新(人)版七年级上册第一章有理数全部课堂同步练习
- 格式:doc
- 大小:722.00 KB
- 文档页数:24
人教版七上数学第一章1.2.1有理数同步练习一、单选题(共18题;共36分)1. 下列各数中:+5、-2.5、4-3、2、75、-(-7)、0、-|+3|负有理数有()A .2个B .3个C .4个D .5个2. 在-4,0,-1,3这四个数中,既不是正数又不是负数的数是( )A .-4B .0C .-1D .33. 在下列各数22-7,0,1.5,-3,152,50%,+8中,是整数的有()A .5个B .4个C .3个D .2个4. 设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a,b,c三个数的和为()A .-1B .0C .1D .不存在5. 下列各数:1、﹣0.10、58、﹣789、325、0、﹣30、10.10、π、1000.1中分数有()A .1个B .3个C .4个D .5个6. 在-2,+3.5,0,2-3,-0.7,11中,负分数有()A .1个B .2个C .3个D .4个7. 下列说法中不正确的是()A .﹣3.14既是负数,分数,也是有理数B .0既不是正数,也不是负数,但是整数C .﹣2000既是负数,也是整数,但不是有理数D .0是非正数8. 下列四个数中,是正整数的是()A .﹣1B .0C .12D .19. 下列说法正确的是()A .零是最小的整数B .有理数中存在最大的数C .整数包括正整数和负整数D .0是最小的非负数10. 下列说法中,正确的有( )①4-27是负分数;②1.5不是整数;③非负有理数不包括0;④正整数,负整数统称为有理数;⑤0是最小的整数.A .1个B .2个C .3个D .4个11. 下列说法错误的是()A .负整数和负分数统称为负有理数B .正整数、0、负整数统称为整数C .正有理数与负有理数组成全体有理数D .3.14是小数,也是分数12. 某班学习小组在课外活动中收集到到以下信息,你认为其中不是用自然数排序的是()A .某地的国民生产总值列全国第五位B .某城市有16条公共汽车线路C .小刚乘T32次火车去北京D .小风在校运会上获得跳远比赛第一名13. 在数4.19,5-6,-1,120%,29,0,1-33,-0.97中,非负数有()A .3个B .4个C .5个D .6个14. 下列说法中正确的是()A .正整数与正分数统称为正有理数B .正整数与负整数统称为整数C .正分数、0、负分数统称为分数D .一个有理数不是正数就是负数15. 下列各数中,是负数的是()A .1--5⎛⎫⎪⎝⎭B .1--4C .21-3⎛⎫⎪⎝⎭D .1-616. 下列说法正确的是()A .-a一定是负数B . a一定是正数C . a一定不是负数D .a-一定是负数17. 在-[-(-3)],(-1)2,-22,0,+(-12)中,负数的个数为()A .2B .3C .4D .518. 下面说法正确的有( )A .正整数、负整数统称为整数B .零是整数,但不是正数,也不是负数C .分数包括正分数、负分数和零D .有理数不是正数就是负数二、填空题(共7题;共16分)19. 把下列各数填入相应的集合里:﹣3,5-,+(- 13),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),34 ,45--,3π 正数集合:{_________________________};整数集合:{_________________________};负分数集合:{_________________________};无理数集合:{_________________________}.20. 小明的妈妈在超市买了一瓶消毒液,发现在瓶上印有这样一段文字:“净含量(750±5)ml ”,这瓶消毒液至少有___________mL .21. 有理数﹣5,34-,﹣12,0,﹣3.14,+1.99,﹣(﹣6),227 中,整数有____个,分数有____个,负数有____个.22. 有理数包含正数、负数和_____.23. 把下列各数填入它所在的数集的括号里. ﹣12 ,+5,﹣6.3,0,﹣1213 ,425,6.9,﹣7,210,0.031,﹣43,﹣10% 正数集合:{________________________…}整数集合:{________________________…}非负数集合:{________________________…}负分数集合:{________________________…}.24. 根据如图所示的车票信息,车票的价格为___元.25. 在数+8.3、-4、-0.8、15- 、0、90、343- 、-|-24|中,___________是正数,_____________不是整数.三、解答题(共2题;共10分)26. 小红在做作业时,不小心将两滴墨水洒在一个数轴上,如图所示,根据图中标出的数值,判断墨水盖住的整数有哪几个?答:27. 下列各数填入相应的大括号里:5, -1 , 0 ,-6 ,π, 0.3 ,132-,154+,-0.72 ,…①正数集合:{ ____________________ }②整数集合:{ ____________________ }③负数集合:{ ____________________ }④分数集合:{ ____________________ }.答案:1-5.BBCAC 6-10.BCDDB BAB 16-18.CBB19.第一空5-,﹣(﹣2.5),34,3π第二空﹣3,5-,0 第三空+(-13),﹣3.14,45--第四空﹣1.2121121112 (3)20.74521. 4 4 422.023.略24.77.525.略26.-12,-11,-10,-9,-8,11,12,13,14,15,16,1727.略。
2023-2024学年七年级数学上册《第一章有理数的加减法》同步练习题有答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.式子-4-2-1+2的正确读法是()A.减4减2减1加2 ;B.负4减2减1加2;C.-4,-2,-1加2 ;D.4,2,1,2的和.2.对于代数式−2+k的值,下列说法正确的是()A.比−1大B.比−1小C.比k小D.比k大3.若|m|=3,|n|=2,且mn<0,则m﹣n的值是()A.﹣1或1 B.5 C.﹣5或5 D.﹣14.用[x]表示不大于x的整数中最大的整数,如[2.4]=2,[﹣3.1]=﹣4,请计算[5.5]+[﹣4 1]=()2A.﹣1 B.0 C.1 D.25.下列计算中,正确的是()A.(﹣6)+(﹣4)=﹣2 B.﹣9+(﹣4)=﹣13C.|﹣9|+9=0 D.﹣9+4=﹣136.不改变原式的值,将6−(+3)−(−7)+(−2)中的减法改成加法,并写成省略加号的形式的是()A.−6−3+7+2B.6−3−7−2C.6−3+7−2D.6+3−7−27.如图,若各行、各列、各条斜线上的三个数之和相等,则图中a处应填的可能值为()。
A.4 B.5 C.6 D.78.某商店出售三种不同品牌的面粉,面粉袋上分别标有质量,如下表:面粉种类A品牌面粉B品牌面粉C品牌面粉质量标示(20±0.4)kg (20±0.3)kg (20±0.2)kg现从中任意拿出两袋不同品牌的面粉,这两袋面粉的质量最多相差()A.0.4kg B.0.6kg C.0.7kg D.0.8kg二、填空题9.﹣9,6,﹣3三个数的和比它们绝对值的和小.10.弥阳镇某天早晨的气温是18℃,中午上升6℃,半夜又下降5℃,则半夜的气温是℃.11.若数轴上表示3的点为M,那么在点M右边,相距2个单位的点所对应的数是.12.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是星期.星期一二三四最高气温10℃12℃11℃9℃最低气温3℃0℃﹣2℃﹣3℃13.输入-1,按图所示的程序运算,则输出的结果是.三、解答题14.计算下列各题(1)6+(−14)−(−39)(2)−7−(−11)+(−9)−(+2)(3)20.36+(−1.4)+(−13.36)+1.4(4)(+325)+(−278)−(−535)+(−18)15.如图:(1)在数轴上标出表示-a、-b的点;(2)a 0;b 0;│a││b│; a-b 0(3)用“<”号把a、b、0、-a、-b连接起来.(4)、化简:|a|+|b|−|a−b|−|a+b|16.体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩测试记录,其中“+”表示成绩大于15秒.问:﹣0.8 +1 ﹣1.2 0 ﹣0.7 +0.6 ﹣0.4 ﹣0.1(1)这个小组男生的达标率为多少?(达标率=达标人数总人数)(2)这个小组男生的平均成绩是多少秒?17.某日上午,司机老苏在东西走向的中山路上运营,如果规定向东为正,向西为负,出租车的行车里程如下(单位:km):+8, -6, -5, +10, -5, +3, -2, +6, +2, -5(1)最后一名乘客送到目的地时,老苏离出车地点的距离是多少千米?在出车地点的什么方向?(2)若每千米耗油0.2升,这天上午出租车共耗油多少升?18.甲、乙两商场上半年经营情况如下(“+”表示盈利,“﹣”表示亏本,以百万为单位)月份一二三四五六甲商场+0.8 +0.6 ﹣0.4 ﹣0.1 +0.1 +0.2乙商场+1.3 +1.5 ﹣0.6 ﹣0.1 +0.4 ﹣0.1(1)三月份乙商场比甲商场多亏损多少元?;(2)六月份甲商场比乙商场多盈利多少元?(3)甲、乙两商场上半年平均每月分别盈利或亏损多少元?参考答案1.B2.C3.C4.B5.B6.C7.D8.C9.2410.1911.512.三13.114.(1)6+(−14)−(−39)=−8+39=31;(2)−7−(−11)+(−9)−(+2)=−7+11−9−2=−7;(3)20.36+(−1.4)+(−13.36)+1.4=20.36+(−13.36)+(−1.4)+1.4=7;(4)(+325)+(−278)−(−535)+(−1)=(+325)−(−535)+(−278)+(−18)=9−3=6 .15.(1)解:画数轴如下:(2)>;<;<;>(3)解:由数轴得:b<−a<0<a<−b;(4)解:|a|+|b|−|a−b|−|a+b|=a−b−(a−b)+(a+b)=a+b.16.(1)解:成绩记为正数的不达标,只有2人不达标,6人达标.这个小组男生的达标率=6÷8=75%(2)解:﹣0.8+1﹣1.2+0﹣0.7+0.6﹣0.4﹣0.1=﹣1.615﹣1.6÷8=14.8秒17.(1)解: +8+( -6)+ (-5)+ ( +10)+ ( -5)+ ( +3)+ ( -2)+ (+6)+ ( +2)+ ( -5 )=6(千米)。
