1.2.1 有理数导学案
- 格式:doc
- 大小:82.00 KB
- 文档页数:2
人教版七年级上册数学导学案(一)导学内容:1、2章知识点第一章有理数1. 有理数包括 和 ;整数包含: 、 、 ;分数包含: 、 。
正整数和正分数通称为正有理数,负整数和负分数通称为负有理数。
2. 正数都比0大,负数都比0小, 既不是正数也不是负数。
3. 正数和负数经常用来表示 的量。
4. 数轴有三要素: 、 、 。
数轴上的两个点表示的数, 边的总比 边的大。
5. 相反数:只有 不同的两个数互为相反数,a a 和-互为相反数,0的相反数是0。
在任意的数前面添上“ ”号,就表示原来的数的相反数。
6. 绝对值:数轴上表示一个数的点与原点的 叫做该数的绝对值,用“|a|”表示。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
当a 是正数时,a a =;当a 是负数时,a a =-;当a =0时,0a =7. 两个负数比较大小, 大的反而小。
8. 有理数加法法则:·同号两个数相加,取 的符号,并把绝对值相加。
·异号的两个数相加,绝对值不等时,取绝 的符号,并用减去 。
互为相反数的两数相加得 .·一个数同0相加仍得这个数加法交换律:a b b a +=+加法结合律:()()a b c a b c ++=++9. 有理数减法法则:减去一个数等于 这个数的 。
10. 有理数乘法法则:两数相乘,同号得 ,异号得 ,并把绝对值相乘。
任何数与0相乘积仍得 。
11. 倒数:乘积是1的两个数互为 。
一般地,数a 的倒数是 (a )0≠. 12. 乘法交换律:ab ba =乘法结合律:()()ab c a bc =乘法分配律:()a b c ac bc +⨯=+13. 有理数除法法则:·除以一个不等于0的数,等于乘这个数的 。
·两个有理数相除,同号得 ,异号得 ,并把相除。
0除以任何数都得0,且0不能作除数。
14. 有理数的乘方:求n 个 因数a 的积的运算叫做乘方,乘方的结果叫做幂。
1.2.1 有理数1.掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2.了解分类的标准与集合的含义;3.体验分类是数学上常用的处理的问题的方法.重点:正确理解有理数的概念;难点:正确理解分类的标准和按照一定标准分类.一、温故知新通过上节课的学习,那么你能写出3个不同类的数吗?(4名学生板书)二、自主学习问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类.该分为几类,又该怎样分呢?先分组讨论交流,再写出来分为__五__类,分别是:正数,0,负数,正分数,负分数 问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?师生共同交流、归纳.三、引导归纳1.正整数,0,负整数统称为整数,整数和分数统称为有理数.2.正数集合与负数集合所有的正数组成正数集合,所有的负数组成负数集合.1.P6练习.(做在课本上)2.把下列各数填入它所属于的集合的圈内:15,-19,-5,215,-138,0.1,-5.32,-80,123,2.333.正整数集合 负整数集合正分数集合 负分数集合有理数分类⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数零负有理数⎩⎪⎨⎪⎧负整数负分数 或者有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数零负整数分数⎩⎪⎨⎪⎧正分数负分数到现在为止我们学过的大部分数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同.下列说法中不正确的是( C )A .-3.14既是负数、分数,也是有理数B .0既不是正数,也不是负数,但是整数C .-2000既是负数,也是整数,但不是有理数D .0是正数和负数的分界3.4 实际问题与一元一次方程第1课时实际问题与一元一次方程(1)知能演练提升能力提升1.一群学生在某电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有趣的现象,每名男生看到白色与红色的安全帽一样多,而每名女生看到白色的安全帽是红色的2倍.根据这些信息,请你推测这群学生共有()A.3人B.4人C.7人D.8人2.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个.现有x名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按1∶2配套,为求x列出的方程是()A.12x=18(28-x)B.12x=2×18(28-x)C.2×18x=18(28-x)D.2×12x=18(28-x)3.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,那么原来的两位数为()A.54B.27C.72D.454.某工程,甲单独做需12天完成,乙单独做需8天完成.现由甲先做3天,乙再参加合作,求完成这项工程共用的时间.若设完成此项工程共用x天,则下列方程正确的是()A.=1B.=1C.=1D.=15.敌我两军相距14 km,敌军于1 h前以4 km/h的速度逃跑,现我军以7 km/h的速度沿敌军逃跑路线追击,几小时后可追上敌军?