平方根与算术平方根的习题
- 格式:ppt
- 大小:333.50 KB
- 文档页数:9
平方根练习题1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),算术平方根2、平方根的性质:(1)一个正数有 个平方根,它们 (2)0的平方根是 ;(3) 没有平方根.3、重要公式: (1)=2)(a (2){==a a 24、平方表:5.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________.6.一个正方体的棱长扩大3倍,则它的体积扩大_____________.7.若一个数的立方根等于数的算术平方根,则这个数是_____________.8. 0的立方根是___________.(-1)2005的立方根是______________.182726的立方根是________.例1、判断下列说法正确的个数为( ) ① -5是-25的算术平方根; ② 6是()26-的算术平方根; ③ 0的算术平方根是0;④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根. A .0 个 B .1个 C .2个 D .3个 例2、36的平方根是( )A 、6B 、6±C 、6 D 、 6±例3、下列各式中,哪些有意义? (1)5 (2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A .()1+a B .()1+±a C .12+a D .12+±a强化训练 一、选择题1.下列说法中正确的是( ) A .9的平方根是3 B422. 4的平方的倒数的算术平方根是( ) A .4 B .18C .-14D .143.下列结论正确的是( ) A 6)6(2-=--B 9)3(2=-C 16)16(2±=-D 251625162=⎪⎪⎭⎫ ⎝⎛-- 4.以下语句及写成式子正确的是( ) A 、7是49的算术平方根,即749±= B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±=5.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( ) A .3个 B .2个 C .1个 D .4个6.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±7.下列叙述中正确的是( )A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数 8.36的平方根是( )A 、6B 、6±C 、 6D 、 6±9.当≥m 0时,m 表示( )A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数10.用数学式子表示“169的平方根是43±”应是( ) A .43169±= B .43169±=± C .43169= D .43169-=-11.算术平方根等于它本身的数是( ) A 、 1和0 B 、0 C 、1 D 、 1±和0 12.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±13.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( ) A .a B .a- C .2a - D .3a14.若a 、b 为实数,且471122++-+-=a a ab ,则b a +的值为( )A .1± B. 4 C. 3或5 D. 515.若9,422==b a ,且0<ab ,则b a -的值为 ( ) A.2- B. 5± C. 5 D. 5- 二、填空题: 1.2)8(-= , 2)8(= 。
算术平方根、平方根与立方根练习题 姓名:‗‗‗‗‗‗‗‗‗1、一般地,如果一个正数x 的平方等于a ,即‗‗‗‗‗‗‗‗‗‗,那么这个正数x 叫做a 的‗‗‗‗‗‗‗‗‗,记为‗‗‗‗‗‗‗,读作‗‗‗‗‗‗‗‗‗‗,a 叫做‗‗‗‗‗‗‗‗‗,如3²=9,则3是9的‗‗‗‗‗‗‗‗‗,记为‗‗‗‗‗‗‗‗‗‗‗‗‗‗。
0的算术平方根是‗‗‗‗‗‗;1的算术平方根是‗‗‗‗‗。
‗‗‗‗‗‗‗‗数没有算术平方根;被开方数是‗‗‗‗‗‗‗数;算术平方根是‗‗‗‗‗‗‗数。
2、算术平方根等于它本身的数是‗‗‗‗‗‗‗‗‗。
被开方数越大,对应的算术平方根也‗‗‗‗‗。
3、(-5)²的算术平方根是‗‗‗‗‗;0.49的算术平方根的相反数是‗‗‗‗‗‗。
4、81的算术平方根是‗‗‗‗‗。
16的算术平方根是‗‗‗‗‗。
5、求下列各数的算术平方根。
(1)0.0625; (2)0; (3)2)41(-; (4)16、计算(1)41.4 (2)25111(3)151722-7、已知35.14=3.788,x =378.8,则x=‗‗‗‗‗‗‗‗‗。
8、已知a ,b 为两个连续整数,且a <7<b ,则a+b=‗‗‗‗‗。
比较大小:215-‗‗‗21。
9、(1)(-3)²=‗‗‗‗‗;(2))3(2π-=‗‗‗‗‗‗‗‗‗‗;(3)若4-x =3,则x=‗‗‗‗‗。
10、若x ,y 为实数,且2+x +2-y =0,则)2016(y x 的值为‗‗‗‗‗‗‗‗。
平方根:1、一般地,如果一个数x 的平方等于a ,即‗‗‗‗‗‗‗‗‗‗,那么这个数x 叫做a 的‗‗‗‗‗‗‗‗‗或‗‗‗‗‗‗‗‗‗,数a 的平方根可记作‗‗‗‗‗‗,如)3(2±=9,所以‗‗‗‗‗是9的平方根,记为‗‗‗‗‗‗‗‗‗‗‗‗‗‗。
