牛顿第二定律连接体问题(整体法与隔离法)[2]
- 格式:doc
- 大小:107.00 KB
- 文档页数:2
牛顿运动定律典型例题参考答案一、连接体问题(整体法与隔离法):1.二体连接问题例题1:F=(M+m)g F=(M+m)g F=(M+m)g F=(M+m)g例题2:例题3:2.多体连接问题:例题4:例题5:二、 超失重问题:例题1:BC例题2:A 例题3:C 例题4:A例题5:D三、 等环境问题(力的质量分配原则):例题1.例题2.D四、 临界值问题: 例题1. 解析:(1)ma sin N cos T =α-αmg cos N sin T =α+α当g 31a =时,N=68.4(N ) T=77.3(N ) (2) 若N=0,则有'm a cos T =αm g sin T =α )s /m (17g 3gctg 'a ==α=例题2.五、 瞬时值问题:例题1:解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。
此类问题应注意两种模型的建立。
先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。
可知,F mg 2=,F F mg mg 122=+='。
剪断细线后再分析两个物体的受力示意图,如图2,绳中的弹力F 1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图2剪断后m 1的加速度大小为2g ,方向向下,而m 2的加速度为零。
例题2:C例题3,D 例题4: (a=gsinθ ,a=gtanθ ) 例题5、BD 六、 分离问题:例题1:例题2:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma ,当N=0时,物体与平板分离,所以此时ka g m x )(-= 因为221at x =,所以kaa g m t )(2-= 例题3:七、 相对滑动问题:例题1:例题2:BC 例题3:ABC例题4:例题5:例题6:例题7:八、 传送带问题:例题1:D例题2:解析: 物体放上传送带以后,开始一段时间,其运动加速度2m/s 10cos sin =+=m mg mg a θμθ。
牛顿第二定律的应用――― 连接体问题一、连接体与隔离体两个或两个以上物体相连接组成的物体系统,称为 。
如果把其中某个物体隔离出来,该物体即为。
二、连接体问题的分析方法1.整体法:连接体中的各物体如果 ,求加速度时可以把连接体作为一个整体。
运用 列方程求解。
2.隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用 求解,此法称为隔离法。
3.整体法与隔离法是相对统一,相辅相成的。
本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。
如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用 法求出 ,再用 法求 。
【典型例题】例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( )A.F m m m 211+B.F m m m 212+C.FD.F m m 21 练习:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。
2.如图右所示,质量为m 1、m 2的物块在F 1、F 2共同作用下向右运动。
已知m 1=3kg m 2=2kg F 1=14 N F 2=4N ,求m 1和m 2之间细绳的作用力F T 为多少?A B m 1 m 2 F3.如右图所示,物体m1、m2用一细绳连接,两者在竖直向上的力F的作用下向上加速运动,重力加速度为g,求细绳上的张力?例2:如图右,m1、m2用细线吊在光滑定滑轮,m1=3kg m2=2kg,当m1、m2开始运动时,求细线受到的张力?例3:如图所示,箱子的质量M=5.0kg,与水平地面的动摩擦因数μ=0.22。