若设x h后可追上敌军,则可列方程为.6.一种牙膏出口处直径为5毫米,小明每次刷牙都挤出1厘米长的牙膏,这样一支牙膏可以用36次.该品牌牙膏推出新包装,只是将出口处直径改为6毫米,小明还是按习惯每次挤出1厘米的牙膏,这一支牙膏能用次.7.一水池装有甲、乙、丙三个水管,甲、乙是进水管,丙是出水管,单开甲管需要16分钟注满,单开乙管需要10分钟注满,单开丙管20分钟可将全池水放完.现在先开甲、乙两管4分钟后,接着关上甲管,开丙管,再过几分钟能将水池注满?设再经过x分钟能将水池注满,则根据题意,列方程得.8.红星服装厂生产某种型号的学生服装,已知每3 m布料可做上衣2件或裤子3条(1件上衣和1条裤子为一套),计划用600 m布料生产这批学生服装,应分别用多少布料生产上衣和裤子使其恰好配套?一共能生产多少套学生服装?9.某工厂安排600名工人生产A,B型机器共69台,已知7名工人能生产一台A型机器,10名工人能生产一台B型机器.(1)有多少工人分别生产A型机器和B型机器?(2)如果人数不变,那么能生产这两种机器共70台吗?创新应用★10.数学活动课上,李老师布置了这样一道题,“学校校办工厂需制作一块广告牌,请来2名工人师傅.已知师傅单独完成需3天,徒弟单独完成需6天,请你补充一个问题并解答.”(1)调皮的小明说:“让我试一试,”上去添了“两人合做需要几天完成?”请你就小明的补充进行解答;(2)小红说:“我也来试一试,”她添了“现由徒弟先做3天,再由两人合做,两人再需要合做几天完成?”请你就小红的补充进行解答.参考答案知能演练·提升能力提升1.C设男生有x人,则女生有(x-1)人.根据题意,得x=2(x-1-1),解得x=4.x-1=3.故这群学生共有7人.2.D因为螺栓和螺母按1∶2配套,所以螺栓的个数是螺母个数的一半,即相等关系为螺栓的个数×2=螺母的个数.3.D设原来两位数的个位上的数字为x,则十位上的数字为(9-x),由题意,得10x+(9-x)-[10(9-x)+x]=9,解得x=5,所以原来的两位数为45.4.D5.7x=4(x+1)+146.25设这一支牙膏能用x次,根据题意,得3.14××10×36=3.14××10·x,解得x=25.7.=1根据相等关系“甲、乙两管4分钟注入的水+乙管x分钟注入的水-丙管x分钟放出的水=1”,列方程得=1.8.解设用x m布生产上衣,则用(600-x)m布生产裤子.根据题意,得×2=×3,解得x=360.600-360=240(m).360÷3×2=240(套).答:用360 m布料生产上衣,240 m布料生产裤子,恰好配套,一共能生产240套学生服装.9.解(1)设生产A型机器的工人有x名,则生产B型机器的工人有(600-x)名.根据题意,得=69,解得x=210.600-210=390(名).答:生产A型机器和B型机器的工人分别有210名和390名.(2)设生产A型机器的工人有y名,则生产B型机器的工人有(600-y)名.根据题意,得=70.解得y=233.因为人数必须是非负整数,所以x的值不符合题意.答:如果人数不变,那么不能生产这两种机器共70台.创新应用10.解(1)设两人合做需要x天完成,列方程,得x=1,解得x=2.答:两人合做需要2天完成.(2)设两人再需要合做y天完成,列方程,得×3+y=1.解得y=1.答:两人再需要合做1天完成.一、新课导入1.课题导入:上节课我们学习了方程的解,你能说出4x=24,x+1=3这样简单方程的解吗?你能直接看出方程21132x x+--=1的解吗?若不能,那么应如何求出它的解呢?因为方程是含有未知数的等式,因此,我们就从等式的性质入手来解方程.(板书课题)2.三维目标:(1)知识与技能①了解等式的两条性质.②会用等式的性质解简单的(用等式的一条性质)一元一次方程.(2)过程与方法①渗透“化归”的思想.②培养学生观察、分析、概括及逻辑思维能力.(3)情感态度培养言必有据的思维能力和良好的思维品质.3.学习重、难点:重点:等式的性质.难点:等式的性质解方程.二、分层学习1.自学指导:(1)自学内容:教材第81页的内容.(2)自学时间:8分钟.(3)自学方法:注意从图中不同方向的两个箭头所示的天平中物体的变化,归纳出相应的等式的性质.(4)自学参考提纲:①在图3.1-1中,如果把左边天平左盘中的量用a表示,把右盘中的量用b表示,则由天平左右平衡可以得出a=b;如果把天平左右盘中变化的量用c表示. 由天平保持平衡,观察:从左边天平到右边天平,盘中的量是增加(填“增加”或“减少”)的,用字母a、b、c的式子表示为:如果a=b,那么a+c=b+c;类似地,反过来如果a=b,那么a-c=b-c.由此可得等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.②在图3.1-2中,把左边天平左盘中的量用a表示,右盘中的量用b表示,由天平左右平衡,可以得出a=b;由左边天平到右边天平,用数学式子可表示为:如果a=b,那么3a=3b ;类似地,反过来有,如果a=b ,那么3a =3b .在上面结论中,如果把3换成字母c ,结论还成立吗?请你用文字语言和数学式子表述等式的性质2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即如果a=b ,那么ac=bc;如果a=b (c ≠0),那么a c =bc . ③依据等式的性质判断下列变形是否正确.a.如果3a+2=b+2,那么3a=b.