,兰索斯法适用于大型稀疏矩阵的特征值问题,具有较高的计算效率;子空间迭代法适用于求解多个低阶模态,精度较高;幂法则适用于求解单个模态。
关于模态分析的⼀些问题(⼀)谐响应分析为什么可以使⽤模态叠加进⾏求解?谐响应分析是个动⼒学问题,因此⼏乎每⼀本振动⼒学的书籍都会提到如何计算,⽽在⼤学⾥本科阶段⼀般的专业对此并没有较深⼊的教学,如果没有⾃学,⽽有限元软件教学的书籍通常也不会讲,所以就出现了上⾯的问题。
下⾯将书上的内容摘于此处,并对其中部分加以解释。
单⾃由度受迫振动⼀个单⾃由度受迫振动的基本模型、受⼒情况以及振动⽅程如图⽰(单⾃由度:仅竖直⽅向的平动⾃由度)上述微分⽅程的通解分为两部分:有阻尼⾃由振动⽅程的通解+有阻尼受迫振动的特解。
⼩阻尼⾃由振动,其⽅程的通解为:正弦曲线的幅值受到随时间衰减的指数函数控制,因此随着时间逐步发展,其振幅逐渐减⼩,直⾄最终⾃由振动消失(没有明显的⾃由振动,毕竟指数函数⽆限接近⽔平轴,但是却⼜不是⽔平轴,所以理论上振幅还是存在),该函数的曲效如下图所⽰:⼩阻尼受迫振动,其⽅程的特解为:⼩阻尼受简谐振动微分⽅程的特解还是⼀个谐函数,且该谐函数的频率与激振频率⼀致,振幅、相位取决于系统⾃⾝的固有属性和激励幅值。
让⼈⽐较好奇的是,⼤多数分析说的是激励,⽽谐响应,细品,居然说的是响应。
激励与响应具有同样的特性,都是谐函数。
实际上受到稳态激励的作⽤,其响应包括三部分组成:第⼀部分由初始条件产⽣的⾃由振动、第⼆部分由简谐激励⼒产⽣的受迫振动,第三部分是伴随受迫振动产⽣的⾃由振动。
由于系统中存在的阻尼,随时间变化,在⼀开始产⽣的⾃由振动以及伴⽣⾃由振动(伴随受迫振动产⽣的⾃由振动)逐渐消亡,仅留下稳态受迫振动部分。
因为谐响应关注的是稳态响应,开始的两类并不考虑。
⽅程耦合接触模态常听到“耦合”⼆字,那什么是耦合呢,前前后后也问过许多⼈,可真的是没有弄清楚,现在还是。
但是现在找到了合适的理解⽅法,哪怕只能意会,也可以。
耦合,想到的是“藕断丝连”,即多个对象(⼴义的对象)相互联系作⽤的⼀种关系。
观察下⾯这个例⼦就可以意会了:这是⼀个⼆⾃由度系统,其振动微分⽅程如下所⽰:将上述微分⽅程写成矩阵的形式,得到如下:上⾯的矩阵,除了质量矩阵外,刚度与阻尼矩阵都不是对⾓矩阵。
模态分析探讨模态分析:1、求教关于模态分析的阶次问题,及振型?各阶频率是指什么含义,一个物体固有频率会有这么多吗,该怎么理解对于各阶频率的理解,一般我们都取前5阶,有什么含义?还有各阶的振型的含义是什么呢(一般是沿各个方向拉伸或扭曲)?答:其实不是说一般取前5阶.根据不同的对象和边界条件,取得阶数都不同.对于没有约束的对象,前6阶为刚体移动模态,频率为0;而对于有约束的对象,则没有刚体模态.各阶振型的话就是各阶的振动形态,有横向振动,扭转振动,拉伸振动,这些需要你观察振型来判断.你想理解模态必须去看一些振动学的书籍.简单的讲物体的实际振动是各阶模态的叠加效果.物体理论上有无穷阶模态,实际振动是这无穷阶模态的叠加.但是实际上各阶模态对系统振动的贡献度不同,一般前几阶比较大,越往后越小,所以一般截取前面的模态.不知你具体对哪方面感兴趣.我说了实际振动是各阶模态叠加的效果,每一阶模态只是把原本耦合的各阶模态解耦出来呈现。
而不是你说的当时的振动形态。
所以你所看到的很夸张的形态也印证了我的话,因为那并不是实际振动情况。
2、模态分析中一个实体的振型可以有几阶?有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数.将特征值从小到大排列就是阶次. 实际的分析对象是无限维的,所以其模态具有无穷阶.但是对于运动起主导作用的只是前面的几阶模态,所以计算时根据需要计算前几阶的. 二楼的说法完全正确.3、有限元分析里面的模态分析的阶数是什么意思?如一阶固有频率,二阶固有频率等等?其实这个问题在人们开始用有限元分析结构振动之前就存在了.结构振动的微分方程,都会存在对应的本征值问题.本征值问题的解即一系列的模态频率及其对应的模态振型.每阶模态的频率对应着结构的共振频率,而模态振型(或者叫模态位移)对应着在该频率下结构自由振动的幅度分布.模型通过有限元方法离散化之后,这个问题变成了求K*x-M*a=0(自由振动,右边激励为零)的特征值及特征向量.得出的特征值就是omega的平方.一阶、二阶这种一般都是频点从低到高排列着随便称呼的吧.如果有限元的网格足够密集,那么得出的,额,你说的固有频率,在期望的频段内是收敛于物理上的固有频率的。