正数有‗‗‗‗个平方根,它们‗‗‗‗‗‗‗‗‗,0的平方根是‗‗‗。
平方根立方根的计算一、填空题1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是2.非负数a 的平方根表示为3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是 或者4既 的平方根是 5.非负的平方根叫 平方根6.如果9=x ,那么x =________;如果92=x ,那么=x ________; 7.若一个实数的算术平方根等于它的立方根,则这个数是_________; 8.算术平方根等于它本身的数有________,立方根等于本身的数有________.9. x ==则 ,若,x x =-=则 。
10.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ; 11.当______m 时,m -3有意义;当______m 时,33-m 有意义;12.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 13.21++a 的最小值是________,此时a 的取值是________.14_______;9的平方根是_______. 15.144的算术平方根是 ,16的平方根是 ; 16.327= , 64-的立方根是 ; 17.7的平方根为 ,21.1= ;18.一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ; 19.平方数是它本身的数是 ;平方数是它的相反数的数是 ; 20.当x= 时,13-x 有意义;当x= 时,325+x 有意义; 21.若164=x ,则x= ;若813=n,则n= ; 22.若3x x =,则x= ;若x x -=2,则x ; 23.若0|2|1=-++y x ,则x+y= ; 24.计算:381264273292531+-+= ;25.2)8(-= , 2)8(= 。
26.9的算术平方根是 ,16的算术平方根是 ;27.210-的算术平方根是 ,0)5(-的平方根是 ; 28.一个正数有 个平方根,0有 个平方根,负数 平方根. 29.一个数的平方等于49,则这个数是 30.16的算术平方根是 ,平方根是 31.一个负数的平方等于81,则这个负数是32.如果一个数的算术平方根是5,则这个数是 ,它的平方根是 33.25的平方根是 ; (-4)2的平方根是 。
平方根和算术平方根精选习题训练及详细解析一.解答题(共8小题)1.若实数a、b满足|a+2|+=0,求的值.2.王老师给同学们布置了这样一道习题:一个数的算术平方根为2m﹣6,它的平方根为±(m﹣2),求这个数.小张的解法如下:依题意可知,2m﹣6是m﹣2或者是﹣(m﹣2)两数中的一个 (1)当2m﹣6=m﹣2,解得m=4 (2)(2m﹣6)=(2×4﹣6)=2 (3)这个数为4当2m﹣6=﹣(m﹣2)时,解得m= (4)(2m﹣6)=(2×﹣6)=﹣ (5)这个数为综上可得,这个数为4或 (6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予改正.3.已知+|2x﹣3|=0.(1)求x,y的值;(2)求x+y的平方根.4.若|x﹣1|+(y+3)2+=0,求4x﹣2y+3z的平方根.5.已知a,b为实数,且﹣(b﹣1)=0,求a2015﹣b2016的值.6.(1)若5a+1和a﹣19是数m的两个不同的平方根,求m的值.(2)如果y=+3,试求2x+y的值.7.已知:=0,求:代数式的值.8.已知a,b为实数,且﹣(b﹣1)=0,求a2005﹣b2006的值.2017年10月05日hrui88的初中数学组卷参考答案与试题解析一.解答题(共8小题)1.若实数a、b满足|a+2|+=0,求的值.【分析】由非负数的性质得到a+2=0,b﹣4=0,解得a=﹣2,b=4,代入求得=1.【解答】解:∵实数a、b满足|a+2|+=0,∴a+2=0,b﹣4=0,∴a=﹣2,b=4,∴=1.【点评】本题考查了非负数的性质,算术平方根,绝对值,熟记非负数的性质是解题的关键.2.王老师给同学们布置了这样一道习题:一个数的算术平方根为2m﹣6,它的平方根为±(m﹣2),求这个数.小张的解法如下:依题意可知,2m﹣6是m﹣2或者是﹣(m﹣2)两数中的一个 (1)当2m﹣6=m﹣2,解得m=4 (2)(2m﹣6)=(2×4﹣6)=2 (3)这个数为4当2m﹣6=﹣(m﹣2)时,解得m= (4)(2m﹣6)=(2×﹣6)=﹣ (5)这个数为综上可得,这个数为4或 (6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予改正.【分析】由算术平方根的非负性质可知2m﹣6≥0,从而可对求得的m的值作出取舍.【解答】解:∵2m﹣6是某数的算术平方根,∴2m﹣6≥0.解得:m≥3.∴当m=不符合题意应舍去.故答案为:这个数为4.【点评】本题主要考查的是算术平方根、平方根的定义,掌握算术平方根的非负性是解题的关键.3.已知+|2x﹣3|=0.(1)求x,y的值;(2)求x+y的平方根.【分析】(1)根据非负数的性质求出x、y的值;(2)根据(1)求出x+y,开方即可.【解答】解:(1)∵≥0,|2x﹣3|≥0,+|2x﹣3|=0,∴2x+4y﹣5=0,2x﹣3=0,则x=,y=.(2)x+y=+=2,则x+y的平方根为±.