人教新课标版七年级数学上册-第一章有理数各节同步练习题1、把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:-11,48,+73,-2.7,1/6,7/12,-8,12,0,-3/42、如果收入50元记作50元,那么下列各数分别表示什么?(1)+20元表示(2)70元表示(3)-80元表示(4)0元表示3、某班学生平均身高为1.55米,小民身高为1.43米,若他的身高记作–0.12米,则身高1.61米的小华身高记作___________米。
4、甲、乙两人同时从A地出发,如果甲向南走48m记为+48m,则乙向北走32m记为;这时甲、乙两人相距 m。
5、用正、负数表示:小商店每天亏损20元,一周的利润是元。
6、珠穆朗玛峰海拔高8848米,吐鲁番盆地海拔高度-155米,那么珠峰比吐鲁番盆地高米。
7、某零件的直经尺寸在图纸上是 10± 0.05 (mm),表示这种零件的标准尺寸是(mm),合格产品的零件尺寸范围是(mm)。
8、若向东记为正,向西记为负,那么向东走3米,再向西走-3米,结果是()A.回到原地B.向西走3米C.向东走6米D.向东走6米。
9、某同学在东西走向的路上行走(规定向东为正),他走的情况记录如下:(单位:m)-50,-20,+40,20,问这位同学共走了多少米?最后离出发地多少米?在什么方向?10、将下列各数填入表示相应集合的大括号里:28、16-、9.5、324-、-0.05、0、47、21%、+11正整数集合:();正分数集合:();负分数集合:();分数集合:();正有理数集合:();负有理数集合:();11、在数5.0,45.0,211,,01.0,212,5---中,非负数是___________________;正数集合负数集合非正数是______________________,奇数是___________,既是正数又是分数的数是_______。
12、判断:⑴温度下降-3℃,是零上3℃。
第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。
2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3.在同一个问题中,分别用正数与负数表示的量具有 的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。
9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数;_____和_____统称为分数;______、______、______、______和______统称为有理数; ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.3拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
第一章 有理数1.1 正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( )A.-4米B.+16米C.-6米D.+6米 3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有 ; 负数有 ; 既不是正数,也不是负数的有 .1.2.1 有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( ) A.-12 B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …};非负有理数集合:{ …}; 非正有理数集合:{ …}.1.下列所画数轴中正确的是( )2.如图,点M 表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.-3的相反数是( ) A.-3 B.3 C.-13 D.132.下列各组数中互为相反数的是( ) A.4和-(-4) B.-3和13C.-2和-12D.0和03.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ; (2)-(-3)= ; (3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4 绝对值 第1课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( ) A.5 B.-5 C.0 D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )4.若一个负有理数的绝对值是310,则这个数是 .5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时 有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则( )A.a >2B.a >-2C.a <0D.-1>a 3.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时 有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律 2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2 有理数的减法 第1课时 有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A.-1 B.-5 C.-6 D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 .4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时 多个有理数相乘1.下列计算结果是负数的是( ) A.(-3)×4×(-5) B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5) 2.计算-3×2×27的结果是( )A.127 B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时 有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律 C.乘法交换律和结合律 D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2 有理数的除法 第1课时 有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时 分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= .2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时 有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5 有理数的乘方1.5.1 乘 方 第1课时 乘 方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( ) A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎝ ⎛⎭⎪⎫523= .7.计算:(1)(-2)3; (2)-452;(3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时 有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2 科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3 近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章 整式的加减2.1 整 式第1课时 用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( )A.(m +0.8n)元B.0.8n 元C.(m +n +0.8)元D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是( )A.5个B.4个C.3个D.2个2.多项式3x2-2x-1的各项分别是( )A.3x2,2x,1B.3x2,-2x,1C.-3x2,2x,-1D.3x2,-2x,-13.多项式1+2xy-3xy2的次数是( )A.1B.2C.3D.44.多项式3x3y+2x2y-4xy2+2y-1是次项式,它的最高次项的系数是.5.写出一个关于x,y的三次二项式,你写的是(写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2 整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时整式的加减1.化简x+y-(x-y)的结果是( )A.2x+2yB.2yC.2xD.02.已知A=5a-3b,B=-6a+4b,则A-B为( )A.-a+bB.11a+bC.11a-7bD.