(√)b.如果x-2=y+3,那么x=y+5.(√)c.如果xy=1,那么x=1y.(√) d.如果ab=bc ,那么a=c.(×)2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生的自学情况和存在的问题.②差异指导:对学习有困难的学生进行点拨和指导.(2)生助生:小组同学们相互交流探讨,互助解决学习中的问题.4.强化:(1)等式的性质1及其数学式子表达.(2)等式的性质2及其数学式子表达.(3)研讨:某同学得出了一个错误的结论“-5=3”,你知道是怎么回事吗?原来他是这样得到的:已知-5a=3a ,两边同时除以a ,即5a a =3a a,∴-5=3.你知道他错在哪里吗? 解:a 值为0,而等式性质二是除以同一个不为0的数,结果才相等.1.自学指导:(1)自学内容:教材第82页的内容.(2)自学时间:8分钟.(3)自学要求:认真阅读课文例2中每个方程的求解过程,思考每一步变形的依据是什么?不清楚的地方相互交流研讨.(4)自学参考提纲:①解以x 为未知数的方程,就是把方程逐步转化为x=a(常数)的形式,其转化的依据是等式的性质.②解方程x+7=26.要把方程转化为x=a的形式,就必须消去等号左边的常数7,因此只有根据等式的性质1,方程两边同时减7.③解方程-5x=20.要把方程转化为x=a的形式,就必须把等号左边-5x的系数化为1,因此只有根据等式的性质2,方程两边同时除以-5.④解方程-13x-5=4.要把方程转化为x=a的形式,就既要把等号左边的常数项-5消去,又要把的系数化为1,因此,先要根据等式的性质1,方程两边同时加5,再根据等式性质2,方程两边同时除以-13.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂充分了解学生的自学情况.②差异指导:对学习困难的学生进行点拨和指导.(2)生助生:小组内同学们相互交流、讨论,互助解决疑难问题.4.强化:①解方程时,方程的变形目标:逐步转化为x=a(常数)的形式.②解方程时方程的变形依据是等式的两个性质,并且通常都是把含有未知数的项放在等号的左边.③解方程要养成检验的习惯.④练习:利用等式的性质解下列方程并检验.a.x-5=6 c.5x+4=0 d.2-14x=3解:a.x=11; b.x=150; c.x=-45d.x=-4.三、评价1.学生自我评价:学生代表交流学习的收获和困惑.2.教师对学生的评价:(1)表现性评价:教师对学生在本节课的学习中的优异表现、获得的成效和存在的问题进行总结和点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学要重视学生思维的多角度培养,教师对教材中的实际问题要直观演示,指导学生观察图形,从实验中归纳结论,并用实验验证.对发现的结论用文字、数学语言分别表达出来,突出对等式性质的理解和应用.在解方程时,要求说明每一步变形的依据,解题后及时小结.扎实做到这些,可为后面教与学打下坚实基础.一、基础巩固1.(20分)下列说法错误的是(D)A.若x=3,则3=x.B.若x=y,y=z,则x=z.C.若ab=1,则a=1b. D.若2+a=b-3, 则4+2a=2b-3.2.(20分)如果mx=my,那么下列等式中不一定成立的是(D)A.mx+1=my+1B.mx-3=my-3C.-mx=-myD.x=y3.(20分)用等式的性质解下列方程.(1)x-4=29 (2)12x+2=6解:x=33 解:x=8(3)3x+1=4 (4)4x-2=2解:x=1解:x=1二、综合应用4.(10分)下列变形正确的是(A)5.(20分)利用等式的性质解下列方程并检验.(1)5-15x=-5 (2)512x-14=13解:x=50 解:x=1.4 三、拓展延伸6.(10分)一个两位数个位上的数是1,十位上的数是x,把1与x对调,新两位数比原两位数小18,试列出关于x的方程,并解这个方程.解:依题意可得:10x+1-(10+x)=18,9x-9=18,9x=27,x=3.。
七年级集体备课数学上导学案第一章有理数一、知识链接1、观察下面的温度计,读出温度.分别是°C、°C、°C;2、在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这个情境?东汽车站请同学们分小组讨论,交流合作,动手操作二、自主探究1、由上面的两个问题,你受到了什么启发?能用直线上的点来表示有理数吗?2、自己动手操作,看看能够表示有理数的直线必须满足什么条件?引导归纳:1)、画数轴需要三个条件,即、方向和长度。
2)数轴【课堂练习】1、请你画好一条数轴2、利用上面的数轴表示下列有理数1.5,—2,2,—2.5,92,23-,0;3、写出数轴上点A,B,C,D,E所表示的数:三、寻找规律1、观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?2、每个数到原点的距离是多少?由此你又有什么发现?3、进一步引导学生完成P9归纳【要点归纳】:画数轴需要三个条件是什么?【拓展练习】1、在数轴上,表示数-3,2.6,53-,0,314,322-,-1的点中,在原点左边的点有个。