在箱子顶板处系一细线,悬挂一个质量m=1.0kg的小球,箱子受到水平恒力F的作用,使小球的悬线偏离竖直方向θ=30°角,则F应为多少?(g=10m/s2)练习:如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间的静摩擦因数μ=0.8,要使物体不致下滑,车厢至少应以多大的加速度前进?(g=10m/s2)例4:如图所示,质量分别为m 和2m 的两物体A 、B 叠放在一起,放在光滑的水平地面上,已知A 、B 间的最大摩擦力为A 物体重力的μ倍,若用水平力作用在B 上,使A 、B 保持相对静止做加速运动,则作用于B 的作用力为多少?练习.如图A 、B 、C 为三个完全相同的物体,当水平力F 作用于B 上,三物体可一起匀速运动。
牛顿第二定律——连接体问题(整体法与隔离法)一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统二、处理方法——整体法与隔离法系统运动状态相同整体法问题不涉及物体间的内力 使用原则三、连接体题型:1【例1】A、B 平力N F A 6=推A ,用水平力N F B 3=【练1】如图所示,质量为M 的斜面A 在水平向左的推力F 作用下,A 与B 体B 的质量为m ,则它们的加速度a A. ()(,sin μθ++==g m M F g a B. θθcos )(,cos g m M F g a +==C. ()(,tan μθ++==g m M F g a D. gm M F g a )(,cot +==μθ【练2】如图所示,质量为2m 的物体2滑定滑轮连接质量为1m 的物体,与物体A. 车厢的加速度为θsin gB. 绳对物体1的拉力为θcos 1gm C. 底板对物体2的支持力为g m m )(12-D. 物体2所受底板的摩擦力为θtan 2g m m g ,m B =0.4kg ,盘C 的质量O 处的细线瞬间,木F BC 多大?(g 取10m/s 2)连接体作业1、如图所示,小车质量均为M ,光滑小球P 的质量为m ,绳的质量不计,水平地面光滑。
要使小球P 随车一起匀加速运动(相对位置如图所示),则施于小车的水平拉力F 各是多少?(θ已知)球刚好离开斜面 球刚好离开槽底F= F= F= F=2、如图所示,A 、B 质量分别为m1,m2,它们在水平力F 的作用下均一起加速运动,甲、乙中水平面光滑,两物体间动摩擦因数为μ,丙中水平面光滑,丁中两物体与水平面间的动摩擦因数均为μ,求A 、B 间的摩擦力和弹力。
f= f= F AB = F AB = 3、如图所示,在光滑水平桌面上,叠放着三个质量相同的物体,用力推物体a ,使三个物体保持静止,一起作加速运动,则各物体所受的合外力 ( ) A .a 最大 B .c 最大 C .同样大 D .b 最小4、如图所示,小车的质量为M,的前端相对于车保持静止,A.在竖直方向上,B.在水平方向上,C.若车的加速度变小,D.若车的加速度变大,5、物体A 、B 叠放在斜面体C 上,物体的作用下一起随斜面向左匀加速运动的过程中,物体A 、B摩擦力为2f F ,(02≠f F ),则(A. 01=f F B. 2f F C.1f F 水平向左 D. 2f F 6、如图3所示,质量为M A. 地面对物体M B. 地面对物体M C. 物块m D. 地面对物体M 7、如图所示,质量M =8kg 到1.5m/s μ=0.28、如图6所示,质量为A m 的物体A 沿直角斜面C 9、如图10所示,质量为M 的滑块C B B 、2a F a b c。
连接体问题中的整体法和隔离法“连接体运动”是在生活和生产中常见的现象,也是运用牛顿运动定律解答的一种重要题型。
在“连接体运动”的解题中,常常要用到两种解题方法──“整体法”和“隔离法”。
例题1、如图1-15所示:把质量为M 的的物体放在光滑..的水平..高台上,用一条可以忽略质量而且不变形的细绳绕过定滑轮把它与质量为m 的物体连接起来,求:物体M 和物体m 的运动加速度各是多大?⒈ “整体法”解题 采用此法解题时,把物体M 和m 看作一个整体..,它们的总质量为(M+m )。