-a-7b3.已知多项式x3-4x2+1与关于x的多项式2x3+mx2+2相加后不含x的二次项,则m 的值是( )4.若某个长方形的周长为4a,一边长为(a-b),则另一边长为( )A.(3a+b)B.(2a+2b)C.(a+b)D.(a+3b)5.化简:(1)(-x2+5x+4)+(5x-4+2x2);(2)-2(3y2-5x2)+(-4y2+7xy).第三章一元一次方程3.1 从算式到方程3.1.1 一元一次方程1.下列各方程是一元一次方程的是( )2.方程x+3=-1的解是( )A.x=2B.x=-4C.x=4D.x=-23.若关于x的方程2x+a-4=0的解是x=-2,则a的值是( )A.-8B.0C.8D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x名学生,则由题意可列方程为.5.商店出售一种文具,单价3.5元,若用100元买了x件,找零30元,则依题意可列方程为.6.七(2)班有50名学生,男生人数是女生人数的倍.若设女生人数为x名,请写出等量关系,并列出方程.3.1.2 等式的性质1.若a=b,则下列变形一定正确的是( )2.下列变形符合等式的基本性质的是( )A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x-x=1-2C.若-2x=5,则x=5+2D.3.解方程- x=12时,应在方程两边( )A.同时乘-B.同时乘4C.同时除以D.同时除以-4.由2x-16=5得2x=5+16,此变形是根据等式的性质在原方程的两边同时加上了.5.利用等式的性质解下列方程:(1)x+1=6; (2)3-x=7;(3)-3x=21;3.2 解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是( )2.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有( )A.2个B.3个C.4个D.5个4.将下列几何体分类:其中柱体有,锥体有,球体有(填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.6.把下列图形与对应的名称用线连起来:圆柱四棱锥正方体三角形圆第2课时从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是( )2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是( )3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是( )4.下面图形中是正方体的展开图的是( )5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是( )A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2 点、线、面、体1.围成圆柱的面有( )A.1个B.2个C.3个D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( )A.点动成线B.线动成面C.面动成体D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识.(1)飞机穿过云朵后留下痕迹表明;(2)用棉线“切”豆腐表明;(3)旋转壹元硬币时看到“小球”表明.4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2 直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是( )A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时线段的长短比较与运算1.如图所示的两条线段的关系是( )A.a=bB.a<bC.a>bD.无法确定第1题图第2题图2.如图,已知点B在线段AC上,则下列等式一定成立的是( )A.AB+BC>ACB.AB+BC=ACC.AB+BC<ACD.AB-BC=BC3.如图,已知D是线段AB的延长线上一点,C为线段BD的中点,则下列等式一定成立的是( )A.AB+2BC=ADB.AB+BC=ADC.AD-AC=BDD.AD-BD=CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是.5.如图,已知线段AB=20,C是线段AB上一点,D为线段AC的中点.若BC=AD+8,求AD的长.4.3 角4.3.1 角1.图中∠AOC的表示正确的还有( )A.∠OB.∠1C.∠AOBD.∠BOC第1题图第2题图2.如图,直线AB,CD交于点O,则以O为顶点的角(只计算180°以内的)的个数是( )A.1个B.2个C.3个D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是°.4.把下列角度大小用度分秒表示:(1)50.7°; (2)15.37°.5.把下列角度大小用度表示:(1)70°15′; (2)30°30′36″.4.3.2 角的比较与运算1.如图,其中最大的角是( )A.∠AOCB.∠BODC.∠AODD.∠COB第1题图第2题图2.如图,OC为∠AOB内的一条射线,且∠AOB=70°,∠BOC=30°,则∠AOC的度数为°.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC为∠AOB内的一条射线,OM,ON分别平分∠AOC,∠COB.若∠AOM=30°,∠NOB=35°,求∠AOB的度数.4.3.3 余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4 课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是( )2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为( )A.14B.10C.8D.73.如图,该几何体的展开图可能是( )4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章有理数1.1正数和负数1.B2.C3.B4.输1场5.从Q出发后退4下6.227,2.7183,2020,480-18,-0.333…,-25901.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值 第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下: -6<-514<-35<0<1.5<2.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2 有理数的减法 第1课时 有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12.5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112. (4)原式=314+534+⎝⎛⎭⎫-718+718=9. 5.解:-2+5-8=-5(℃). 答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.C2.B3.(1)16(2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0. (3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140. (2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621 -10 -6 8 -48(2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法 第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0. (3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23. (4)原式=-34×73×67=-32.第2课时 分数的化简及有理数的乘除混合运算1.(1)-8 (2)-14 (3)2832.B3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时 有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 4.解:32-6+2×2=30(℃).答:关掉空调2小时后的室温为30℃.1.5 有理数的乘方1.5.1 乘 方 第1课时 乘 方1.B2.D3.C4.D5.⎝⎛⎭⎫344 34的4次方⎝⎛⎭⎫或34的4次幂6.(1)-1 (2)-81 (3)0 (4)1258。
2023-2024学年人教版七年级数学上册《第一章有理数的乘除法》同步练习题附答案学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列说法错误的是()A.任何有理数都有倒数B.互为倒数的两个数的积为1C.互为倒数的两个数同号D.1和-1互为负倒数2.计算的结果是()A.-4 B.-2 C.2 D.43.已知一个数的倒数的相反数为,则这个数为()A.B.C.D.4.四个互不相等的整数的积为49,则它们的和为()A.0 B.8 C.16 D.8或15.在促销活动中,商场将标价500元的商品在打八折的基础上再打八折销售,则该商品现在的售价是()A.400元B.320元C.256元D.8元6.若,则的值可表示为().A.B.C.D.7.吴与伦比设计了一个计算程序,如图,如果输入的数是1,那么输出的结果是()A.1 B.-1 C.3 D.-38.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是()A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.﹣的相反数的倒数是.10.计算(﹣2)×3×(﹣1)的结果是.11.在-1,0,-2,3中,两个数的积的最大值是。