2、在数轴上点A表示-4,如果把原点O向正方向移动1个单位,那么在新数轴上点A表示的数是( )A.-5,B.-4C.-3D.-23、你觉得数轴上的点表示数的大小与点的位置有什么关系?3. 相反数等于它本身的数是,相反数大于它本身的数是;4.填空:(1)如果a=-13,那么-a=;(2)如果-a=-5.4,那么a=;(3)如果-x=-6,那么x=;(4)-x=9,那么x=;5.数轴上表示互为相反数的两个数的点之间的距离为10,求这两个数。
课后反思课题 1.2.4绝对值授课人学习目标1、理解、掌握绝对值概念.体会绝对值的作用与意义;2、掌握求一个已知数的绝对值和有理数大小比较的方法;3、体验使用直观知识解决数学问题的成功;重点难点绝对值的概念与两个负数的大小比较导学指导个人加减一、知识链接问题:如下图小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线(填相同或不相同),他们行走的距离(即路程远近)二、自主探究1、由上问题能够知道,10到原点的距离是,—10到原点的距离也是到原点的距离等于10的数有个,它们的关系是一2.7=x ,则______=x ; 7=-x ,则______=x .3.如果3>a ,则______3=-a ,______3=-a .4.绝对值等于其相反数的数一定是…………………………………( )A .负数B .正数C .负数或零D .正数或零5.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等; ④绝对值相等的两数一定相等.其中准确的有…………………………………………………( )A .0个B .1个C .2个D .3个课后反思课 题 1.3.1有理数的加法(1) 授 课 人学习目标 1、理解有理数加法意义,掌握有理数加法法则,会准确实行有理数加法运算; 2、会利用有理数加法运算解决简单的实际问题;重点难点 有理数加法法则 异号两数相加导 学 指 导个 人 加 减 一、知识链接 1、正有理数及0的加法运算,小学已经学过,不过实际问题中做加法运算的数有可能超出正数范围。
《有理数》导学案一、学习目标1、理解有理数的概念,能区分正有理数、零和负有理数。
2、掌握有理数的分类方法,会对给定的数进行分类。
3、理解数轴的概念,能正确画出数轴,能用数轴上的点表示有理数。
4、理解相反数和绝对值的概念,会求一个数的相反数和绝对值。
二、学习重难点1、重点(1)有理数的概念及其分类。
(2)数轴的概念及应用。
(3)相反数和绝对值的概念及计算。
2、难点(1)对负数概念的理解。
(2)绝对值的性质及其应用。
三、知识梳理(一)有理数的概念整数和分数统称为有理数。
整数包括正整数、零和负整数。
例如:5、0、-3 等。
分数包括正分数和负分数。
例如:1/2、-3/4 等。
(二)有理数的分类1、按定义分类:有理数分为整数和分数。
整数分为正整数、零和负整数。
分数分为正分数和负分数。
2、按性质分类:有理数分为正有理数、零和负有理数。
正有理数分为正整数和正分数。
负有理数分为负整数和负分数。
(三)数轴1、定义:规定了原点、正方向和单位长度的直线叫做数轴。
2、数轴的三要素:原点、正方向、单位长度。
3、数轴上的点与有理数的关系:数轴上的点与有理数一一对应,即任何一个有理数都可以用数轴上的一个点来表示;反之,数轴上的任意一个点都表示一个有理数。
(四)相反数1、定义:只有符号不同的两个数叫做互为相反数。
例如:5 和-5 互为相反数,0 的相反数是 0。
2、性质:(1)互为相反数的两个数的和为 0。
(2)在数轴上,互为相反数的两个数位于原点的两侧,且到原点的距离相等。
(五)绝对值1、定义:一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作|a|。
2、性质:(1)正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是 0。
即:当 a>0 时,|a| = a;当 a = 0 时,|a| = 0;当 a<0 时,|a| = a。
(2)绝对值具有非负性,即|a|≥0。
四、典型例题例 1:把下列各数分别填入相应的集合里:+5,-314,0,-7,12/13,-20%,-001,21,-98,314159正数集合:{________________}负数集合:{________________}整数集合:{________________}分数集合:{________________}解:正数集合:{+5,12/13,21,314159}负数集合:{-314,-7,-20%,-001,-98}整数集合:{+5,0,-7,21,-98}分数集合:{-314,12/13,-20%,-001,314159}例 2:画出数轴,并用数轴上的点表示下列各数:-3,2,0,-15,5/2解:先画出数轴,然后在数轴上找到对应的点。