把通过细绳连接着的M 与m 之间的相互作用力看作是内力..,既然水平高台是光滑无阻力的,那么这个整体所受的外力..就只有mg 了。
又因细绳不发生形变,所以M 与m 应具有共同的加速度a 。
现将牛顿第二定律用于本题,则可写出下列关系式:mg=(M+m)a所以物体M 和物体m 所共有的加速度为:g mM ma +=⒉ “隔离法”解题采用此法解题时,要把物体M 和m 作为两个物体隔离开分别进行受力分析,因此通过细绳连接着的M 与m 之间的相互..作用力T 必须标出,而且对M 和m 单独..来看都是外力..(如图1-16所示)。
根据牛顿第二定律对物体M 可列出下式:T=Ma ①根据牛顿第二定律对物体m 可列出下式: mg-T=ma ②将①式代入②式:mg-Ma=ma mg=(M+m)a所以物体M 和物体m 所共有的加速度为:g mM ma +=练习:如图1-17所示,用细绳连接绕过定滑轮的物体M 和m ,已知M>m ,可忽略阻力,求物体M 和m 的共同加速度a 。
解:g mM mM a +-=例题2、如图,质量为M 的木板,放在倾角为θ的光滑斜面上,木板上一质量为m 的人应以多大的加速度沿斜面跑下,才能使木板静止在斜面上?解一:隔离法。
M 静止,其受合外力为0。
M 受到重力Mg 、支持力N 、人的摩擦力f 而平衡。
故: f=Mgsin θ 人受到重力mg 、支持力N ′、木板的摩擦力f F 合= mgsin θ+f= mgsin θ+ Mgsin θ ∴ a= (m+M)gsin θ/ma m M解二.整体法。
高三物理 牛顿第二定律应用专项复习——整体法与隔离法一、牛顿第二定律——连接体问题1.连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统2.处理方法——整体法与隔离法系统运动状态相同,一般用来求加速度和外力整体法问题不涉及物体间的内力使用原则系统各物体运动状态不同隔离法问题涉及物体间的内力两种方法都是根据牛顿第二定律列方程求解。
例1. 物体A 和B 的质量分别为1.0kg 和2.0kg ,用F=12N 的水平力推动A ,使A 和B 一起沿着水平面运动,A 和B 与水平面间的动摩擦因数均为0.2,求A 对B 的弹力。
(g 取10m/s 2)例2、现将质量为M 的斜面放在光滑水平地面上,质量为m 的物块放在光滑斜面上,斜面倾角为θ。
现对M 施加一个水平向左的力,使两个物体相对静止一起向左运动。
求此力 F 应该多大?例3、如右图所示,弹簧测力计外壳质量为m 0,弹簧及挂钩的质量忽略不计,挂钩吊着一质量为m 的重物.现用一方向竖直向上的外力F 拉着弹簧测力计,使其向上做匀加速运动,则弹簧测力计的示数为( )A .mgB .FC.m m 0+m FD.m 0m 0+mg例4、在水平桌面上叠放着A 、B 物体,如图.B 与桌面间的摩擦系数为0.4,两物体的质量分别为m A =2kg ,m B =3kg 用30N 的水平力F 拉B 时,AB 未产生相对滑动,求A 受到的摩擦力.隔离法例5、.如图所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的1/2,即a=g /2,则小球在下滑的过程中,木箱对地面的压力为多少?●针对训练1.如图,质量分别为m 1、m 2的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀加速直线运动(m 1在光滑地面上,m 2在空中),力F 与水平方向的夹角为θ,则m 1的加速度大小为( )A .12cos F m m θ+ B .2sin F m θ C .12sin F m m θ+ D .1cos F m θ2、如图所示,五个木块并排放在水平地面上,它们的质量相同,与地面的摩擦不计。