12.某件商品进价为100元,实际售价为110元,那么该件商品的利润率为.13.一架直升机从高度为450m的位置开始,先以20m/s的速度上升60s,然后以12m/s的速度下降120s,这时,直升机的高度是.三、解答题:(本题共5题,共45分)14.计算:.15.计算(1);(2).16.气象统计资料表明:海拔高度每增加100 米,气温降低大约0.6℃.小明和小亮为考证地方教材中星斗山海拔高度,国庆期间他们两个进行实地测量,小明在山下一个海拔高度为1020米的小山坡上测得的气温为14℃,小亮在星斗山顶峰的最高位置测得的气温为2℃,那么你知道星斗山顶峰的海拔高度是多少米吗?请列式计算.17.司机小陈在一条南北向的马路上开出租车.如果规定向南为正,向北为负,记录小陈上午连续接送7位乘客的行程(单位:千米)如下:+9,-3,-5,+2,-10,+6,-3(1)小陈上午接送7位乘客到达目的地,行程一共是多少千米?(2)若规定租车起步价为10元,起步行程为3千米(包括3千米),超过3公里部分每公里收费2元,请问小陈司机上午一共收入多少车费?18.小明有5张写着不同的数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是;(3)从中取出4张卡片,用学过的运算方法,使结果为24.写出运算式子:参考答案:1.A 2.C 3.D 4.A 5.B 6.B 7.A 8.B9.201610.611.212.10%13.210m14.解:15.(1)解:;(2)解:.16.解:由题意可得星斗山顶峰的海拔高度是:1020+(14﹣2)÷0.6×100=1020+12÷0.6×100=1020+2000=3020(米) 即星斗山顶峰的海拔高度是3020米.17.(1)解:由题意得:9+3+5+2+10+6+3=38(千米)答:行程一共是38千米;(2)解:由题意可得:第一位乘客的车费为:(元);第二位乘客的车费为:10元;第三位乘客的车费为:(元);第四位乘客的车费为:10元;第五位乘客的车费为:(元);第六位乘客的车费为:(元);第七位乘客的车费为:10元;∴一共收入为22+10+14+10+24+16+10=106(元)答:小陈司机上午一共收入106元.18.(1)15(2)(3)方法不唯一。
课堂同步练习册·数学(⼈教版七年级上)》参考答案第⼀章有理数《新课程课堂同步练习册·数学(⼈教版七年级上)》参考答案第⼀章有理数§1.1正数和负数(⼀)⼀、1. D 2. B 3. C⼆、1. 5⽶ 2. -8℃ 3. 正西⾯600⽶ 4. 90三、1. 正数有:1,2.3,68,+123;负数有:-5.5,,-11 2.记作-3毫⽶,有1张不合格3. ⼀⽉份超额完成计划的吨数是-20, ⼆⽉份超额完成计划的吨数是0, 三⽉份超额完成计划的吨数是+102.§1.1正数和负数(⼆)⼀、1. B 2. C 3. B⼆、1. 3℃ 2. 3℃ 3. -2⽶ 4. -18m三、1.最⼤不超过9.05cm, 最⼩不⼩于8.95cm;2.甲地最⾼,丙地最低,最⾼的地⽅⽐最低的地⽅⾼50⽶3. 70分§1.2.1有理数⼀、1. D 2. C 3. D⼆、1. 0 2. 1,-1 3. 0,1,2,3 4. -10三、1.⾃然数的集合:{6,0,+5,+10…}整数集合:{-30,6,0,+5,-302,+10…}负整数集合:{-30,-302… }分数集合:{,0.02,-7.2,,,2.1…}负分数集合:{,-7.2, … }⾮负有理数集合:{0.02, ,6,0,2.1,+5,+10…};2. 有31⼈可以达到引体向上的标准3. (1) (2) 0§1.2.2数轴⼀、1. D 2. C 3. C⼆、1. 右 5 左 3 2. 3. -3 4. 10三、1. 略 2.(1)依次是-3,-1,2.5,4 (2)1 3. ±1,±3§1.2.3相反数⼀、1. B 2. C 3. D⼆、1. 3,-7 2. ⾮正数 3. 3 4. -9三、1. (1) -3 (2) -4 (3) 2.5 (4) -62. -33. 提⽰:原式==§1.2.4绝对值⼀、1. A 2. D 3. D⼆、1. 2. 3. 7 4. ±4三、1. 2. 20 3. (1)|0|<|-0.01| (2)>§1.3.1有理数的加法(⼀)⼀、1. C 2. B 3. C⼆、1. -7 2.这个数 3. 7 4. -3,-3.三、1. (1) 2 (2) -35 (3) - 3.1 (4) (5) -2 (6) -2.75;2.(1) (2) 190.§1.3.1有理数的加法(⼆)⼀、1. D 2. B 3. C⼆、1. -11.76 2. 2 3. -6 4. 7,0三、1. (1) 10 (2) 63 (3) (4) -2.52. 在东边距A处40dm 480dm3. 0或.§1.3.2有理数的减法(⼀)⼀、1. A 2. D 3. A.⼆、1. -5 2.-200-(-30) 3.互为相反数 4.-8.三、1. (1) -12 (2) 12 (3) -4.3 (4) 2. (1) (2) 8§1.3.2有理数的减法(⼆)⼀、1. A 2. D 3. D.⼆、1. 8 2. -2.5 3. 7+8-4.2-5.3 4. 7或-5.三、1. 3.5 2.盈452(万元) 3. 160cm.§1.4.1有理数的乘法(⼀)⼀、1. B 2. A 3. D⼆、1. 10 2. -10 3. 3.6 3.6 4. 15三、1. (1) 0 (2)10 (3) 1 (4)2.当m=1时, 当m=-1时,3.-16°C.§1.4.1有理数的乘法(⼆)⼀、1. D 2. B 3. C⼆、1. 99 2. 0 3.负数 4. 0三、1. (1) (2) -77 (3) 0 (4) 2. 1073. 这四个数分别是±1和±5,其和为0§1.4.2有理数的除法(⼀)⼀、1. C 2. B 3. B⼆、1. 7 2. 0 3. 4. .三、1. (1)-3 (2) (3) 64 (4) -4 2. 4 3.平均每⽉盈利0.35万元.§1.4.2有理数的除法(⼆)⼀、1. D 2. D 3. C⼆、1. 2. , 3. -5 4. 0,1三、1. (1) 15 (2) -1 (3) (4) 2 2. 8.85 3. 0或-2§1.5.1乘⽅⼀、1. A 2. D 3. A.⼆、1. 16 2. ,5 3. ,-4 4. 0或1.三、1. (1) -32 (2) (3) - (4) -15 2. 64 3.8,6,§1.5.2科学记数法⼀、1. B 2. D 3. C⼆、1.平⽅⽶ 2.(n+1) 3.130 000 000 4.-9.37×106.三、1. (1) (2) -4.012×107 (3) -3.72109×103 (4);2.(1) 203000 (2) -6120 (3) -50030 (4) 11 000 0003..§1.5.3近似数⼀、1. C 2. B 3. B⼆、1.5.7×104 2.2,4和0,万分 3.百分,6 4..三、1.(1)个位 3 (2)⼗分位,3 (3)千万位,2 (4)万位,32.(1) (2) (3) (4).第⼆章整式加减§2.1整式(⼀)⼀、1. C 2. B 3. B⼆、1. 15x元 2. 3,3 3. 4. 1.05三、1.单项式系数1—4—1π次数241222. 6h3. 任意⼀个偶数可表⽰为:2n,任意⼀个奇数可表⽰为:2n+1.4. 每件售价为:(元);现售价为:(元);盈利:(元)§2.1整式(⼆)⼀、1. D 2. D 3. A⼆、1. 5a+7 2. 四,三 -1,-5;3、-7,,, 4.(2m+10)三、1. ①5-2χ②③④19.2 14.22. 依题意可知:九年级有名学⽣,⼋年级有名学⽣,七年级有名学⽣,所以七⾄九年级共有名学⽣,当a=480时,=1810名. 3. §2.2整式加减(⼀)⼀、1. C 2. B 3. D⼆、1.(答案不唯⼀),如7ab2 2. 3x2与-6x2,-7x与5x,-4与13. 2,24.(答案不唯⼀)如:3.三、1. 与,-2与3,与-,与,与2. ①④是同类项;②③不是同类项,因为不符合同类项的条件:相同的字母的指数相同;3、(1)-a,(2)4x2y.§2.2整式加减(⼆)⼀、1. D 2. C 3. A.⼆、1. 2、3x与-x , -2xy与2xy,2x+y 3. 4. 8三、1. (1)原式(2)解:原式=(a2—2a2)=+22. 原式当,b=3时,原式3.(1) (2) (3)若=20,n=26,则礼堂可容纳⼈数为:==845(⼈)§2.2整式加减(三)⼀、1. C 2. D 3. A.⼆、1. ①,② 2. 3. a 4. 6x-3三、1.(1)原式(2)原式 2. -13. 原式=3x2-y+2y2-x2-x2-2y2 =(3x2- x2- x2)+(2 y2-2 y2)-y= x2-y当=1,=-2时,原式=§2.2整式加减(四)⼀、1. C 2. C 3. B.⼆、1. (8a-8) 2. 6 3. 2 4. 1三、1. A-2B=()2()= -2=-2. 依题意有:()-2()=3. m=-4§2.3数学活动1. 182. ①解:b=a+1,c=a+8,d=a+9 ②a+d=b+c3.(1)A⽅式:0.18 B⽅式:18+0.12(2)当t=15⼩时即:t=15×60分钟=900分钟时,A⽅式收费为:0.18×15×60=162元 B⽅式收费为:18+0.12×15×60=126元,这时候选择B⽅式⽐较合算.4. 