土力学 库伦理论
- 格式:ppt
- 大小:687.00 KB
- 文档页数:20
莫尔—库伦理论长期以来,人们根据对材料破坏现象的分析,提出了各种不同的强度理论。
其中适用于土的强度理论有多种,不同的理论各有其优缺点。
在土力学中被广泛采用的强度理论要推莫尔—库伦强度理论。
1773年,法国学者库伦(Coulomb)根据砂土的试验结果,提出土的抗剪强度τf在应力变化不大的范围内,可表示为剪切滑动面上法向应力σ的线性函数。
即后来库伦又根据粘性土的试验结果,提出更为普遍的抗剪强度公式:1936年,太沙基(Terzaghi)提出了有效应力原理。
根据有效应力原理,土中总应力等于有效应力与孔隙水压力之和,只有有效应力的变化才会引起强度的变化。
因此,土的抗剪强度可表示为剪切破坏面上法向有效应σ’的函数。
上述库仑公式应改写为1910年莫尔(Mohr)提出材料产生剪切破坏时,破坏面上的是该面上法向应力的函数,即该函数在直角坐标系中是一条曲线,如图1所示,通常称为莫尔包线。
土的莫尔包线多数情况下可近似地用直线表示,其表达式就是库伦所表示的直线方程。
由库伦公式表示莫尔包线的土体抗剪强度理论称为莫尔—库伦(Mohr—Coulomb)强度理论。
图1 莫尔包线1.土中某点的应力状态我们先来研究土体中某点的应力状态,以便求得实用的土体极限平衡条件的表达式。
为简单起见,下面仅研究平面问题。
在地基土中任意点取出一微分单元体,设作用在该微分体上的最大和最小主应力分别为σ1和σ3。
而且,微分体内与最大主应力σ1作用平面成任意角度α的平面mn上有正应力σ和剪应力τ[图2(a)]。
(a ) (b )图2 土中任意一点的应力(a )微分体上的应力;(b )隔离体上的应力为了建立σ、τ与σ1和σ3之间的关系,取微分三角形斜面体abc 为隔离体[图2(b )]。
将各个应力分别在水平方向和垂直方向上投影 根据静力平衡条件得310,sin 1.0sin 1.0cos 1.00()0,cos 1.0cos 1.0sin 1.00()x ds ds ds a y ds ds ds b σασατασασατα=⋅⋅⋅-⋅⋅⋅+⋅⋅⋅==⋅⋅⋅-⋅⋅⋅-⋅⋅⋅=∑∑联立求解以上方程(a)、(b),即得平面mn 上的应力13131311()()cos 222(1)1()sin 22σσσσσατσσα⎫=++-⎪⎪⎬⎪=-⎪⎭由以上两式可知,在σ1和σ3已知的情况下,斜截面mn 上的法向应力σ和剪应力τ仅与斜截面倾角α有关。
土力学第七章土压力计算土力学是研究土体在外力作用下的力学性质与变形规律的学科。
而土压力是指土体受到外界施加的压力作用时所产生的抗力。
在土力学中,土压力计算是一个非常重要的内容,它涉及到土体在各种条件下的力学行为与变形。
本文将介绍土压力计算的相关知识。
土压力的计算一般分为两种情况,分别是水平荷载下的土压力和垂直荷载下的土压力。
对于水平荷载下的土压力,可以根据库仑理论进行计算。
库仑理论认为,土体受到的水平荷载越大,土体的抗力越大。
根据库仑理论,可以计算出土体单位面积上的土体水平抗力Fh,公式如下:Fh=Ka*γ*H*H/2其中,Fh为土体单位面积上的土体水平抗力,Ka为估计参数,γ为土体的体积重力,H为土面到超载面的水平距离。
对于垂直荷载下的土压力,可以根据黑力塔法进行计算。
黑力塔法认为,土体受到的垂直荷载越大,土体的抗力越大。
根据黑力塔法,可以计算出土体单位面积上的土体垂直抗力Fv,公式如下:Fv=γ*H*Kp其中,Fv为土体单位面积上的土体垂直抗力,γ为土体的体积重力,H为土面到超载面的垂直距离,Kp为垂直荷载的系数。
在实际的土压力计算中,需要考虑到土体的压缩性、土体的内摩擦角、土体的孔隙水压力等因素。
通过考虑这些因素的影响,可以更准确地计算出土体的压力。
此外,还可以根据实际工程的情况,选择适当的数值方法进行土压力计算,如有限差分法、有限元法等。
总结起来,土压力计算是土力学中的一个重要内容,它涉及到土体在各种条件下的力学行为与变形。
通过库仑理论和黑力塔法等方法,可以计算出土体单位面积上的土体水平抗力和垂直抗力。
在实际的土压力计算中,需要考虑到土体的压缩性、内摩擦角、孔隙水压力等因素,选择适当的数值方法进行计算。