1. 什么是模态分析?模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
通常,模态分析都是指试验模态分析。
振动模态是弹性结构的固有的、整体的特性。
如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。
因此,模态分析是结构动态设计及设备的故障诊断的重要方法。
模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
2. 模态分析有什么用处?模态分析所的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
模态分析技术的应用可归结为以下几个方面:1. 评价现有结构系统的动态特性;通过结构的模态分析可以求得各阶模态参数(模态频率、模态振型以及模态阻尼),从而评价结构的动态特性是否符合要求,并校验理论计算结构的准确性。
2. 在新产品设计中进行结构动态特性的预估和优化设计;3. 诊断及预报结构系统的故障;近年来,结构故障技术发展迅速,而模态分析已成为故障诊断的一个重要方法。
利用结构模态参数的改变来诊断故障是一种有效方法。
例如,根据模态频率的变化可以判断裂纹的出现;根据振型的分析可以确定断裂的位置;根据转子支承系统阻尼的改变,可以诊断与预报转子系统的失稳等。
4. 控制结构的辐射噪声;结构噪声是由于结构振动所引起的。
结构振动时,各阶模态对噪声的“贡献”并不相同,对噪声贡献较大的几阶模态称为“优势模态”。
模态分析(modal)1.概述(Modal and Modal (SAMCEF))模态分析可以得到结构或者是机器组件的振动特性,包括固有频率和相应的振型。
模态分析定义.doc模态分析可以为其他的分析类型的服务,比如对于一个接触分析,它可以检测结构在无约束的情况下的振动特性(自由模态分析),从而作为接触分析的参照。
除此之外,模态分析作为后续动力学分析的基础,比如谐响应分析,谱分析,随机振动分析。
模态分析得到的结果(固有频率和振型)是在动载荷的作用下,结构设计的重要参数。
You will configure your modal analysis in the Mechanical application, which useseither the ANSYS or the SAMCEF solver, depending on which system you selected,to compute the solution.你将在Mechanical application中完成模态分析过程,你可以选择ANSYS 或者SAMCEF的求解器计算你的分析结果,取决于你所选择的系统。
You can also perform a modal analysis on a prestressed structure, such as aspinning turbine blade.Prestressed modal analysis requires performing a staticstructural analysis first.你也可以在存在预应力的情况下进行模态分析,比如说旋转的涡轮叶片。
但是,在这之前,需要对结构进行静力学分析。
If there is damping in the structure or machine component, the system becomes adamped modal analysis. For a damped modal system, the natural frequencies andmode shapes become complex.如果结构或者机器组件中存在阻尼,系统就变成阻尼模态分析,对于阻尼模态分析,固有频率和振型变得更加复杂。
什么是模态分析?你能为我解释模态分析吗?好,需要花费一点时间,但是这是任何人都能明白的事情……你不是第一个要求我用通俗易懂的语言解释模态分析的人,这样一来,任何人都能明白模态分析到底是怎样一个过程。
简单地说,模态分析是根据用结构的固有特征,包括频率、阻尼和模态振型,这些动力学属性去描述结构的过程。
