纳维 斯托克斯方程 N S方程 详细推导
- 格式:pptx
- 大小:1.12 MB
- 文档页数:72
纳维-斯托克斯方程(Navier-Stokes equations)名称由来Navier-Stokes equations描述粘性不可压缩流体动量守恒的运动方程。
简称N-S方程。
因1821年由C.-L.-M.-H.纳维和1845年由G.G.斯托克斯分别导出而得名。
该方程是可压缩流体的N-S方程。
其中,Δ是拉普拉斯算子;ρ是流体密度;pN-S方程意义后人在此基础上又导出适用于可压缩流体的N-S方程。
N-S方程反映了粘性流体(又称真实流体)流动的基本力学规律,在流体力学中有十分重要的意义。
它是一个非线性偏微分方程,求解非常困难和复杂,目前只有在某些十分简单的流动问题上能求得精确解;但在有些情况下,可以简化方程而得到近似解。
例如当雷诺数Re1时,绕流物体边界层外,粘性力远小于惯性力,方程中粘性项可以忽略,N-S方程简化为理想流动中的欧拉方程(=-Ñp+ρF);而在边界层内,N-S方程又可简化为边界层方程,等等。
在计算机问世和迅速发展以后,N-S方程的数值求解才有了很大的发展。
基本假设在解释纳维-斯托克斯方程的细节之前,首先,必须对流体作几个假设。
第一个是流体是连续的。
这强调它不包含形成内部的空隙,例如,溶解的气体的气泡,而且它不包含雾状粒子的聚合。
另一个必要的假设是所有涉及到的场,全部是可微的,例如压强P,速度v,密度,温度Q,等等。
该方程从质量,动量,和能量的守恒的基本原理导出。
对此,有时必须考虑一个有限的任意体积,称为控制体积,在其上这些原理很容易应用。
该有限体积记为\Omega,而其表面记为\partial\Omega。
该控制体积可以在空间中固定,也可能随着流体运动。
纳维-斯托克斯方程(Navier-Stokes equations),以克劳德-路易·纳维(Claude-Louis Navier)和乔治·盖伯利尔·斯托克斯命名,是一组描述象液体和空气这样的流体物质的方程。
很多人一听到N-S 方程就有点头皮发麻,因为涉及到流体力学的知识比较多,如果没有一个完整有逻辑的思路,理解N-S 方程是有点困难。
其中涉及到欧拉法,场论,随体导数,流体力学连续性方程(即质量守恒方程),流体力学N-S 方程(即动量方程),动量方程在流体力学中有两种,一种是理想流体动量方程,一种是粘性流体动量方程,粘性流体的动量方程也叫纳维-斯托克斯方程,也简称N-S 方程。
我试图想把N-S 方程弄清楚点,所以写了一点东西,分享一下。
首先要讲一下流体力学的欧拉法,在课本中还讲了拉格朗斯法,因为连续性方程和N-S 方程是用欧拉法得出的,和拉格朗日法没什么关系。
我就不讲拉格朗日法,以免产生混乱。
欧拉方法的着眼点不是流体质点而是空间点。
设法在空间中的每一点上描述出流体运动随时间的变化状况。
如果每一点的流体运动都已知道,则整个流体的运动状况也就清楚了。
欧拉方法中流体质点的运动规律数学上可表示为下列矢量形式:假设空间一点的坐标(x,y,z,t),其中x,y,z 是该空间的坐标,t 是此刻时间。
u,v,w 是这一空间点的三个方向速度。
p,ρ,T 是这一空间点的压力,密度和温度。
这样就有了每一个点的速度,压力,密度,温度,就可以描述运动流体的状态。
这里需要强调一点的是下面这六个式子,可以换一个角度把他们看成方程,对后面理解连续性方程和N-S 方程有帮助,比如u=x+2y+3z),,,();,,,();,,,();,,,();,,,();,,,(t z y x T T t z y x t z y x p p t z y x w w t z y x v v t z y x u u ======ρρ因为后面需要随体导数的概念,还需要把速度函数表示成矢量的形式。
前面u,v,w 是标量,是ν在(x,y,z,t)直角坐标系三个方向的速度。
),(t rνν=M 点(x,y,z,t ),速度为),(t M ν ,过了t ∆之后,在M '点,速度为),(t t M ∆+'ν。
纳维-斯托克斯方程(Navier-Stokes equations)名称由来Navier-Stokes equations描述粘性不可压缩流体动量守恒的运动方程。
简称N-S方程。
因1821年由C.-L.-M.-H.纳维和1845年由G.G.斯托克斯分别导出而得名。