希望本文对土压力计算的理解有所帮助。
库仑主动土压力计算库仑主动土压力计算是土力学中的一个计算方法,用于计算土壤对墙体或其他结构体施加的主动土压力。
库仑主动土压力计算方法是土力学中最为常用的一种方法之一,适用于大部分土壤类型。
下面将详细介绍库仑主动土压力计算的原理和具体步骤。
首先,库仑主动土压力计算基于库伦摩擦力理论。
库仑摩擦力是土壤内摩尔塑性地层的一种力度,表征土壤颗粒间的摩擦力。
在土壤受到外部载荷作用时,土壤颗粒之间的摩擦力会增加,进而产生主动土压力。
库伦摩擦力可由下式表示:F=K*H*H/2其中,F表示主动土压力,K为活动土压力系数,H为土体的高度。
步骤一:确定土体类型和土壤参数首先需要确定土体的类型和土壤参数,如土壤的内摩擦角φ、土壤的重度γ,以及土壤的墙后压力u。
这些参数通常可以通过实验室试验或者现场勘测获得。
步骤二:确定活动土压力系数活动土压力系数K是库仑主动土压力计算中较为重要的一个参数,用于表示土壤的活动性和墙面的摩擦性质。
K的值一般可以在实验室试验中测定得到,也可以通过经验公式进行估算。
步骤三:计算土体的受力面积根据土壤受到的外部载荷和土壤的几何形状,可以计算出土壤的受力面积。
这个面积通常是根据土壤的几何形状进行计算,如墙体的长度L和宽度B。
步骤四:计算主动土压力根据上述公式,将确定的参数代入计算公式,即可得到主动土压力的数值。
将受力面积乘以活动土压力系数K,再乘以土体的高度H的平方的一半,即可得到主动土压力F的数值。
步骤五:计算最大主动土压力在实际工程中,通常需要计算土体受到的最大主动土压力。
最大主动土压力一般出现在土体受力高度最大的位置。
可以通过对土体的不同高度进行计算,找到最大主动土压力所对应的高度。
通过上述步骤,可以较为准确地计算土壤对墙体或其他结构体施加的主动土压力。
然而,需要注意的是,库仑主动土压力计算方法有一定的局限性,只适用于一定范围内的土壤类型和壁体形状。
在具体工程应用中,还需要综合考虑其他因素,并选取合适的土壤参数和活动土压力系数进行计算。
库仑土压力理论1776年法国的库伦(C.A.Coulomb)根据极限平衡的概念,并假定滑动面为平面,分析了滑动楔体的力系平衡,从而求算出挡土墙上的土压力,成为著名的库伦土压力理论。
一、基本原理库伦研究了回填砂土挡土墙的土压力,把挡土墙后的土体看成是夹在两个滑动面(一个面是墙背,另一个面在土中,如图6-12中的AB和BC面)之间的土楔。
根据土楔的静平衡条件,可以求解出挡土墙对滑动土楔的支撑反力,从而可求解出作用于墙背的总土压力。
这种计算方法又称为滑动土楔平衡法。
应该指出,应用库伦土压力理论时,要试算不同的滑动面,只有最危险滑动面AB对应的土压力才是土楔作用于墙背的Pa或Pp库伦理论的基本假设:1.墙后填土为均匀的无粘性土(c=0),填土表面倾斜(β>0);2.挡土墙是刚性的,墙背倾斜,倾角为ε;3.墙面粗糙,墙背与土本之间存在摩擦力(δ>0);4.滑动破裂面为通过墙踵的平面。
二、主动土压力计算如图所示,墙背与垂直线的夹角为ε,填土表面倾角为β,墙高为H,填土与墙背之间的摩擦角为δ,土的内摩擦角为φ,土的凝聚力c=0,假定滑动面BC通过墙踵。
滑裂面与水平面的夹角为α,取滑动土楔ABC作为隔离体进行受力分析(图6-11b)。
土楔是作用有以下三个力:1.土楔ABC自重W,由几何关系可计算土楔自重,方向向下;2.破裂滑动面BC上的反力R,大小未知,作用方向与BC面的法线的夹角等于土的内摩擦角φ,在法线的下侧;3.墙背AB对土楔体的反力P(挡土墙土压力的反力),该力大小未知,作用方向与墙面AB的法线的夹角δ,在法线的下侧。
土楔体ABC在以上三个力的作用下处于极限平衡状态,则由该三力构成的力的矢量三角形必然闭合。
已知W的大小和方向,以及R、P的方向,可给出如图所示的力三角形。
按正弦定理可求得:求其最大值(即取dP/dα=0),可得主动土压力式中Ka为库伦主动土压力系数,可按下式计算确定沿墙高度分布的主动土压力强度pa可通过对式(6-21)微分求得:由此可知,主动土压力强度沿墙高呈三角形分布,主动土压力沿墙高的分布图形如图所示。