高中物理题型解题技巧之力学篇03内力公式一、必备知识1.连接体问题母模型如图1所示,光滑地面上质量分别为m 1、m 2的两物体通过轻绳连接,水平外力F 作用于m 2上,使两物体一起加速运动,此时轻上的拉力多大?整体由牛顿第二定律求加速度a =Fm 1+m 2−μg隔离求内力T -μm 1g =m 1a得T =m 1m 1+m 2F二:应用技巧(1).物理场景:轻绳或轻杆或轻弹簧等相连加速度相同的连接体,如下情形求m 2、m 3间作用力,将m 1和m 2看作整体F 23=m 1+m 2m 1+m 2+m 3F整体求加速度a =Fm 1+m 2−μg隔离求内力T -μm 1g =m 1a得T =m 1m 1+m 2F整体求加速度a =Fm 1+m 2−g (sin θ+μcos θ)隔离求内力T -m 1g (sin θ-μcos θ)=m 1a得T =m 1m 1+m 2F整体求加速度a =Fm 1+m 2−g隔离求内力T -m 1g =m 1a得T =m 1m 1+m 2Fa =F 2-F 1m 1+m 2−μg隔离T -F 1-μm 1g =m 1a得T =m 1F 2+m 2F 1m 1+m 2(2)方法总结:(内力公式)如上图所示,一起加速运动的物体系统,若力作用于m 1上,则m 1和m 2间的相互作用力为F 12=m 不m 1+m 2F (其中m 不即为外力不作用的物体的作用)此结论与有无摩擦无关(有摩擦,两物体与接触面的动摩擦因数必须相同),物体系统沿水平面、斜面、竖直方向运动时,此结论都成立。
两物体的连接物为轻弹簧、轻杆时,此结论不变。
注意:若整体受到多个外力时,可先将多点个外力分别应用内力公式a .两外力相反时,绳中的拉力为T =m 2m 1+m 2F 1+m 1m 1+m 2F2b .两外力相同时绳中的拉力为T =m 2m 1+m 2F 1-m 1m 1+m 2F2三、实战应用(应用技巧解题,提供解析仅供参考)一、单选题1如图,两物块P 、Q 置于水平地面上,其质量分别为m 、2m ,两者之间用水平轻绳连接。
专题:连接体问题(整体法和隔离法)一、什么是连接体问题特征:两物体紧靠着或者依靠一根细绳(一根弹簧)相连接后一起做匀加速运动(1)用细线连接的物体系(2)相互挤压在一起的物体系(3)用弹簧连接的物体系二、连接体问题如何处理1.对整体写牛顿第二定律2.把其中任意一个物体隔离写牛顿第二定律三、常见的连接体问题的类型1.计算连接体的加速度2.计算连接体之间的拉力大小3.根据绳子的最大拉力判断水平拉力F的大小4.放在不同平面上判断拉力的变化、加速度的变化5.两个相反方向的力作用与两个物体上,撤去其中一个力后判断物体加速度变化和绳子拉力变化6.在连接体上的某个物体上再放一个物体判断拉力的变化、加速度的变化7.三个物体的连接体问题【典型例题剖析】例1:如图所示,置于光滑水平面上的木块A和B,其质量为m A和m B。
当水平力F作用于A左端上时,两物体一起作加速运动,其A、B间相互作用力大小为N11计算:(1)计算N1的大小(2)若将F作用在物体B上,AB间的相互作用力N2变为多少?(3)计算N 1与N 2之和,N 1与N 2之比(4)若物体A 、B 与地面的动摩擦因数为μ,分析AB 的加速度如何变化,AB 之间相互作用力如何变化?例2:如图所示,置于水平地面上的相同材料的质量分别为m 和m 0的两物体用细绳连接,在m 0上施加一水平恒力F ,使两物体做匀加速直线运动,对两物体间细绳上的拉力,下列说法正确的是( )A .地面光滑时,绳子拉力大小等于mFm 0+mB .地面不光滑时,绳子拉力大小等于mFm 0+mC .地面不光滑时,绳子拉力大于mFm 0+mD .地面不光滑时,绳子拉力小于mFm 0+m答案 AB例3:(多选)如图所示,质量为ml 的物体和质量为m 2的物体,放在光滑水平面上,用仅能承受6N 的拉力的线相连。
m l =2kg ,m 2=3kg 。