1.2 有理数1.2.1 有理数学习目标:1.掌握有理数的概念.2.会对有理数按一定的标准进行分类,培养分类能力.重点:掌握有理数的概念.难点:会对有理数按一定的标准进行分类.一、知识链接1.把下列相等的数用线连起来:2.有限小数(如0.1,1.5)和无限循环小数(如0.3)都可以化为_______.在以后的学习 中,我们把小学学过的小数(有限小数和无限循环小数)都看成是______.3.思考:π=3.1415926...,能化为分数吗? 答:________. 二、新知预习引入负数之后,我们学过的数可以怎么分类?整数 分数正整数 正分数 负分数 【自主归纳】 整数和分数统称为 数. 三、自学自测1.在-3,15,-0.4,0,23,9.5,+156,-20%中,正数有________________________,负数有自主学习0.1 0.21.52.60.323 31 532 101 51 ?_______________;正整数有________________,负整数有________________.四、我的疑惑_____________________________________________________________________________________ _________________________________________________________________一、要点探究我们以前学过的数,像1,2,3……称为数;241,,354……称为数.那么在以上这些数的前面添上“-”号后,-1,-2,-3……称为数;241,,354---……称为数.特别提示:既不是正数,也不是负数!要点归纳:正整数、零和负整数统称数.正分数和负分数统称数.整数和分数统称数.注意:目前我们所学的小数都可以化成数,所以把小数划分到数一类.问题1:你能根据有理数的定义对有理数分类吗?正整数整数自然数有理数负整数分数问题2:如果按符号(正、负)来分类,又该怎样来分呢?正整数有理数零正分数负整数负分数说明:①分类的标准不同,结果也不同;②分类的结果应无遗漏、无重复;③零是整数,但零既不是正数,也不是负数.填一填:判断表中各数分别是什么数,在相应的空格内打“√”。
七年级数学“先学后教”导学案第一章 有理数§1.1 正数和负数一.学习目标1、通过实际例子,感受引入负数的必要性;2、知道什么是正数,什么是负数;会用正负数表示实际问题的数量。
二、阅读指导1、我们以前学过的数:1、2、3……0 21、32、53…… 这三类数是如何产生的,请同学们在课本上找一下,并在小组读一遍。
2、课本中出现了新数:-3、-2、-2.7%,这些数和以前学习的数有什么区别?课本上结合实际对它们的意义做了说明,你有其他说法吗? 请想一想在组内说一说。
3、把一组旧数和新数放在一起:3、2、1、1.8%、+6、+3.2、-3、-2、-2.7%、0,请同学们根据课本知识把它们分类一下,并读出来。
4、归纳什么是正数:什么是负数:5、正数、0、负数结合实际后都能表示一定的意义,在课本中都举出哪些可用正数、0、负数表示的例子,请找出来并写在课本的空白处。
三、尝试练习课本P3页的练习1、2、3、4;P4页练习。
课本P5页习题1.1第1、2、3题.四、交流展示1、在组内讲解阅读思考,并交流。
2、在组内指定同学报答案,答案不同的先记下,最后交流展示。
3、教师巡视各组学习情况,并适时点拨或启发五、当堂反馈1、课本P5页习题1.1第4-8题.2、(1)若规定向南为正,则向北50米记作(2)若+101元表示收入101元,则-100元表示3、2008年我国花生产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里的1.8%,-2.7%分别代表什么意思?六、反思小结为什么要引入负数?举例说明正数、负数在表示相反意义的量时的作用。
§1.2.1 有理数一、学习目标理解有理数的意义,知道什么是有理数,会将有理数进行分类。
二、阅读指导1、至今为此我们学过的数有哪些? 其中对正分数和负分数的理解,你有什么疑问?2、正数包含:负数包含:3、有理数包含:4、正整数、0、负整数统称为正分数和负分数统称为整数和分数统称为三、尝试练习1、课本P8页练习;课本P14页习题1.2第1题。
有理数导学案1.1正数与负数执笔:初审:复审:授课人:课型:课时:学生姓名:班级:小组:【学习目标】1.了解正数和负数是从实际需要中产生的;2.能正确判断一个数是正数还是负数;3.明确0既不是正数也不是负数;4.会用正数、负数表示实际问题中具有相反意义的量。
二、重点:会判断正数、负数,运用正负数表示具有相反意义的量。
三、难点:负数的引入。
四、疑点:负数概念的建立。
【自主探究】一、导引自学1.课前预习:看书第2页、第3页、第4页内容。
2.预习检测:①正数的概念:______________负数的概念:______________数0___________。
在同一个问题中,分别用正数与负数表示的量具有_______的意义。
②试着完成书上第3页,第4页练习题二、自我检查1.读下列各数,并指出其中哪些是正数,哪些是负数:-2,3,0,+3,1.5,-3.14,100,-1.732.正数有:______________.负数有:__________.2.在下列横线上填上适当的词,使前后构成意义相反的量:(1)收入3500元,______6500元;(2)___800米,下降240米;(3)向北前进200米,____300米。
3.如果某球队一个赛季胜12场,记作+12场,那么该队这个赛季负6场,可记作_______。
4.某种面粉袋上对面粉的重量这样描述:重量(+50±0.2)kg,下面的理解正确的是()A.一袋面粉的重量是50kgB.一袋面粉的最大重量50.2kgC.一袋面粉的最小重量是50.2kgD.-0.2kg表示的是比最大重量0.2kg三、知新有疑通过自学我又知道了新的知识:但还有疑惑:【达标检测】1.在-2,3,0,,-1.5,五个数中,负数的个数是()A.1B.2C.3D.42.下列说法错误的是()A.一个正数的前面加上负号就是负数B.不是正数的数不一定是负数C.0既不是正数,也不是负数D.只有带”+”号的书才是正数3.如果+30米表示把一个物体向右移动30米,那么-60米表示物体_____。