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.4.若|x﹣1|+(y+3)2+=0,求4x﹣2y+3z的平方根.【分析】根据非负数的性质列式求出x、y、z的值,然后代入代数式进行计算,再根据平方根的定义解答.【解答】解:由题意得,x﹣1=0,y+3=0,x+y+z=0,解得x=1,y=﹣3,z=2,所以,4x﹣2y+3z=4×1﹣2×(﹣3)+3×2=4+6+6=16,∵(±4)2=16,∴4x﹣2y+3z的平方根是±4.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.已知a,b为实数,且﹣(b﹣1)=0,求a2015﹣b2016的值.【分析】由已知条件得到+(1﹣b)=0,利用二次根式有意义的条件得到1﹣b≥0,再根据几个非负数和的性质得到1+a=0,1﹣b=0,解得a=﹣1,b=1,然后根据乘方的意义计算a2015﹣b2016的值.【解答】解:∵﹣(b﹣1)=0,∴+(1﹣b)=0,∵1﹣b≥0,∴1+a=0,1﹣b=0,解得a=﹣1,b=1,∴a2015﹣b2016=(﹣1)2015﹣12016=﹣1﹣1=﹣2.【点评】本题考查了非负数的性质:算术平方根具有非负性.非负数之和等于0时,各项都等于0利用此性质列方程解决求值问题.6.(1)若5a+1和a﹣19是数m的两个不同的平方根,求m的值.(2)如果y=+3,试求2x+y的值.【分析】(1)根据正数的两个平方根互为相反数列方程求出a的值,再求出一个平方根,然后平方即可得到m的值;(2)根据被开方数大于等于,分母不等于0列式求出x,再求出y,然后代入代数式进行计算即可得解.【解答】解:(1)∵5a+1和a﹣19是数m的两个不同的平方根,∴5a+1+a﹣19=0,解得a=3,所以,5a+1=3×5+1=16,m=162=256;(2)由题意得,x2﹣4≥0且4﹣x2≥0,所以,x2≥4且x2≤4,所以,x2=4,解得x=±2,又∵x+2≠0,∴x≠﹣2,所以,x=2,y=3,所以,2x+y=2×2+3=7.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7.已知:=0,求:代数式的值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:∵=0,∴=0,≠0,∴3a﹣b=0,a2﹣49=0,∴a=7,b=21,∴=2.【点评】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.已知a,b为实数,且﹣(b﹣1)=0,求a2005﹣b2006的值.【分析】根据被开方数大于等于求出b的取值范围,再根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,1﹣b≥0,∴b≤1,∴原式可化为+(1﹣b)=0,由非负数的性质得,1+a=0,1﹣b=0,解得a=﹣1,b=1,所以,a2005﹣b2006=(﹣1)2005﹣12006=﹣1﹣1=﹣2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,求出b的取值范围是解题的关键.。
例1、 求下列各数的算术平方根与平方根(1)()25- (2)100 (3)0例2、 计算(1)81 (2)41(3)-169(4)()264 (5)24925⎪⎪⎭⎫⎝⎛ (6)()22.7 (7)()22- (8(9)例3求x 的值(1)、()x -=292(2)、()3010752x -=..(3) (x -1)2-121=0; (4) 81(3x -2)2=625;例5 已知536.136.2=,858.46.23= ① 求236和00236.0的值; ② 若x =0.4858,求x 的值;例6、求下列各数的立方根(1)512 (2)833- (3)0例7、求下列各式的值:④⑤⎛ ⎝例7.⑴ 填表:⑵ 由上你发现了什么规律?用语言叙述这个规律。
⑶ 根据你发现的规律填空:① 已知442.133=,则=33000 ,=3003.0② 已知07696.0000456.03=,则=3456 ;③已知0157053953..= 15711623..= 15725043..= 00000157157033.和的值。
例8求x 的值(1)(x+3)3+27=0; (2)(x-0.5)3+10-3=0.(3) (x-1)3=8 (4)(0.1+x)3=-27000;例4、若,622=----y x x 求y x的立方根.练习:已知,21221+-+-=x x y 求y x 的值.例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若32+a 和12-a 是数m 的平方根,求m 的值.例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a的非算术平方根.练习①已知233(2)0x y z -+-++=,求xyz 的值。
②已知互为相反数,求a ,b 的值。
1:求x x +-的值2:已知21140a b -++=,求ab的值3:如果a 为正整数,14-a 为整数,求14-a 的最大值及此时a 的值4:已知x y x y +=-=23424 求x y +的值2.已知x 是10 的整数部分,y 是10 的小数部分,求 110x y --()的平方根。
1、121的平方根是_________,算术平方根_________.