那只是一句总结性的语言,现在让我来解释模态分析到底是怎样的一个过程。
不涉及太多的技术方面的知识,我经常用一块平板的振动模式来简单地解释模态分析。
这个解释过程对于那些振动和模态分析的新手们通常是有用的。
考虑自由支撑的平板,在平板的一角施加一个常力,由静力学可知,一个静态力会引起平板的某种静态变形。
但是在这儿我要施加的是一个以正弦方式变化,且频率固定的振荡常力。
改变此力的振动频率,但是力的峰值保持不变,仅仅是改变力的振动频率。
同时在平板另一个角点安装一个加速度传感器,测量由此激励力引起的平板响应。
现在如果我们测量平板的响应,会注意到平板的响应幅值随着激励力的振动频率的变化而变化。
随着时间的推进,响应幅值在不同的频率处有增也有减。
这似乎很怪异,因为我们对此系统仅施加了一个常力,而响应幅值的变化却依赖于激励力的振动频率。
具体体现在,当我们施加的激励力的振动频率越来越接近系统的固有频率(或者共振频率)时,响应幅值会越来越大,在激励力的振动频率等于系统的共振频率时达到最大值。
想想看,真令人大为惊奇,因为施加的外力峰值始终相同,而仅仅是改变其振动频率。
时域数据提供了非常有用的信息,但是如果用快速傅立叶变换(FFT)将时域数据转换到频域,可以计算出所谓的频响函数(FRF)。
这个函数有一些非常有趣的信息值得关注:注意到频响函数的峰值出现在系统的共振频率处,注意到频响函数的这些峰出现在观测到的时域响应信号的幅值达到最大时刻的频率处。
如果我们将频响函数叠加在时域波形之上,会发现时域波形幅值达到最大值时的激励力振动频率等于频响函数峰值处的频率。
模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数(参数即固有频率、阻尼比和模态振型)可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
通常,模态分析都是指试验模态分析。
振动模态是弹性结构的固有的、整体的特性。
如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。
因此,模态分析是结构动态设计及设备的故障诊断的重要方法。
简单理解,模态是物体的固有特性,任何物体都有他的模态。
通俗一点:汽车的玻璃有模态,有固有频率。
所以一旦汽车的震动频率和玻璃的固有频率一样,就会共振模态是线性分析机构动力学是不是范围小点,主要是牛顿欧拉方程和拉各朗日,还有其他方法机械动力学包括弹性啊,柔性啊等等动力学求解方法我觉得不管机构动力学还是机械动力学都得涉及动力学求解方法吧动力学求解方法太复杂,机械上偏应用。
具体我也只是搞过轴承转子系统,不容易,好出东西。
机械动力学的书多,内容感觉大不相同。
最初我看机床动力学,比较经典的书后来看现代机械动力学,感觉就是机构动力学再后来,看转子动力学,感觉就一个方法,传递矩阵方法。
其实后来听报告,动力学求解才是一个最大的问题。
机械动力学是机械原理的主要组成部分,它主要研究机械在运转过程中的受力情况,机械中各构件的质量与机械运动之间的相互关系等等,是现代机械设计的理论基础。
研究机械运转过程中能量的平衡和分配关系。
机械动力学主要研究的是:在已知外力作用下,求具有确定惯性参量的机械系统的真实运动规律;分析机械运动过程中各构件之间的相互作用力;研究回转构件和机构平衡的理论和方法;机械振动的分析;以及机构的分析和综合等等。
定性地说,就是因为力的步调与振动步调相同,物体向右力向右,物体向左力向左,力始终做正功,所以振动能量不断增加。
其实不是说一般取前5阶。
根据不同的对象和边界条件,取得阶数都不同。
对于没有约束的对象,前6阶为刚体移动模态,频率为0;而对于有约束的对象,则没有刚体模态。
各阶振型的话就是各阶的振动形态,有横向振动,扭转振动,拉伸振动,这些需要你观察振型来判断。
你想理解模态必须去看一些振动学的书籍。
简单的讲物体的实际振动是各阶模态的叠加效果。
物体理论上有无穷阶模态,振动是这无穷阶模态的叠加。
但是实际上各阶模态对系统振动的贡献度不同,一般前几阶比较大,越往后越小,所以一般截取前面的模态。
如果说前5阶自振频率如果任何一阶数值处于外界激励的频率范
围之内,就表明此物体在当前约束条件和激励下会发生共振吗然
后那一阶的振型就表示当时的振动形态还是什么为什么个别振型
弯扭组合都有而且形态这么夸张呢谢谢!