莫尔—库伦理论长期以来,人们根据对材料破坏现象的分析,提出了各种不同的强度理论。
其中适用于土的强度理论有多种,不同的理论各有其优缺点。
在土力学中被广泛采用的强度理论要推莫尔—库伦强度理论。
1773年,法国学者库伦(Coulomb)根据砂土的试验结果,提出土的抗剪强度τf在应力变化不大的范围内,可表示为剪切滑动面上法向应力σ的线性函数。
即后来库伦又根据粘性土的试验结果,提出更为普遍的抗剪强度公式:1936年,太沙基(Terzaghi)提出了有效应力原理。
根据有效应力原理,土中总应力等于有效应力与孔隙水压力之和,只有有效应力的变化才会引起强度的变化。
因此,土的抗剪强度可表示为剪切破坏面上法向有效应σ’的函数。
上述库仑公式应改写为1910年莫尔(Mohr)提出材料产生剪切破坏时,破坏面上的是该面上法向应力的函数,即该函数在直角坐标系中是一条曲线,如图1所示,通常称为莫尔包线。
土的莫尔包线多数情况下可近似地用直线表示,其表达式就是库伦所表示的直线方程。
由库伦公式表示莫尔包线的土体抗剪强度理论称为莫尔—库伦(Mohr—Coulomb)强度理论。
图1 莫尔包线1.土中某点的应力状态我们先来研究土体中某点的应力状态,以便求得实用的土体极限平衡条件的表达式。
为简单起见,下面仅研究平面问题。
在地基土中任意点取出一微分单元体,设作用在该微分体上的最大和最小主应力分别为σ1和σ3。
而且,微分体内与最大主应力σ1作用平面成任意角度α的平面mn上有正应力σ和剪应力τ[图2(a)]。
(a)(b)图2 土中任意一点的应力(a)微分体上的应力;(b)隔离体上的应力为了建立σ、τ与σ1和σ3之间的关系,取微分三角形斜面体abc为隔离体[图2(b )]。
将各个应力分别在水平方向和垂直方向上投影根据静力平衡条件得310,sin 1.0sin 1.0cos 1.00()0,cos 1.0cos 1.0sin 1.00()x ds ds ds a y ds ds ds b σασατασασατα=⋅⋅⋅-⋅⋅⋅+⋅⋅⋅==⋅⋅⋅-⋅⋅⋅-⋅⋅⋅=∑∑联立求解以上方程(a)、(b),即得平面mn 上的应力 13131311()()cos 222(1)1()sin 22σσσσσατσσα⎫=++-⎪⎪⎬⎪=-⎪⎭由以上两式可知,在σ1和σ3已知的情况下,斜截面mn 上的法向应力σ和剪应力τ仅与斜截面倾角α有关。
一、库伦土压力理论
库伦土压力理论(1773年)根据墙后滑动楔体的静力平衡条件建立的,并作了如下假定:
(1)挡土墙是刚性的,墙后填土为无粘性土
(2)、滑动楔体为刚体;
(3)、楔体沿着墙背及一个通过墙蹱的平面猾动。
1、主动土压力计算
2、被动土压力计算
二特殊情况的土压力计算
1、填土表面有均布荷载
假设填土为无粘性土(c=0),而土的主动土压力强度吃:n乙,即吃是由垂直向压应力n与尼的乘租组成1当填土表面有竖向均布荷载口时,填土中深度z处的垂直问应力增加为(n十妇,故其主动土压力强度:
土压力强度图形成梯形,合力作用点在梯形形心。
2、墙后填土分层
以无粘性土为研究对象,当墙后填土为不同种类的水平土层组成时,求出深度z处的垂直向应力,再乘Ka即可。
3、墙后填土有地下水
当墙后填土中出现地下水时,土体抗剪强度降低,墙背所受的总压力由填土中有地下水的土压力计算与水压力其同组成,墙体稳定性受到影响。
在计算土压力时,假定水上、水下土的φ,c,б均不变,水上土取天然重度,水下土取有效重度进行计算。
土的库仑定律:即莫尔-库伦定律最早是由法国科学家库伦总结土的破坏现象和影响因素提出了土的破坏公式即T=c+σntanφ,式中T土的抗剪强度,即T=c+σntanφ,式中T土的抗剪强度,其大小取决于组成滑动面的岩体颗粒的性质,它与正应力σn,φ土的内摩擦角和c 土的粘聚力有关。
其大小取决于组成滑动面的岩体颗粒的性质,它与正应力σn,φ土的内摩擦角和c土的粘聚力有关。
后来莫尔继续库伦的研究,提出材料的破坏的剪切破坏理论,认为在破裂面上,法向应力σn与抗剪强度T之间存在着函数关系,函数所定义的曲线为莫尔破坏包线在一般情况下莫尔破坏包线可以用库伦公式表示,即土的抗剪强度和法向应力成线性函数的关系。