2、 4.9×10³的算术平方根是_________.
3、(-2)²的平方根是_________,算术平方根是_________.
4、0的算术平方根是_________,立方根是_________.
5、-√3是_________的平方根.
6、64的平方根的立方根是_________.
7、如果丨x丨=9,那么x=________;如果x²=9,那么________
8、一个正数的两个平方根的和是_____.一个正数的两个平方根的商是________.
9、算术平方根等于它本身的数有____,立方根等于本身的数有_____.
10、若一个实数的算术平方根等于它的立方根,则这个数是________;
11、√81的平方根是_______,√4的算术平方根是_________,
10-²的算术平方根是_______;
12、若一个数的平方根是±10,则这个数的立方根是_________;
13、当m_______时,有意义;
当m_______时,有意义;
14、若一个正数的平方根是2a-1和-a+2,则a=_______,
这个正数是_______;
15、√a+1+2的最小值是________,此时a的取值是________.
16、2x+1的算术平方根是2,则x=________.。
算术平方根与平方根专项练习算术平方根与平方根专项练一、填空1、如果一个数的平方等于a,即x^2=a,那么x叫做a的算术平方根。
注:①数a的算术平方根记作√a,其中a≥0;②0的算术平方根为0;③只有当a≥0时,数a才有算术平方根。
2、如果一个数的平方等于a,即x^2=a,那么x叫做a的平方根(二次方根)。
注:①一个正数a有两个平方根,且它们互为相反数,记为±√a;②有一个正数的平方根,就是正数;③负数没有平方根。
3、4的平方根是2;算术平方根是2.4、36有个正平方根6,一个负平方根-6;它们的和是0;它们互为相反数。
5、0.04的算术平方根是0.2,开平方等于±0.2的数是0.2和-0.2.6、81的正平方根是9;(-5)^2的平方根是5i。
7、算术平方根等于它本身的数只有0和1;平方根等于它本身的数只有1.8、若5x+4的平方根为±1,则x=-3或x=-0.2;若m-4没有实数平方根,则|m-4|=m-4.9、已知2a-1的平方根是±4,3a+b-1的平方根是±4,则a+2b的平方根是±10.10、若实数x,y满足x-2+(3-y)^2=0,则代数式xy-x的值为1.11、在小于或等于100的非负整数中,其平方根是整数的共有10个。
12、已知x+2与y-3互为相反数,则xy=-6.13、因为没有什么数的平方会等于负数,所以负数没有实数平方根,因此被开方数一定是非负数或0.14、当m≥3时,3-m有意义。
二、选择题15、(-3)^2的平方根是B.-3.16、9的算术平方根是B.3.17、下列个数没有平方根的是C.(-1)。
18、如果3x-5有意义,则x可以取的最小整数为D.3.19、x是16的算术平方根,那么x的算术平方根是B.2.20、选B。
因为(-9)的平方是81,而81不等于9.21、选B。
因为64的平方根是8,而8的相反数是-8,故平方根为±8.22、选C。
平方根及算术平方根练习题(北师大八年级上册第二章)一 无理数概念1、估计面积为2的正方形的边长a 的值是____________________(结果精确到十分位)2、估计面积为5的正方形的边长b 的值______________________(结果精确到百分位)3、把下列各数表示成小数,你发现了什么?4、下列各数中,哪些是有理数?哪些是无理数?0.1010001000001.....(相邻两个1之间的0的个数逐次加2个)二 平方根定义1、正数a 的平方根有___个,表示为___________ 、它们互为___________ 其中______叫做a 的算术平方根2、因为_____2=144, 所以144的平方根是____________因为____2 = 0, 所以0的平方根是________因为____2 = ,所以 的平方根是__________2 = -4, 所以-4的平方根是什么?为什么?从上面的回答中,你发现了什么?49有___个平方根,它们是___________ 。
7有___个平方根,它们是___________ 3:下列说法中不正确的个数有 ___个①0.25的平方根是0.5 ②-0.5的平方 根是-0.25 ③只有正数才有平方根 ④0的平方根是0 4:求下列各数的平方根。
(1)100;(2)1.44;(3) ;(4)5、平方根等于它本身的数是_________6、求适合下列个式的x 的值:.___112___,458___,95___,54_,3==-===9724916,75.0,34,14.3..-121641216481)1(2=x 2536)2(2=x 169)1)(3(2=-x 0183)4(2=-x7、. 求下列各数的算术平方根:(1) 0.25; (2) 121;8. 一个数的算术平方根是25,这个数是_____. 算术平方根等于它本身的数有______。
9. 144=_______;4925=________;=-01.0________;0025.0=_______。