回答
按照你说的的确有可能发生共振。
我说了实际振动是各阶模态叠
加的效果,每一阶模态只是把原本耦合的各阶模态解耦出来呈现。
而不是你说的当时的振动形态。
所以你所看到的很夸张的形态也
印证了我的话,因为那并不是实际振动情况。
请你结合我前一段
回答体会。
按照我的理解,每个物体都有自己的共振频率,而且还有不止一个共振频率。
可能十几Hz 的时候会发生共振,几百Hz的时候又会发生共振。
如果进行模态分析,就是说把这个物体的共振频率都找出来。
如果把这些共振频率都按照频率值从小到大排,就是“阶”。
比如说最小的共振频率就是一阶。
模态分析是指采用振型分解法计算结构的各阶振型,包括各阶模态的频率、振型等。
指的是振型分解法中的一阶、二阶振型。
机械振动是由多个振动源叠加后的共同作用效果。
比如一个弹性体,在一定的约束下,会以某(些)个方式振动。
譬如一个弹簧,可能伸缩振动,也可能弯曲振动。
每一个振动方式,都有一个对应的振动频率,即固有频率。
模态分析,就是用有限元的方法,在某个范围内(譬如3000Hz以下),找出这些振动方式及其对应的频率。
把这些振动方式按其频率的大小排排队,最小的那个,就叫1阶,第二小的那个,就叫2阶,以此类推。
当外界激励会激起弹性体的某个振动方式,而这个外界激励的频率又恰好等于那个振动方式所对应的固有频率时,就会发生共振。
应该是物体“分区振动”造成的。
举例说明:冬季风吹树枝摆动的时候,主干晃动较慢,是一个频率,末梢晃动的很快,是另一个频率。
而且好些树梢晃动的频率都不同,这就是“分区振动”的最好说明。
自然界发声的物体振动原理和树枝摆动类似,只是频率不同而已。
这样就导致音色各种各样,五花八门。
机械振动是由多个振动源叠加后的合营感化后果。
比如一个弹性体在必定的束缚下会以某些个方法振动。
譬如一个弹簧可能伸缩振动也可能曲折振动。
每一个振动方法都有一个对应的振动频率即固有频率。
模态分析就是用有限元的办法在某个范围内譬如3000Hz以下找出这些振动方法及其对应的频率。
把这些振动方法按其频率的大年夜小分列队最小的那个就叫1阶第二小的那个就叫2阶以此类推。
当外界鼓励会激起弹性体的某个振动方法而这个外界鼓励的频率又正好等于那个振动方法所对应的固有频率时就会产生共振。
通过求解振动特征方程,可以得到特征值与特征向量,即可得到相应的固有频率与模态!再由初始条件可以求得响应。
模态分析可以得到系统结构的固有频率与固有模态;频响分析则可以得到系统结构的响应与频率之间的关系!这样系统的振动特性就明朗了。
“频率响应分析可以更加直观地看出系统在宽频激励下,哪些频率处被激起共振。
结合模态分析的结果,可以更加深刻的了解系统的动态特性”。
模态分析和频率响应分析的确是两个不同的概念。
模态是结构固有的一种特性,它只与结构的形状、约束形式、材料特性等有关,而与其他输入(例如加载)无关。
而频率响应分析则是指结构对一载荷(可以是冲击载荷,也可能是一频率在一定范围内的载荷)的响应。
模态分析主要目的有:了解结构的共振区域,为结构设计提供一定的指导;对计算模型进行校验,验证你做仿真计算的模型是否正确;开展瞬态分析、谱分析的基础。
频率响应分析的目的是确定结构上两点的输入输出关系(一般以频率为横坐标)。
模态分析中,如果打开计算单元应力选项,对应每一阶固有频率,就有对应的应力分布。
想请教一下这个模态应力有什么实际意义吗?
还是就是代表此频率下结构发生变形后的应力分布?
个人觉得没什么意义吧,因为应力是由位移场求得的,而模态位移场只是归一化之后的“相对”量,要求得实际载荷下的应力还是要通过静力学分析或者动力学分析吧。
模态分析得到的应力是相对应力,和模态变形的相对概念是一样的。
可以通过style中的displacement scale
谐响应分析和瞬态分析得到的应力应该是真实的
分享一下:谐响应分析后在POST1中对应频率下查看的应力和位移是结构的真实应力和位移,由此可以判断结构的最大响应部位。
而模态分析,以及在模态分析基础上的随机振动分析所得到的应力和位移是相对的,仅具有相对参考价值;
固有频率是某种物质特有的固定震动频率。
我们知道,每种物质都会震动。
但因为物质中微观粒子的差异性,每种物质的频率都不同。
物质在一定频率的外力作用下会以该外力的频率震动,在物理学上叫受迫震动。
但因为会消耗能量,所以受迫震动的震福会变小。
当外力的频率与物质的固有频率相同时,震福会达到最大。
也就是发生了共震!这也就是共振频率。
模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
模态分析就是结构的固有振动特性分析。
这种分析用于确定结构的固有频率和振型,其分析结果可作为瞬态动力学分析,谐响应分析和谱分析等其他动力分析的基础。
模态分析的实质是计算结构振动特征方程的特征值和特征向量。