现用水平拉力F 拉物体m l 或m 2,使物体运动起来且不致把绳拉断,则F 的大小和方向应为( ) A .10N ,水平向右拉物体m 2B .10N ,水平向左拉物体m 1C .15N ,水平向右拉物体m 2D .15N ,水平向左拉物体m 1 答案:BC例4:如图所示,在水平地面上有A 、B 两个小物体,质量分别为m A =3.0kg 、m B =2.0kg ,它们与地面间的动摩擦因数均为μ=0.10。
牛顿第二定律是经典力学的基础和核心,是分析、研究和解决力学问题的三大法宝之一,同时也是高考考查的重点和热点。
因此,深刻理解和灵活应用牛顿第二定律是力学中非常重要的内容,下面阐述应用牛顿第二定律时的几类典型问题,供大家参考。
一、连接体问题两个或两个以上物体相互连接并参与运动的系统称为有相互作用力的系统, 即为连接体问题,处理非平衡状态下的有相互作用力的系统问题常常用整体法和隔离法。
当需要求内力时,常把某个物体从系统中“隔离”出来进行研究,当系统中各物体加速度相同时,可以把系统中的所有物体看成一个整体进行研究。
例 1:如图 1所示的三个物体质量分别为 m 1、 m 2和 m 3。
带有滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦以及绳子的质量均不计。
为使三个物体无相对滑动,试求水平推力 F 的大小。
解答:本题是一道典型的连接体问题。
由题意可知,三个物体具有向右的相同的加速度,设为 a ,把它们三者看成一个整体,则这个整体在水平方向只受外力 F 的作用。
由牛顿第二定律,即:F=(m 1+m2+m3a ……①隔离 m 2,受力如图 2所示在竖直方向上,应有: T=m2g ……②隔离 m 1,受力如图 3所示在水平方向上,应有: T′=m1a ……③由牛顿第三定律T′=T ……④联立以上四式解得:点评:分析处理有相互作用力的系统问题时,首先遇到的关键问题就是研究对象的选取。
其方法一般采用隔离和整体的策略。
隔离法与整体法的策略,不是相互对立的, 在一般问题的求解中随着研究对象的转化,往往两种策略交叉运用,相辅相成,所以我们必须具体问题具体分析,做到灵活运用。
二、瞬时性问题当一个物体(或系统的受力情况出现变化时,由牛顿第二定律可知,其加速度也将出现变化,这样就将使物体的运动状态发生改变,从而导致该物体(或系统对和它有联系的物体(或系统的受力发生变化。
例 2:如图 4所示,木块 A 与 B 用一轻弹簧相连,竖直放在木块 C 上。
专题18整体法与隔离法处理连接体问题1.连接体的类型1)直接接触的连接体2)通过弹簧或轻绳相连的连接体轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等。
轻弹簧在发生形变的过程中,两端连接体的速度不一定相等;弹簧形变量最大时两端连接体速率相等。
2.处理连接体问题的方法1)整体法:如果连接体各物体的加速度相同,可以把系统内的所有物体看成一个整体,用牛顿第二定律对整体列方程求解。
隔离法:如果求系统内物体间的相互作用力,常把某个物体(一般选取受力简单的物体)从系统中隔离出来,用牛顿第二定律对隔离出来的物体列方程求解。
2)加速度大小相等,方向不同的连接体:如下图,跨过定滑轮的细绳相连的两个物体不在同一直线上运动,虽然加速度方向不同但加速度大小相等,这类问题也可采用整体法和隔离法求解.3)连接体问题一般采用先整体后隔离的方法,也可以采用分别隔离不同的物体再联立的方法。
考点一力的分配规律如下图三种情况,m 1和m 2在力F 作用下以大小相同的加速度一起运动,则两物体间的弹力根据质量大小分配,且F 弹=m 2m 1+m 2F .1.如图所示,质量为3的物块A 与水平地面间的动摩擦因数为,质量为m 的物块B 与地面的摩擦不计,在大小为F 的水平推力作用下,A、B 一起向右做加速运动,则A 和B 之间的作用力大小为()。
A.K3B4B.4C.K4B4D.B 4【答案】A 【解析】以A、B 整体为研究对象,由牛顿第二定律可得整体的加速度为=KH3B 3r=K3B 4以B 为研究对象,由牛顿第二定律可得A 对B 的作用力AB =B =K3B4A 正确,BCD 错误。
2.如图所示,质量分别为2m 和3m 的两个小球静止于光滑水平面上,且固定在劲度系数为k 的轻质弹簧的两端。