提⽰:阴影部分的⾯积等于⼤长⽅形⾯积减去3个空⽩三⾓形的⾯积,5xy5. (1)框出5个数之和为85,是17的5倍,(2)5a,(3)因为5a =2010,a=402,表中全是奇数,不可能是402,所以5个数之和不可能等于2010;6、提⽰:由图得知,c|a|>|b|,所以a-b>0,c-b<0,a+c<0,所以原式=a-b-2(b-c)+(-a-c)=c-3b 第三章⼀元⼀次⽅程§3.1.1⼀元⼀次⽅程(⼀)⼀、1.B 2. C 3. B⼆、1. (1),(2),(3) (4)2. 3. 调整⼈数后,甲班⼈数恰好是⼄班⼈数的2倍4. 2x+35=135.三、1. 设该中学七年级⼈数为x⼈,则x+(x-40)=7002. 设每副⽻⽑球拍x元,依题意得3x+2.5=1003. 设⼄数为x,依题意得2x+1=x+4.§3.1.1⼀元⼀次⽅程(⼆)⼀、1. D 2. C 3. C⼆、1. 7,6,3 2. 1 3. 4. -4三、1. (1) x=4(检验略) (2)(检验略) 2. 6 3. 60千⽶/时.§3.1.2等式的性质(⼀)⼀、1. B 2. D 3. C⼆、1.(1) 3,(2) x+2=5, 2. (1)-8,(2),(3),(4) 3. -1三、1. x=5 2. y=7 3. x= 4. x=-6 5. x=3 6. x=1.§3.1.2等式的性质(⼆)⼀、 1. B 2. C 3. D⼆、1. 8,9,都除以3,3 2. (1)都减3,等式性质1,3,1,都除以,等式性质2,-3 (2) 都加2,等式性质1,,都减,等式性质1,6,都除以2,等式性质2,33. 24. 10.三、1. x= 2. x=-4 3. x= 4. x=15.§3.2.1解⼀元⼀次⽅程——合并同类项与移项(⼀)⼀、1. B 2 . C 3 . A⼆、1. ;2. 合并,, 3. 42;4、10.三、1. x=20 2. x=-3 3. x= 4. x= 5. x=2 6. x=0.5.§3.2.2解⼀元⼀次⽅程——合并同类项与移项(⼆)⼀、1. C 2. A 3. A.⼆、1 2. 3. 2 4. 2.三、1. (1) x=5,(2) x=-2 2. x=53. (1)设有x个⼩朋友,则3x+12=5x-10 (2)设有x块糖,则;(3)选⼀则x=11,选⼆则有x=45.§3.2.3解⼀元⼀次⽅程——合并同类项与移项(三)⼀、1. B 2. A 3. D⼆、1. 6,8,10 2. ①3x+4x+6x=65,②x+x+2x=65,③④① 15 20 30 3. 12三、1. 36 2. 500万元,甲250万元,⼄100万元 3. 40棵.§3.2.4解⼀元⼀次⽅程——合并同类项与移项(四)⼀、1. B 2. A 3. C⼆、1. 2. 3 3. 4. 120三、1. 23 2. 25m3 3.(1) .. (2) 10.17.24.§3.3.1解⼀元⼀次⽅程——去括号与去分分母(⼀)⼀、1. D 2. C 3. B⼆、1. x=4 2. 3. 6 4. 12.5,10三、1. x=-4 2. x=2 3. 4.§3.3.2解⼀元⼀次⽅程——去括号与去分分母(⼆)⼀、1. B 2. C 3. A⼆、1. x=5 2.1 3. 30 4. 40三、1. ⽣产轴杆的⼯⼈为20⼈,⽣产轴承的⼯⼈为50⼈2. 略3. 含⾦190克,银60克§3.3.3解⼀元⼀次⽅程——去括号与去分分母(三)⼀、1. A 2. C 3. C⼆、1. 去分母,2(2x+1)-(10x+1),6,4x+2-10x-1,6,移项合并同类项,2. -73. -104. .三、1. 2. 3. 4.§3.3.4解⼀元⼀次⽅程——去括号与去分分母(四)⼀、1. A 2. B 3. D⼆、1. -4 2.2 3. 4. 12.三、1.(1)x=-1 (2)x=1 2. 24 3. 30§3.4.1实际问题与⼀元⼀次⽅程(⼀)⼀、1. C 2. C 3. A⼆、1. 2. 5 3. 1800 4. (5.5-4)x=6.三、1.(1)3 (2) 2.75 (3)15 (4)15 2. ⼩时 3.550千⽶.§3.4.2实际问题与⼀元⼀次⽅程(⼆)⼀、1. D 2. C 3. B⼆、1. 25 2. 50 3. 6400 4.0.60.三、1. 7100 2. 7 3. 设这种商品的销售价是元,根据题意得(15×20+12.5×40)(1+50%)=60x,,解得x=20.§3.4.3实际问题与⼀元⼀次⽅程(三)⼀、1. C 2. A 3. A⼆、1. 100000 2. 280 3. 304.55 4. 2,3三、1. 设甲种消毒液购买x瓶,则⼄种消毒液购买(100-x)瓶.依题意,得6x+9(100-x)=780.解得:x=40.100-x=100-40=60(瓶).答:甲种消毒液购买40瓶,⼄种消毒液购买60瓶.2.1080元3. (1)设⼀共去x个成⼈,则去(12-x)个学⽣,依题意得35x+0.5×35(12-x)350 解得x=8 (2)按团体票买只需0.6×35×16=336元,还多出4张票,所以按团体购票更省钱.§3.4.4实际问题与⼀元⼀次⽅程(四)⼀、1. B 2. A 3. B⼆、1. 9 2. 20 3. 8,3 4. 22三、1.此队胜6场,平4场;2.解:(1)(2)因为甲、⼄班共103⼈,甲班⼈数多于⼄班⼈数,所以甲班多于50⼈,⼄班有两种情况:①若⼄班⼩于或等于50⼈,设⼄班有⼈,则甲班有⼈,依题意得:分解得:因此103-45=58 即甲班有58⼈,⼄班有45⼈.②若⼄班超过50⼈,设⼄班⼈,则甲班有⼈,依题意得:因为此等式不成⽴,所以这种情况不存在.答:只有甲班58⼈,⼄班45⼈;3, 28.第四章图形认识初步§4.1多姿多彩的图形(⼀)⼀、1. C 2. D 3. C⼆、1. 球,正⽅体 2. 四棱锥圆柱三棱柱圆锥长⽅体3. 圆.直线4. 2三、1. ⽴体图形有(1),(4),(5),(6),(7);平⾯图形有(2),(3)2.1113.6§4.1多姿多彩的图形(⼆)⼀、1. C 2. D 3. C⼆、1. 正⽅体 2. 8,长⽅形.六边形(或平⾏四边形.六边形)3. 长⽅形和两个圆4. 三棱锥.三、1. 2.3. 5个§4.1多姿多彩的图形(三)⼀、1. B 2. B 3. C⼆、1. 7 2. 长⽅,扇 3. 后⾯,下⾯,左⾯ 4. 6或7三、1. 504 2. 三棱柱,长⽅体,不能,正⽅体 3.(1)F,(2)B§4.1多姿多彩的图形(四)⼀、1. B 2. D 3. BBAHC PG PD P⼆、1.点,线 2. 2,1,曲,扇形3. 点,线,平⾯4. 8,12,6.三、1. 略 2. 略 3. 沿着如图的虚线折叠,其中G,H是中点.§4.2直线、射线、线段(⼀)⼀、1. D 2. D 3. D⼆、1. 点在直线上或在直线外 2. 6,3 3. 2或10 4. 1或4或6三、1. 略 2. 两点确定⼀条直线 3. 10§4.2直线、射线、线段(⼆)⼀、1. D 2. C 3. D⼆、1. AC>BD 2. AB,CD,AD 3. =,=,=,< 4. 20三、1. 略 2. OA=2,OB=3,AB=5,结论是AB=OA+OB3. (提⽰:画出的正⽅形边长是所给正⽅形边长的⼀半).§4.2直线、射线、线段(三)⼀、1. C 2. C 3. A⼆、1. 1 2. MP,, 2 3. 4 4. 0.8.三、1. 连结AB与直线交于点P为所求的点,理由:两点之间线段最短2.设相距为,(填写在此范围内⼀个值即可)3. 5cm§4.3⾓(⼀)⼀、1. D 2. D 3. D⼆、1. 189,11340,0.61 2. 75 3.150;4.300.三、1. 75°,15°,105°135°,150°,180° 2. ⼩明的测量⽅法不正确,∠AOB=40°,测量结果是⼩明测量结果的⼀半 3. 分钟转过150°,时针转过12.5°§4.3⾓(⼆)⼀、1. C 2. D 3. C⼆、1. ∠BOC<∠COD<∠BOD<∠AOD2. 3 3. 15°或75° 4.∠BOD三、1. 80°或20° 2.65° 3. 23°§4.3⾓(三)⼀、1. C 2. C 3. C⼆、1. ∠DAE,= 2.13 3. 18 4. ∠AOB=∠COD,∠AOC=∠BOD三、1. 2.(1),(2),(3)3.(1)图略,(2)90°§4.3⾓(四)⼀、1. C 2. B 3. A⼆、1. 70° 2. =,同⾓的余⾓相等 3. 126° 4. 南偏东34°三、1.30°,60°,60°2. 不对,互补是对两个⾓⽽⾔3. ∠CBD=90°,∠DBM+∠ABC=90°.§4.4 课题学习⼀、1. D 2. C 3. B⼆、1. 后,下,左 2. 圆柱三棱柱 2. C A B 3. 球4. 6.三、1. (3)(4)(5)(6)(7)(9)(10) 2.答案不唯⼀,如3. A-B-F-E-H-G-C-D-A(所⾛路线不唯⼀),42cm.。
2023-2024学年人教版七年级数学上册《第一章有理数》同步练习题带答案学校:___________班级:___________姓名:___________考号:___________ 一、选择题1.下列各数:6,−15,12,−3.5,427,−910和4.5,负分数的个数是()A.1个B.2个C.3个D.4个2.2023的相反数是()A.12023B.−12023C.2023 D.-20233.如图,数轴上的整数a被星星遮挡住了,则-a的值是()A.1 B.2 C.-2 D.-14.下列四个数中不是有理数的是()A.−1.51B.125C.πD.100%5.如图,数轴上有三个点A,B,C,若点A,B表示的数互为相反数,且AB=4,则点C表示的数是()A.6 B.4 C.2 D.06.数1,-2,0,-1中,最小的数是()A.1 B.-2 C.0 D.-17.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是()A.n>3B.m<−1C.m>−n D.|m|>|n|8.式子|x−1|−3取最小值时,x等于()A.1 B.2 C.3 D.4二、填空题9.有理数+3, 7.5,-0.05, 0, -2019 ,23中,非负数有个.10.数轴上表示不小于﹣3且小于2的整数是.11.若5与a-3互为相反数,则a的值为.12.若|m|=7,则m=.13.已知a,b两数在数轴上对应的点如图所示,化简|b−a|−a的结果是.三、解答题和14.先画出数轴,并在数轴上表示出下列各数,然后用“<”把各数连接起来 1.5,-1,0,−313 |−4|.15.把下列各数分别填入相应的集合里.与 5, 3.14,π, -3和0.15.0,−224( 1 )整数集合:{ ……};( 2 )分数集合:{ ……};( 3 )有理数集合:{ ……};( 4 )非负数集合:{ ……}.16.若|x﹣2|+|y+2|=0,求x﹣y的相反数.17.已知实数a,b,c在数轴上的位置如图所示,且满足|a|=|b|=2|﹣c|=4.(1)求a,b,c的值;(2)求|a﹣2b|+|﹣b+c|+|c﹣3a|的值.参考答案1.【答案】C2.【答案】D3.【答案】C4.【答案】C5.【答案】B6.【答案】B7.【答案】C8.【答案】A9.【答案】410.【答案】−3、−2、−1、0、111.【答案】-212.【答案】±713.【答案】-b14.【答案】解:|−4|=4<−1<0<1.5<|−4|.−31316.【答案】∵|x﹣2|+|y+2|=0∴x﹣2=0,y+2=0解得x=2,y=﹣2∴x﹣y=2﹣(﹣2)=4∴x﹣y的相反数是﹣4.17.【答案】(1)解:∵a<0,b>0,c>0,且满足|a|=|b|=2|﹣c|=4 ∴a=﹣4,b=4,c=2(2)解:|a﹣2b|+|﹣b+c|+|c﹣3a| =|﹣4﹣8|+|﹣4+2|+|2+12|=12+2+14=28.。