该方程是可压缩流体的N-S方程。
其中,Δ是拉普拉斯算子;ρ是流体密度;pN-S方程意义后人在此基础上又导出适用于可压缩流体的N-S方程。
N-S方程反映了粘性流体(又称真实流体)流动的基本力学规律,在流体力学中有十分重要的意义。
它是一个非线性偏微分方程,求解非常困难和复杂,目前只有在某些十分简单的流动问题上能求得精确解;但在有些情况下,可以简化方程而得到近似解。
例如当雷诺数Re1时,绕流物体边界层外,粘性力远小于惯性力,方程中粘性项可以忽略,N-S方程简化为理想流动中的欧拉方程(=-Ñp+ρF);而在边界层内,N-S方程又可简化为边界层方程,等等。
在计算机问世和迅速发展以后,N-S方程的数值求解才有了很大的发展。
基本假设在解释纳维-斯托克斯方程的细节之前,首先,必须对流体作几个假设。
第一个是流体是连续的。
这强调它不包含形成内部的空隙,例如,溶解的气体的气泡,而且它不包含雾状粒子的聚合。
另一个必要的假设是所有涉及到的场,全部是可微的,例如压强P,速度v,密度,温度Q,等等。
该方程从质量,动量,和能量的守恒的基本原理导出。
对此,有时必须考虑一个有限的任意体积,称为控制体积,在其上这些原理很容易应用。
该有限体积记为\Omega,而其表面记为\partial\Omega。
该控制体积可以在空间中固定,也可能随着流体运动。
纳维-斯托克斯方程(Navier-Stokes equations),以克劳德-路易·纳维(Claude-Louis Navier)和乔治·盖伯利尔·斯托克斯命名,是一组描述象液体和空气这样的流体物质的方程。
三维空间中的n-s方程组
纳维-斯托克斯方程(Navier-Stokes equations),描述粘性不可压缩流体动量守恒的运动方程,简称N-S方程。
此方程是由法国力学家、工程师C.-L.-M.-H.纳维于1821年创立,经英国物理学家G.G.斯托克斯于1845年改进而确定的。
在三维空间中,N-S方程组描述了流体的受力情况以及流动表现,其中F代表流体所受的力,包括粘滞力、压力和重力等;m代表流体的密度;a代表流体的加速度,受到时间和空间变化的影响。
N-S方程组光滑解的存在性问题被美国克雷数学研究所设定为七个千禧年大奖难题之一,目前尚未从数学上阐明是否存在N-S方程的通解。
各种模拟软件在处理这类问题上已经相当成熟。
不可压纳维-斯托克斯方程的解析解粘度为μ,密度为ρ的不可压缩牛顿流体,受静水压力p和加速度g的作用,其运动可以描述为满足纳维尔(叶)-斯托克斯(Navier-Stokes)方程的速度矢量场V:我们用复数形式来表示这一个方程,因为它以向量的形式表示了三个方程这些方程式是以克劳德-路易·纳维尔和乔治·斯托克斯爵士的名字命名的。
纳维尔-斯托克斯方程方程是一个微分方程,它对空间中每一点的无限小流体的速度V施加规则。
结果可以解释为浸没在流体中的测试粒子的运动或流体本身的运动。
假设V的x,y,z分量分别为u,v,w。
单位向量在x,y和z方向将被写成x,y和z。
如果你上过一些基础的物理或微积分课程,你可能会认识算子,并理解标量函数的拉普拉斯函数f和向量函数的散度F。
在纳维尔-斯托克斯方程中有两个向量微分算子,你们可能不熟悉。
第一个是矢量拉普拉斯运算符V,第二个是运算符(V)V。
幸运的是,我们很容易理解这些运算符的含义。
拉普拉斯向量对向量函数的每个标量分量应用拉普拉斯算子:流体的基本物理学变形是使一个物质体的所有组成粒子发生位移的过程。
这里,我们感兴趣的是连续变形。
在这种变形中,物质体不会被分离成不相交的部分。
在这种变形之前,粒子之间的距离是无穷小的,在变形之后,粒子之间的距离仍然是无穷小的。
物体的变形是由表面的应力引起的,表面应力有两种类型。
正应力的方向垂直于表面,剪应力的方向平行于表面。
应力等于力除以面积。
流体被定义为不能抵抗剪应力的物质体。
只要对某一流体体施加剪应力,该流体就会不断地变形。
这就引出了流体的流行定义,即流体总是以其容器的形状存在。
牛顿体是一种变形的变化率与应力成线性关系的流体。
在上面的例子中,“容器”只是一个平坦的表面,水体开始是一个立方体。
由于重力,在顶部和底部存在法向应力,还有来自台面的法向力和由重力引起的侧面剪应力。
流体无法抵抗剪应力,因此为了达到平衡,它将通过使其侧边尽可能小来消除剪应力。