有理数教学目标正我有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力; 了解分类的标准与分类结果的相关性,初步了解“集合”的含义; 体验分类是数学上的常用的处理问题的方法. 教学重点与难点重点:正确理解有理数的概念.难点:正确理解分类的标准和按照定的标准进行分类. 一.知识回顾和理解通过两节课的学习,我们已经将数的范围扩大了,那么你能写出3个不同类的数吗?.(3名学生板书)[问题1]:我们将这三为同学所写的数做一下分类. (如果不全,可以补充).[问题2]:我们是否可以把上述数分为两类?如果可以,应分为哪两类? 二.明确概念 探究分类正整数、0、负整数统称整数,正分数和负分数统称分数. 整数和分数统称有理数[问题3]:上面的分类标准是什么?我们还可以按其它标准分类吗?⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 三.练一练 熟能生巧1.任意写出三个数,标出每个数的所属类型,同桌互相验证.2.把下列各数填入它所属于的集合的圈内:15,-91,-5,152,813-,0.1,-5.32,-80,123正整数集合 负整数集合正分数集合 负分数集合 [小结]到现在为止我们学过的数是有理数(圆周率π除),有理数可以按不同的标准进行分类,标准不同时,分类的结果也不同. [作业]必做题:教科书第8页练习.P14 T1、2 作业2.把下列给数填在相应的大括号里:-4,0.001,0,-1.7,15,23+.正数集合{ …},负数集合{ …}, 正整数集合{ …},分数集合{ …} [备选题]1.下列各数,哪些是整数?哪些是分数?哪些是正数?哪些是负数?+7,-5,217,61-,79,0,0.67,321-,+5.1 2.0是整数吗?自然数一定是整数吗?0一定是正整数吗?整数一定是自然数吗?3.图中两个圆圈分别表示正整数集合和整数集合,请写并填入两个圆圈的重叠部分.你能说出这个重叠部分表示什么数的集合吗?正数集合整数集合专题17 线段中点或角的计数问题一、线段中点问题类型一、与线段中点有关的计算1.如图,点C 在线段AB 上,AC =8 cm ,CB =6 cm ,点M ,N 分别是线段AC ,BC 的中点.(1)求线段MN 的长.(2)若C 为线段AB 上任一点,满足AC +CB =a cm ,其他条件不变,你能猜想MN 的长度吗?并说明理由.(第1题)解:(1)因为点M ,N 分别是线段AC ,BC 的中点,所以CM =12AC =12×8=4(cm ),CN =12BC =12×6=3(cm ).所以MN =CM +CN =4+3=7(cm ). (2)MN =12a cm .理由如下:同(1)可得CM =12AC ,CN =12BC ,所以MN =CM +CN =12AC +12BC =12(AC +BC)=12a cm .二、与线段中点有关的说明题2.画线段MN =3 cm ,在线段MN 上取一点Q ,使MQ =NQ ;延长线段MN 到点A ,使AN =12MN ;延长线段N M到点B ,使BN =3BM.(1)求线段BM 的长; (2)求线段AN 的长;(3)试说明点Q 是哪些线段的中点. 解:如图.(第2题)(1)因为BN =3BM ,所以BM =12MN.因为MN =3 cm ,所以BM =12×3=1.5(cm ).(2)因为AN =12MN ,MN =3 cm ,所以AN =1.5 cm .(3)因为MN =3 cm ,MQ =NQ , 所以MQ =NQ =1.5 cm .所以BQ =BM +MQ =1.5+1.5=3(cm ), AQ =AN +NQ =3 cm . 所以BQ =QA.所以点Q 是线段MN 的中点,也是线段AB 的中点.二、线段分点问题类型一、与线段分点有关的计算(设参法)3.如图,B ,C 两点把线段AD 分成2∶4∶3的三部分,M 是线段AD 的中点,CD =6 cm ,求线段MC 的长.(第3题)解:设AB =2k cm ,则BC =4k cm ,CD =3k cm ,AD =2k +4k +3k =9k(cm ). 因为CD =6 cm ,即3k =6, 所以k =2. 所以AD =18 cm .又因为M 是线段AD 的中点, 所以MD =12AD =12×18=9(cm ).所以MC =MD -CD =9-6=3(cm ). 类型二、线段分点与方程的结合4.A ,B 两点在数轴上的位置如图所示,O 为原点,A ,B 两点分别以1个单位长度/s ,4个单位长度/s 的速度同时向左运动.(1)几秒后,原点恰好在A ,B 两点正中间? (2)几秒后,恰好有OA∶OB=1∶2?(第4题)解:(1)设运动时间为x s ,依题意得x+3=12-4x,解得x=1.8.所以1.8 s后,原点恰好在A,B两点正中间.(2)设运动时间为t s.①点B在原点右侧:12-4t=2(t+3),即t=1;②点B在原点左侧:4t-12=2(t+3),即t=9.所以1 s或9 s后,恰好有OA∶OB=1∶2.三、线段条数的计数问题1.先阅读文字,再解答问题.(第1题)如图,在一条直线上取两点,可以得到1条线段,在一条直线上取三点可以得到3条线段,其中以A1为端点的向右的线段有2条,以A2为端点的向右的线段有1条,所以共有2+1=3(条).