第一章有理数【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
【能力训练】一、选择题。
1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42.a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b<-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是 ( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则 ( )A a>0,b>0B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。
新课程人教版七年级上册数学课堂同步练习册参考答案新课程人教版七年级上册数学课堂同步练习册参考答案《新课程课堂同步练习册·数学( 人教版七年级上) 》参考答案第一章有理数§1.1 正数和负数(一)一、 1. D 2. B 3. C二、1. 5 米 2.-8 ℃ 3.正西面600米 4. 90三、 1.正数有:1,2.3,68,+123;负数有:-5.5,,-112. 记作 -3 毫米 , 有 1 张不合格3.一月份超额完成计划的吨数是-20,二月份超额完成计划的吨数是0,三月份超额完成计划的吨数是+102.§1.1 正数和负数(二)一、 1. B 2. C 3. B二、 1. 3 ℃ 2. 3℃ 3. -2米 4. -18m三、 1. 最大不超过9.05cm,最小不小于8.95cm ;2.甲地最高 , 丙地最低 , 最高的地方比最低的地方高50米 3. 70分§1.2.1 有理数一、 1. D 2. C 3. D二、 1. 0 2. 1,-1 3. 0,1,2,3 4. -10三、 1. 自然数的集合:{ 6,0,+5,+10⋯}整数集合:{-30,6,0,+5,-302,+10⋯}整数集合:{ -30,-302⋯}分数集合:{,0.02,-7.2,,,2.1⋯}分数集合:{ ,-7.2,⋯}非有理数集合:{0.02, ,6,0,2.1,+5,+10⋯};2.有31 人可以达到引体向上的准3. (1) (2)0§1.2.2 数一、 1. D 2. C 3. C二、 1.右5左 3 2. 3. -3 4. 10三、 1.略 2.(1)依次是 -3,-1,2.5,4 (2)13.± 1,± 3§1.2.3 相反数一、 1. B 2. C 3. D二、 1. 3,-7 2.非正数3. 3 4. -9三、 1.(1) -3 (2) -4 (3) 2.5 (4) -62. -33.提示:原式==§1.2.4 绝对值一、 1. A 2. D 3. D二、 1. 2. 3. 7 4.± 4三、 1. 2. 20 3. (1)|0| |-0.01|(2)§1.3.1 有理数的加法 ( 一)一、 1. C 2. B 3. C二、 1. -7 2.这个数 3. 7 4. -3,-3.三、 1. (1)2(2) -35 (3) - 3.1 (4)(5) -2 (6) -2.75;2.(1)(2) 190.§1.3.1 有理数的加法 ( 二)一、 1. D 2. B 3. C二、 1. -11.76 2. 2 3. -6 4. 7,0三、 1. (1) 10 (2) 63 (3)(4) -2.52.在东边距 A 处 40dm 480dm3. 0或.一、 1. A 2. D 3. A.二、 1. -5 2.-200-(-30) 3.互为相反数4.-8.三、 1. (1) -12 (2) 12 (3) -4.3 (4)2. (1)(2) 8§1.3.2 有理数的减法 ( 二)一、 1. A 2. D 3. D.二、 1. 8 2. -2.5 3. 7+8-4.2-5.3 4. 7或-5.三、 1.3.5 2.盈452(万元) 3. 160cm.§1.4.1 有理数的乘法 ( 一)一、 1. B 2. A 3. D二、 1. 10 2.-10 3.3.6 3.6 4.15三、 1. (1) 0(2)10 (3) 1(4)2.当 m=1时,当m=-1时,3.-16°C.§1.4.1 有理数的乘法 ( 二)一、 1. D 2. B 3. C二、 1. 99 2. 0 3.负数 4. 0三、 1. (1)(2) -77(3) 0(4)2.1073.这四个数分别是± 1 和± 5,其和为 0§1.4.2 有理数的除法 ( 一)一、 1. C 2. B 3. B二、 1. 7 2. 0 3. 4. .三、 1.(1)-3(2) (3)64(4) -4 2.4 3.平均每月盈利0.35万元 .§1.4.2有理数的除法(二)一、 1. D 2. D 3. C二、 1. 2., 3. -5 4. 0,1三、 1. (1) 15 (2) -1 (3) (4) 2 2.8.85 3. 0或-2§1.5.1 乘方一、 1. A 2. D 3. A.二、 1. 16 2. ,5 3. ,-4 4. 0或 1.三、 1. (1) -32 (2) (3)- (4)-152.64 3. 8,6,§1.5.2 科学记数法一、 1. B 2. D 3. C二、 1. 平方米 2.(n+1) 3.130 000 0004.-9.37× 106.三、 1. (1) (2) -4.012×107 (3) -3.72109×103(4);2.(1) 203000(2) -6120 (3) -50030(4) 11000 000 3..§1.5.3 近似数一、 1. C 2. B 3. B二、 1.5.7 ×104 2.2,4和0,万分 3.百分,64..三、 1.(1) 个位 3 (2)十分位 ,3 (3)千万位,2(4)万位,32.(1) (2) (3) (4).2.6h3. 任意一个偶数可表示为:2n,任意一个奇数可表示为:2n+1.4.每件售价为:(元) ; 现售价为:(元) ;盈利:(元)§2.1 整式(二)一、 1. D 2. D 3. A二、 1. 5a+7 2.四,三-1,-5;3、-7,,, 4.(2m+10)三、 1.① 5-2χ②③④ 19.214.22.依题意可知:九年级有名学生,八年级有名学生,七年级有名学生,所以七至九年级共有名学生,当a=480时,=1810 名. 3.§2.2 整式加减(一)一、 1. C 2. B 3. D二、 1. (答案不唯一),如 7ab2 2. 3x2与-6x2 ,-7x 与 5x , -4 与 1 3. 2, 24.(答案不唯一)如: 3.三、 1.与,-2与3,与-,与,与2.①④是同类项 ; ②③不是同类项,因为不符合同类项的条件:相同的字母的指数相同;3、 (1)-a , (2)4x2y .§2.2 整式加减(二)一、 1. D 2. C 3. A.二、 1. 2、3x与-x , -2xy与2xy,2x+y 3.4. 8三、 1. (1)原式(2)解:原式 =(a2 —2 a2) =+22.原式当, b=3 时,原式3.( 1) (2) ( 3)若= 20, n=26,则礼堂可容纳人数为: ==845(人)§2.2 整式加减(三)一、 1. C 2. D 3. A.二、 1.① ,② 2.3. a 4. 6x-3三、 1.(1)原式(2)原式 2.-13.原式 =3x2-y+2y2-x2-x2-2y2=(3x2- x2- x2)+(2 y2-2 y2)-y= x2-y当= 1,=- 2 时,原式 =§2.2 整式加减(四)一、 1. C 2. C 3. B.二、 1. (8a-8) 2. 6 3. 2 4. 1三、 1. A-2B= () 2()= -2=-2.依题意有:() -2 () =3.m=-4§2.3 数学活动1. 182.①解:b=a+1,c=a+8,d=a+9②a+d=b+c3.( 1) A 方式: 0.18 B方式:18+0.12( 2)当 t=15 小时即: t=15 × 60 分钟 =900 分钟时,A方式收费为: 0.18 × 15× 60=162 元 B 方式收费为: 18+0.12 × 15× 60=126 元,这时候选择 B 方式比较合算.4.提示:阴影部分的面积等于大长方形面积减去 3 个空白三角形的面积,5xy5. (1)框出5个数之和为85,是 17 的 5 倍, (2)5a ,(3) 因为 5a =2010 , a =402 ,表中全是奇数,不可能是402,所以 5 个数之和不可能等于2010;6、提示:由图得知, c b0 a , |c| |a| |b|,所以a-b 0 ,c-b 0 , a+c 0 ,所以原式=a-b-2(b-c)+(-a-c)=c-3b第三章一元一次方程§3.1.1一元一次方程(一)一、 1. B 2. C 3. B二、 1. (1),(2),(3)(4)2. 