今在质量为2m 的小球上沿弹簧轴线方向施加大小为F 的水平拉力,使两球一起做匀加速直线运动,则稳定后弹簧的伸长量为()A.F 5kB.2F 5kC.3F 5kD.F k【答案】C 【解析】对整体分析,整体的加速度a =F5m,对质量为3m 的小球分析,根据牛顿第二定律有F 弹=kx =3ma ,可得x=3F5k,故A、B、D 错误,C 正确。
用整体法和隔离法解决连接体问题一、问题背景整体法与隔离法的运用在高考命题中由来已久,主要是考查考生综合分析能力,多物体问题虽然是一种常见的题型,但由于涉及整体法和隔离法、正交分解法等方法的应用,许多学生均感到很困难,这就要求考生能熟练掌握整体法与隔离法的解题技巧.二、重点概述1。
研究物理问题时,把所有的研究对象最为一个整体来处理的方法称为整体法.2。
研究物理问题时,把所有的研究从整体中隔离出来进行单独研究,最终得出结论的方法称为隔离法。
3.基本特点:(1)采用整体法时,可以弄清系统的整体受力情况和全过程的受力情况,从整体上揭示事物的受力本质和变化规律,从而避开了中间环节的繁琐推算,能够灵活地解决问题。
(2)采用隔离法时,容易看清单个物体的受力情况或单个过程的运动情形,问题处理起来比较方便、简单,便于初学者使用。
在分析系统内各物体(或一个物体的各个部分)间的相互作用时用隔离法。
三、难点释疑1。
整体法和隔离法交替使用原则:若系统内各物体具有相同的加速度,且要求物体之间的相互作用力时,可以先整体求加速度,再用隔离法选取合适对象,应用牛顿第二定律求作用力。
即“先整体求加速度,再隔离求内力"。
2. 整体法和隔离法不是相互对立的,一般在问题的求解中,随着研究对象的转化,往往两种方法交叉使用.因此,两种方法的取舍,并没有绝对的界限,需要具体分析,灵活运用。
无论哪种方法,均以尽可能避免或减少中间未知量的出现为原则。
四、典型例题例1:如图所示,质量为m1=5kg的滑块置于一粗糙的斜面上,用一平行于斜面的大小为30N的力F推滑块,滑块沿斜面向上匀速运动,斜面体质量m2=10kg,且始终静止,取g=10m/s2,求:(1)斜面对滑块的摩擦力.(2)地面对斜面体的摩擦力和支持力.解答:(1)以滑块为研究对象,分析受力情况如图1,滑块向上匀速运动时,有:F=m 1gsin30°+f 1, 得斜面对滑块的摩擦力:f 1=F-m 1gsin30°=30-50×0.5(N)=5N(2)以整体为研究对象,整体的合力为零,分析受力情况,根据平衡条件得:水平方向:f 2=Fcos30°竖直方向:N+Fsin30°=(m 1+m 2)g 解得:f 2=15N,N=135N评析:当需要求出相互作用物体之间的作用力时(内力),必须用隔离法求出物体之间的力,而整体法不能求出他们之间的作用力.当要求外界物体对几个物体组成的系统的作用力时,整体法则是事半功倍。
牛顿运动定律的应用之用整体法、隔离法巧解连接体问题1.连接体的分类根据两物体之间相互连接的媒介不同,常见的连接体可以分为三大类。
(1)绳(杆)连接:两个物体通过轻绳或轻杆的作用连接在一起;(2)弹簧连接:两个物体通过弹簧的作用连接在一起;(3)接触连接:两个物体通过接触面的弹力或摩擦力的作用连接在一起。
2.连接体的运动特点轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等。
轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比。
轻弹簧——在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大时,两端连接体的速率相等。
学科,网特别提醒(1)“轻”——质量和重力均不计。
(2)在任何情况下,绳中张力的大小相等,绳、杆和弹簧两端受到的弹力大小也相等。
3.连接体问题的分析方法(1)分析方法:整体法和隔离法。
(2)选用整体法和隔离法的策略:①当各物体的运动状态相同时,宜选用整体法;当各物体的运动状态不同时,宜选用隔离法;②对较复杂的问题,通常需要多次选取研究对象,交替应用整体法与隔离法才能求解。