(1)在一条直线上取四个点,以A1为端点的向右的线段有______条,以A2为端点的向右的线段有______条,以A3为端点的向右的线段有______条,共有______+______+______=______(条).(2)在一条直线上取五个点,以A1为端点的向右的线段有______条,以A2为端点的向右的线段有________条,以A3为端点的向右的线段有________条,以A4为端点的向右的线段有______条,共有________+________+________+________=______(条).(3)在一条直线上取n个点(n≥2),共有________条线段.(4)乘火车从A站出发,沿途经过5个车站方可到达B站,那么A,B两站之间最多有多少种不同的票价?需要安排多少种不同的车票?(只考虑硬座情况)解:(1)3;2;1;3;2;1;6(2)4;3;2;1;4;3;2;1;10 (3)n (n -1)2(4)从A 站出发,沿途经过5个车站到达B 站,类似于一条直线上有7个点,此时共有线段7×(7-1)2=21(条),即A ,B 两站之间最多有21种不同的票价.因为来往两站的车票起点与终点不同,所以A ,B 两站之间需要安排21×2=42(种)不同的车票.四、平面内直线相交所得交点与平面的计数问题2.为了探究同一平面内的几条直线相交最多能产生多少个交点,能把平面最多分成几部分,我们从最简单的情形入手,如图.(第2题)列表如下: 直线条数 最多交点个数 把平面最多分成部分数 1 0 2 2 1 4 3 3 7 ………(1)当直线条数为5时,最多有________个交点,可写成和的形式为________;把平面最多分成______部分,可写成和的形式为________.(2)当直线条数为10时,最多有________个交点,把平面最多分成________部分. (3)当直线条数为n 时,最多有多少个交点?把平面最多分成多少部分?解:(1)10;1+2+3+4;16;1+1+2+3+4+5 (2)45;56 (3)当直线条数为n 时,最多有1+2+3+…+(n -1)=n (n -1)2个交点;把平面最多分成1+1+2+3+…+n =⎣⎢⎡⎦⎥⎤n (n +1)2+1部分.五、关于角的个数的计数问题3.有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,如图,如果过角的顶点A ,(1)在角的内部作一条射线,那么图中一共有几个角?(2)在角的内部作两条射线,那么图中一共有几个角?(3)在角的内部作三条射线,那么图中一共有几个角?(4)在角的内部作n条射线,那么图中一共有几个角?(第3题)解:(1)如题图①,已知∠BAC,如果在其内部作一条射线,显然这条射线就会和∠BAC的两条边都组成一个角,这样一共就有1+2=3(个)角.(2)题图①中有1+2=3(个)角,如果再在题图①的角的内部增加一条射线,即为题图②,显然这条射线就会和图中的三条射线再组成三个角,即题图②中一共有1+2+3=6(个)角.(3)如题图③,在角的内部作三条射线,即在题图②中再增加一条射线,同样这条射线就会和图中的四条射线再组成四个角,即题图③中一共有1+2+3+4=10(个)角.(4)综上所述,如果在一个角的内部作n条射线,则图中一共有1+2+3+…+n+(n+1)=(n+1)(n+2)(个)角.2第一章有理数1.2 有理数【知识与技能】(1)借助数轴,使学生了解相反数的概念;(2)会求一个有理数的相反数.【过程与方法】(1)从数和形两个不同的侧面来理解相反数的真正含义;(2)培养学生分析和解决问题的能力,逐步渗透数形结合思想.【情感态度与价值观】(1)逐步培养学生探索学习数学的方法;(2)培养学生归纳总结的能力.理解相反数的概念.会求一个有理数的相反数.多媒体课件1.数轴的三要素是什么?2.填空:数轴上与原点的距离是2的点有个,这些点表示的数是;与原点的距离是5的点有个,这些点表示的数是 .一、思考探究,获取新知一、向前走和向后走.教师提问:如果向前为正、向后为负,向前走5步,向后走5步分别记作什么?学生思考回答.教师:这位同学两次行走的距离都是5步,但两次行走的方向相反,这就决定了这两个数的符号不同.二、动手操作并回答问题.在数轴上,画出表示6,-6,212,-212,413,-413的点.(1)上述中6和-6,212和-212,413和-413,每对数有什么特点?(2)数轴上表示每对数的点的位置有什么特点?学生动手画图,教师引导学生对数进行归类与分析,归纳出其外在的特征:只有符号不同,进而引出相反数的概念.教师归纳总结:一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点左右,表示-a和a,我们说这两个点关于原点对称,如图1-2.3-1.相反数的概念:只有符号不同的两个数叫作互为相反数.一般地,a和-a互为相反数.特别地,0的相反数是0.二、典例精析,掌握新知例1分别写出下列各数的相反数:5,-7,-312,+11.2,0.【分析】在正数前面添上“-”,就得到这个正数的相反数.在任意一个数的前面添上“-”,新的数就表示原数的相反数.【解】5的相反数是-5;-7的相反数是7;-312的相反数是312;+11.2的相反数是-11.2;0的相反数是0.例2化简下列各数:(1)-(+5);(2)+(-7);(3)+(+2);(4)-[-(-2)].【分析】化简符号有两种类型:(1)前面带“+”的,等于原数;(2)前面带“-”的,等于原数的相反数.一般地,式子中含有奇数个“-”时,结果为负;式子中含有偶数个“-”时,结果为正.【解】(1)-(+5)=-5.(2)+(-7)=-7.(3)+(+2)=2.(4)-[-(-2)]=-2.1.只有符号不同的两个数叫作互为相反数.2.化简多重符号时,“+”可省略,有奇数个“-”时保留1个,有偶数个“-”时全部省略.教材P10练习第1,2,3,4题11。