3.调整人数后,甲班人数恰好是乙班人数的2倍4. 2x+35=135.三、 1.设该中学七年级人数为x 人 , 则 x+(x-40)=7002.设每副羽毛球拍 x 元,依题意得 3x+2.5=1003.设乙数为 x, 依题意得 2x+1=x+4.§3.1.1一元一次方程(二)一、 1. D 2. C 3. C二、 1. 7 ,6, 3 2. 1 3. 4. -4三、 1. (1) x=4(检验略)(2)(检验略) 2. 63.60 千米 / 时.§3.1.2 等式的性质(一)一、 1. B 2. D 3. C二、 1.(1) 3,(2) x+2=5, 2. (1)-8,(2),(3),(4)3. -1三、1. x=5 2.y=7 3.x= 4.x=-6 5.x=36. x=1.§3.1.2等式的性质(二)一、 1. B 2. C 3. D二、 1. 8 ,9,都除以3,3 2. (1)质 1,3,1,都除以 , 等式性质2,-3(2)都加都减 , 等式性质 1, 6,都除以 2,等式性质都减 3, 等式性2, 等式性质 1,,2, 33.24. 10.三、 1. x= 2. x=-4 3. x= 4. x=15.§3.2.1解一元一次方程——合并同类项与移项( 一)一、 1.B 2 .C 3 . A二、 1.; 2.合并,, 3. 42; 4、 10.三、 1.x=20 2.x=-3 3.x= 4.x= 5.x=26.x=0.5.§3.2.2解一元一次方程——合并同类项与移项( 二 )一、 1. C 2. A 3. A.二、 1 2. 3.2 4.2.三、 1. (1) x=5,(2) x=-2 2. x=53. (1)设有x个小朋友,则3x+12=5x-10 (2)设有x块糖,则;(3)选一则 x=11,选二则有 x=45.§3.2.3 解一元一次方程——合并同类项与移项( 三)一、 1. B 2. A 3. D二、1. 6,8,10 2.① 3x+4x+6x=65,② x+x+2x=65,③④①15 2030 3. 12三、 1. 36 2.500 万元,甲 250 万元,乙 100 万元3.40 棵 .§3.2.4解一元一次方程——合并同类项与移项( 四)一、 1. B 2. A 3. C二、1 .2 . 33 . 4. 120三、 1. 23 2. 25m3 3.(1) ..(2)10.17.24.§3.3.1解一元一次方程——去括号与去分分母( 一)一、 1. D 2. C 3. B二、 1. x=4 2. 3. 6 4. 12.5, 10三、 1. x=-4 2. x=2 3. 4.§3.3.2解一元一次方程——去括号与去分分母( 二)一、 1. B 2. C 3. A二、 1. x=5 2.1 3. 30 4. 40三、 1.生产轴杆的工人为20 人,生产轴承的工人为50人2.略3.含金190克,银60克§3.3.3解一元一次方程——去括号与去分分母( 三)一、 1. A 2. C 3. C二、 1.去分母,2(2x+1)-(10x+1),6,4x+2-10x-1,6,移项合并同类项,2. -73. -104. .三、 1. 2. 3. 4.§3.3.4解一元一次方程——去括号与去分分母( 四)一、 1. A 2. B 3. D二、 1. -4 2.2 3. 4. 12.三、 1.(1)x=-1 (2)x=1 2. 24 3. 30§3.4.1实际问题与一元一次方程( 一 )一、 1. C 2. C 3. A二、 1. 2. 5 3. 1800 4. (5.5-4)x=6.三、 1.(1)3 (2) 2.75 (3)15 (4)15 2.小时 3.550千米.§3.4.2实际问题与一元一次方程( 二)一、 1. D 2. C 3. B二、 1. 25 2. 50 3. 6400 4.0.60.三、 1. 7100 2. 7 3.设这种商品的销售价是元,根据题意得( 15× 20+12.5 ×40) (1+50%)=60x, ,解得x=20.§3.4.3实际问题与一元一次方程( 三 )一、 1. C 2. A 3. A二、 1. 100000 2. 280 3. 304.55 4. 2,3三、 1.设甲种消毒液购买x 瓶,则乙种消毒液购买(100-x) 瓶.依题意,得6x+9(100-x)=780.解得:x=40. 100-x=100-40=60 (瓶).答:甲种消毒液购买40 瓶,乙种消毒液购买60 瓶.2.1080元3. (1)设一共去x 个成人,则去 (12-x)个学生,依题意得 35x+0.5 × 35(12-x)350解得x=8(2)按团体票买只需 0.6 ×35× 16=336 元,还多出 4 张票,所以按团体购票更省钱.§3.4.4实际问题与一元一次方程( 四 )一、 1. B 2. A 3. B二、 1. 9 2. 20 3. 8,3 4. 22三、 1. 此队胜 6 场,平 4 场; 2. 解:(1)( 2)因为甲、乙班共103 人,甲班人数多于乙班人数,所以甲班多于50 人,乙班有两种情况:①若乙班小于或等于50 人,设乙班有人,则甲班有人,依题意得:分解得:因此103-45=58即甲班有58 人,乙班有45 人.②若乙班超过50 人,设乙班人,则甲班有人,依题意得:因为此等式不成立,所以这种情况不存在.答:只有甲班58人,乙班45人;3, 28.第四章图形认识初步§4.1 多姿多彩的图形(一)一、 1. C 2. D 3. C圆锥二、 1.球,正方体长方体2.四棱锥圆柱三棱柱3.圆 . 直线4. 2三、 1.立体图形有(1),(4),(5),(6),(7);平面图形有 (2) ,(3) 2.111 3.6§4.1 多姿多彩的图形(二)一、 1. C 2. D 3. C边形 .二、 1.六边形)正方体 2. 8,长方形.六边形(或平行四3.长方形和两个圆4.三棱锥.一、 1. B 2. B 3. C二、 1. 7 2.长方,扇 3.后面,下面,左面4. 6或7三、 1. 504 2.三棱柱,长方体,不能,正方体3.(1)F ,(2)B§4.1 多姿多彩的图形(四)一、 1. B 2. D 3. B二、 1. 点,线 2. 2,1,曲,扇形3.点,线,平面4. 8,12,6.三、 1.略 2.略 3.沿着如图的虚线折叠,其中 G, H 是中点 .§4.2 直线、射线、线段(一)一、 1. D 2. D 3. D二、 1.点在直线上或在直线外 2. 6, 3 3. 2或 10 4. 1或 4 或 6三、 1.略 2.两点确定一条直线 3. 10§4.2 直线、射线、线段(二)一、 1. D 2. C 3. D二、1. AC BD 2. AB,CD,AD 3. =,=,=, 4.20三、1.略 2.OA=2,OB=3,AB=5,结论是 AB=OA+OB3. (提示:画出的正方形边长是所给正方形边长的一半).§4.2 直线、射线、线段(三)一、 1. C 2. C 3. A二、 1. 1 2. MP,, 2 3. 4 4. 0.8.三、 1.连结AB与直线交于点P 为所求的点,理由:两点之间线段最短2.设相距为, ( 填写在此范围内一个值即可 )3.5cm§4.3 角(一)一、 1. D 2. D 3. D二、1. 189,11340,0.61 2.75 3.150;4.300.三、 1. 75 ° ,15 ° ,105 ° 135° ,150 ° ,180 °2.小明的测量方法不正确,∠AOB=40°,测量结果是小明测量结果的一半 3.分钟转过150°,时针转过12.5 °。
新人教版七年级上册第一章有理数全部课堂同步练习第1课正数和负数1.如果向南走5米,记作+5米,那么向北走8米应记作___________.2.如果温度上升3℃记作+3℃,那么下降5℃记作____________.3.海拔高度是+1356m,表示________,海拔高度是-254m,表示______.4.一种零件的内径尺寸在图纸上是30±0.05(单位:毫米),表示这种零件的标准尺寸是30毫米,加工要求最大不超过标准尺寸______毫米,最小不低于标准尺寸______毫米.5.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分90分和80分应分别记作_________________________.6.粮食产量增产11%,记作+11%,则减产6%应记作______________.7.如果向西走12米记作+12米,则向东走-120米表示的意义是___.8.味精袋上标有“500±5克”字样中,+5表示_____________,-5表示____________.9.在下列横线上填上适当的词,使前后构成意义相反的量:(1)收入1300元,800元;(2)80米,下降64米;(3)向北前进30米,50米.10.观察下列排列的每一列数,研究它的排列有什么规律?并填出空格上的数.(1)1,-2,1,-2,1,-2,,,,…(2)-2,4,-6,8,-10,,,…(3)1,0,-1,1,0,-1,,,,…11.甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是.12.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?13.测量一座公路桥的长度,各次测得的数据是:255米,270米,265米,267米,258米.(1)求这五次测量的平均值; (2)如以求出的平均值为基准数,用正、负数表示出各次测量的数值与平均值的差;第2课 有理数测试1、___、___和___统称为整数;___和___统称为分数;___、___、___、___和___统称为有理数;___和___统称为非负数;___和___统称为非正数;___和___统称为非正整数;___和___统称为非负整数;2、6,2005,212,0,-3,+1,41-,-6.8中,正整数和负分数共有…( ) A .3个B .4个C .5个D .6个3、下列不是有理数的是( )A 、-3.14B 、0C 、37 D 、π 4、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.3 5、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对6、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数7、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