4. 整体法与隔离法的选用方法(1)整体法的选取原则若在已知与待求量中一涉及系统内部的相互作用时,可取整体为研究对象,分析整体受到的外力,应用牛顿第二定律列方程。
当系统内物体的加速度相同时:a m m m F n )...(21+++=;否则n n a m a m a m F +++=...2211。
(2)隔离法的选取原则若在已知量或待求量中涉及到系统内物体之间的作用时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.(3)整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.【典例1】如图所示,两个质量分别为m 1=3 kg 、m 2=2 kg 的物体置于光滑的水平面上,中间用轻质弹簧测力计连接。
牛顿第二定律——连接体问题(整体法与隔离法)
一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统
二、处理方法——整体法与隔离法
系统运动状态相同
整体法
问题不涉及物体间的内力
使用原则
隔离法
三、连接体题型:
1
【例1】A、B
力
N
F
A
6
=推A,用水平力N
F
B
3
=拉B,A、B
【练1】如图所示,质量为M的斜面A 在水平向左的推力F作用下,A与B
B的质量为m,则它们的加速度a及推力
A.
(
)
(
,
sinμ
θ+
+
=
=g
m
M
F
g
a
B.
θ
θcos
)
(
,
cos g
m
M
F
g
a+
=
=
C.
(
)
(
,
tanμ
θ+
+
=
=g
m
M
F
g
a
D.
g
m
M
F
g
a)
(
,
cot+
=
=μ
θ
【练2】如图所示,质量为2
m的物体2定滑轮连接质量为1
m的物体,与物体1
A. 车厢的加速度为
θ
sin
g
B. 绳对物体1的拉力为θ
cos
1
g
m
C. 底板对物体2的支持力为g
m
m)
(
1
2
-
D. 物体2所受底板的摩擦力为
θ
tan
2
g
m
m
g
B.23
C.0 N
】如图所示,A、B的质量分别为m A=0.2kg,m B=0.4kg,盘C的质量m C=0.6kg,
处,处于静止状态。
当用火柴烧断O处的细线瞬间,木块A的加
的压力F BC多大?(g取10m/s2)
A
B
C
O
连接体作业
1、如图所示,小车质量均为M ,光滑小球P 的质量为m ,绳的质量不计,水平地面光滑。
要使小球P 随车一起匀加速运动(相对位置如图所示),则施于小车的水平拉力F 各是多少?(θ已知)
球刚好离开斜面 球刚好离开槽底 F= F= F= F= 2、如图所示,A 、B 质量分别为m1,m2,它们在水平力F 的作用下均一起加速运动,甲、乙中水平面光滑,两物体间动摩擦因数为μ,丙中水平面光滑,丁中两物体与水平面间的动摩擦因数均为μ,求A 、B 间的
摩擦力和弹力。
f= f= F AB = F AB = 3、如图所示,在光滑水平桌面上,叠放着三个质量相同的物体,用力推物体a ,使
三个物体保持静止,一起作加速运动,则各物体所受的合外力 ( ) A .a 最大 B .c 最大 C .同样大 D .b 最小
4、如图所示,小车的质量为M,
的前端相对于车保持静止,A.在竖直方向上,B.在水平方向上,C.若车的加速度变小,D.若车的加速度变大,5、物体A 、B 叠放在斜面体C 上,物体的作用下一起随斜面向左匀加速运动的过程中,物体
A 、
B 擦力为
2
f F ,(
2≠f F ),则( A. 01=f F B.
2f F C.
1
f F 水平向左 D.
2
f F 6、如图3所示,质量为M
A. 地面对物体M
B. 地面对物体M
C. 物块m
D. 地面对物体M 7、如图所示,质量M =8kg 到1.5m/s 0.2
8、如图6所示,质量为A m 的物体A 沿直角斜面C
9、如图10所示,质量为M 的滑块C B B 2a F a b c。