5. 已知下列各数:- ,-,3.14,+3065,0,-239.则正数有_________________;负数有________________________.514329mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?3.下列语句:○1不带“—”号的数都是正数;○20℃表示没有温度;○3不带“+”号的数都是负数;○4不存在既不是正数,也不是负数的数;○5一个数不是正数就是负数;○6小学数学中学过的数都可以看作是正数.其中正确的有()(3)顺时针转5圈和逆时针转3圈;(4)高于海平面800米和低于海平面200米.你还能举出一些应用有理数加法的实际例子吗?请同学们积极思考. 二、有理数加法的归纳探索:两个有理数相加,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗? 说一说:两个有理数相加有多少种不同的情形?议一议:在各种情形下,如何进行有理数的加法运算? 归纳:有理数加法法则:①同号两数相加,取 的符号,并把 相加.②异号两数相加,绝对值相等时,和为;绝对值不等时,取 较大的加数的符号,并用较大的绝对值 较小的绝对值.③一个数与0相加,仍得 . ◆ 质疑导学:例1.计算 (1)(+8)+(+5) (2)(-8)+(-5) (3)(+8)+(-5)(4)(-8)+(+5) (5)(-8)+(+8) (6)(+8)+0; 例2用“>”或“<”号填空:(1)如果a >0,b >0,那么a+b ______0; (2)如果a <0,b <0,那么a+b ______0; (3)如果a >0,b <0,|a|>|b|,那么a+b ______0;(4)如果a <0,b >0,|a|>|b|,那么a+b ______0. 例2.某公司三年的盈利情况如下表所示,规定盈利为“+”(单位:万元)该公司前两年盈利了多少万元?(2)该公司三年共盈利多少万元? ◆ 学习检测1.(+5)+(+7)=_______; (-3)+(-8)=________ (+3)+(-8)=________; (-3)+(-15)=________; 0+(-5)=________; (-7)+(+7)=________. 2.一个数为-5,另一个数比它的相反数大4,这两数的和为________. 3.(-5)+______=-8; ______+(+4)=-9. _______+(+2)=+11;______+(+2)=-11; 4. 如果,5,2-=-=b a 则=+b a ,=+b a5、土星表面夜间的平均气温为-150℃,白天的平均气温比夜间高27℃,那么白天的平均气温是多少?6、潜水员原来在水下15米处,后来上浮了8米,又下潜了20米,这时他在什么位置?要求用加法解答。
课题:1.2.1 有理数
【学习目标】:
1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;
2、了解分类的标准与集合的含义;
3、体验分类是数学上常用的处理问题方法;
【学习重点】:正确理解有理数的概念 【学习难点】:正确理解分类的标准和按照一定标准分类 【导学指导】
一、温故知新
1、通过两节课的学习,,那么你能写出3个不同类的数吗?.(4名学生板书)
__________________________________________ 二、自主探究
问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类; 该分为几类,又该怎样分呢?先分组讨论交流,再写出来
分为 类,分别是:
引导归纳:
统称为整数, 统称为有理数。
问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类? 师生共同交流、归纳
2、正数集合与负数集合
所有的正数组成 集合,所有的负数组成 集合
【课堂练习】
1、P8练习(做在课本上)
2.把下列各数填入它所属于的集合的圈内:
15, -
91, -5, 152, 8
13 , 0.1, -5.32, -80, 123, 2.333;
正整数集合 负整数集合
正分数集合 负分数集合
【要点归纳】: 有理数分类
⎪⎪⎪⎩
⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 或者 ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数
整数零负整数有理数正分数分数负分数
【拓展训练】
1、下列说法中不正确的是……………………………………………( ) A .-3.14既是负数,分数,也是有理数 B .0既不是正数,也不是负数,但是整数
c .-2000既是负数,也是整数,但不是有理数 D .O 是正数和负数的分界
2、在下表适当的空格里画上“√”号
【总结反思】:
有理数 整数 分数
正整数
负分数
自然数
-8是 -2.25是 53是 0是。