A 、1个B 、2个C 、3个D 、4个8、在0,1,-2,-3.5这四个数中,是负整数的是( )A 、0B 、1C 、-2D 、-3.59、简答题:(1)-1和0之间还有负数吗?如有,请列举。
(2)-3和-1之间有负整数吗?-2和2之间有哪些整数?(3)有比-1大的负整数吗?有比1小的正整数吗?(4)写出三个大于-105小于-100的有理数。
第3课 数轴1、画出数轴并表示出下列有理数:.0,32,29,5.2,2,2,5.1--- 2、下列数轴的画法正确的是( )3、在数轴上表示-4的点位于原点的___边,与原点的距离是___个单位长度。
4、比较大小,在横线上填入“>”、“<”或“=”。
1___0;0___-1;-1___-2;-5___-3;-2.5___2.5.5、数轴上与原点距离是5的点有___个,表示的数是___。
6、已知x 是整数,并且-3<x <4,那么在数轴上表示x 的所有可能的数值有______。
7、在数轴上,点A 、B 分别表示-5和2,则线段AB 的长度是___。
8、从数轴上表示-1的点出发,向左移动两个单位长度到点B ,则点B 表示的数是___,再向右移动两个单位长度到达点C,则点C 表示的数是___。
9、数轴上的点A 表示-3,将点A 先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是___个单位长度。
10、 在数轴上P 点表示2,现在将P 点向右移动两个单位长度后再向左移动5个单位长度,这时P 点必须向___移动___个单位到达表示-3的点。
11、在数轴上表示-2的点离开原点的距离等于( )A 、2B 、-2C 、±2D 、412、有理数a 、b 在数轴上的位置如图所示,则a 、b 的大小关系是( )A 、a <bB 、a >bC 、a=bD 、无法确定1 D第4课 相反数1、-(+5)表示___的相反数,即-(+5)=___;-(-5)表示___的相反数,即-(-5)=___。
2、-2的相反数是___;75的相反数是___;0的相反数是___。
3、化简下列各数:-(-68)=___ -(+0.75)=___ -(-53)=___ -(+3.8)=___ +(-3)=___ +(+6)=___4、下列说法中正确的是( )A 、正数和负数互为相反数B 、任何一个数的相反数都与它本身不相同C 、任何一个数都有它的相反数D 、数轴上原点两旁的两个点表示的数互为相反数5、-(-3)的相反数是___。
已知4-m 与-1互为相反数,则m 的值是___。
6、已知数轴上A 、B 表示的数互为相反数,并且两点间的距离是6,点A 在点B 的左边,则点A 、B 表示的数分别是___。
7、已知a 与b 互为相反数,b 与c 互为相反数,且c=--6,则a=___。
8、一个数a 的相反数是非负数,那么这个数a 与0的大小关系是a ___0.9、数轴上A 点表示-3,B 、C 两点表示的数互为相反数,且点B 到点A 的距离是2,则点C 表示的数应该是___。
10、下列结论正确的有( )①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b 互为相反数,那么a+b=0;⑤若有理数a,b 互为相反数,则它们一定异号。
A 、2个B 、3个C 、4个D 、5个11、如果a=-a ,那么表示a 的点在数轴上的什么位置?___12、如果a+b=0,那么a,b 两个有理数一定是( )A 、都等于0B 、一正一负C 、互为相反数D 、互为倒数13、a 与-a 的大小关系有三种:①a >-a ;②a =-a ;③a <-a 。
请举例说明。
14、若向东走8米,记作+8米,如果一个人从A 地出发向东走12米,再走-12米,又走了+13米,你能判断此人这时在何处吗?第5课 绝对值1、______7.3=-;______0=;______3.3=--;______75.0=+-.2、______31=+;______45=--;______32=-+. 3、______510=-+-;______36=-÷-;______5.55.6=---.4、______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数.5、一个数的绝对值是32,那么这个数为______. 6、当a a -=时,0______a ;当0>a 时,______=a .7、绝对值等于4的数是______.8、523-的绝对值是______;绝对值等于523的数是______,它们互为________. 9、在数轴上,绝对值为4,且在原点左边的点表示的有理数为________.10、如果3-=a ,则______=-a ,______=a .11、7=x ,则______=x ; 7=-x ,则______=x .12、如果3>a ,则______3=-a ,______3=-a .13、绝对值不大于11.1的整数有( )A .11个B .12个C .22个D .23个14、绝对值等于其相反数的数一定是( )A .负数B .正数C .负数或零D .正数或零15、给出下列说法:①互为相反数的两个数绝对值相等②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有( )A .0个B .1个C .2个D .3个16、如果a a 22-=-,则a 的取值X 围是( )A .a >OB .a ≥OC .a ≤OD .a <O17、在数轴上表示下列各数: (1)212-;(2)0;(3)绝对值是2.5的负数;(4)绝对值是3的正数. 18、计算: (1)7.27.27.2---+(2)13616--++-(3)5327-⨯-÷-第6课 阶段测试一、选择题1.“甲比乙大2-岁”表示的意义是( )A 、甲比乙小2岁;B 、甲比乙大2岁;C 、乙比甲大4-岁;D 、乙比甲小4岁.2.从数轴上观察,与点A对应的数是3,则与点A距离为4个单位长度的点对应的数是( )A 、4B 、1-C 、7D 、1-或73.7-的相反数是( )A .7B .7-C .17D .71-4.在某校期末体育达标测试中,规定跳远合格标准是 4.00m ,已知小明跳出了4.15m ,记为+0.15m ,那么小强跳出了3.96m 记作( )A 、+0.04mB 、-0.04mC 、+3.96mD 、-3.96m5.若| a |=2,则a 的值为( )A .2;B .-2;C .±2;D .±21. 二、填空题1.规定了、和的直线叫数轴.2.世界上著名的“死海”最深处低于海平面400m ,记作400-m ,则珠穆朗玛峰高出海平面8844m 记作,某地高度为0m 表示.3.在下列各数:4,2.3-,+133,1-,0,546,π-,02.9中,正数有:,负数有:;整数有:,负分数有:.4.小丽和小青从同一地点出发,规定向西走为正,若小丽走了6-米,小青走了3米,则她们此时相距米.5.比较大小:3-2-.(用“>”,“=”或“<”填空)6.313的相反数的绝对值是__________,313-的绝对值的相反数是__________. 7.甲、乙两位同学进行数字游戏:甲说一个数a 的相反数就是它本身,乙说一个数b 的绝对值比它本身大,请你猜一猜a 、b 的大小关系是_________.8.绝对值小于4的正整数有___________.9.最小的正整数是____,最大的负整数是______,绝对值最小的有理数是__________.10.观察下面一列数并填空:0,-3,8,-15,24,-35,…,则它的第7个数是.三、解答题1.在一次体育测试中,老师对七年级女生进行了仰卧起坐的测试,以39个为优秀标准,超过的次数用正数表示,不足的次数用负数表示.其中某小组8人的成绩记录如下:6,0,2-,4,1-,3-,5,1-.(1)这8个学生实际各做了多少个仰卧起坐?(2)计算这8个学生仰卧起坐的平均成绩.2、如图,已知点A 在数轴上表示的数是2-.(1)标出数轴上原点的位置;(2)指出点B 表示的数;(3)另外还有一点C ,它到原点和点B 的距离相等,那么点C 表示什么数?第7课 有理数的加法1、如果规定存款为正,取款为负,请根据李明同学的存取款情况填空:①一月份先存入10元,后又存入30元,两次合计存人元,就是(+10)+(+30)=②三月份先存人25元,后取出10元,两次合计存人元,就是(+25)+(-10)=2、计算:(1)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121 (2)(—2.2)+3.8 (3)314+(—561)(4)(—561)+0 (5)(+251)+(—2.2) (6)(—152)+(+0.8)(7)(—6)+8+(—4)+12 (8)3173312741++⎪⎭⎫ ⎝⎛-+(9)0.36+(—7.4)+0.3+(—0.6)+0.64 (10)9+(—7)+10+(—3)+(—9)3、用简便方法计算下列各题:(1))127()65()411()310(-++-+(2)75.9)219()29()5.0(+-++-(3))539()518()23()52()21(++++-+-(4))4.2()6.0()2.1()8(-+-+-+-4、用算式表示:温度由—5℃上升8℃后所达到的温度.5、有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?6、已知04512=-+-b a ,计算下题:(1)a 的相反数与b 的倒数的和;(2)a 的绝对值与b 的绝对值的和。