七年级数学《平方根》典型例题及练习【知识要点】1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),2、算术平方根:3、平方根的性质:(1)一个正数有 个平方根,它们 ;(2)0 平方根,它是 ;(3) 没有平方根.4、重要公式:(1)=2)(a (2){==a a 25、平方表:1.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________.2.一个正方体的棱长扩大3倍,则它的体积扩大_____________.3.若一个数的立方根等于数的算术平方根,则这个数是_____________.4. 0的立方根是___________.(-1)2005的立方根是______________.182726的立方根是________. 5. 312726-=____________. 【典型例题】例1、判断下列说法正确的个数为( )① -5是-25的算术平方根;② 6是()26-的算术平方根;③ 0的算术平方根是0;④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根.A .0 个B .1个C .2个D .3个例2、36的平方根是( )A 、6B 、6±C 、 6D 、 6±例3、下列各式中,哪些有意义?(1)5 (2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A .()1+aB .()1+±aC .12+aD .12+±a例5、求下列各式中的x :(1)0252=-x (2)4(x+1)2-169=0【巩固练习】一、选择题1. 9的算术平方根是( )A .-3B .3C .±3D .812.下列计算正确的是( )A±2 B636=± D.992-=-3.下列说法中正确的是( )A .9的平方根是3 B24. 64的平方根是( )A .±8B .±4C .±2D 5. 4的平方的倒数的算术平方根是( )A .4B .18C .-14D .146.下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 251625162=⎪⎪⎭⎫ ⎝⎛--7.以下语句及写成式子正确的是( )A 、7是49的算术平方根,即749±=B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±=8.下列语句中正确的是( )A 、9-的平方根是3-B 、9的平方根是3C 、 9的算术平方根是3±D 、9的算术平方根是39.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( )A .3个B .2个C .1个D .4个10.下列语句中正确的是( )A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根11.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±12.下列叙述中正确的是( )A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数13.25的平方根是( )A 、5B 、5-C 、5±D 、5±14.36的平方根是( )A 、6B 、6±C 、 6D 、 6±15.当≥m 0时,m 表示( )A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数 16.用数学式子表示“169的平方根是43±”应是( )A .43169±=B .43169±=±C .43169=D .43169-=-17.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0.如果一个数的平方根与立方根是同一个数,那么这个偶数是( )A. 8B. 4C. 0D. 1618.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0±19.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±6 20.下列各数有平方根的个数是( )(1)5; (2)(-4)2; (3)-22; (4)0; (5)-a 2; (6)π; (7)-a 2-1A .3个B .4个C .5个D .6个 21.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±22.下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C.2是2的平方根 D. –3是2)3(-的平方根 23.下列命题正确的是( )A .49.0的平方根是0.7B .0.7是49.0的平方根C .0.7是49.0的算术平方根D .0.7是49.0的运算结果24.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( )A .aB .a -C .2a -D .3a26.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-27.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±28.若a 、b 为实数,且471122++-+-=a a a b ,则b a +的值为( ) (A) 1± (B) 4 (C) 3或5 (D) 529.若9,422==b a ,且0<ab ,则b a -的值为 ( )(A) 2- (B) 5± (C) 5 (D) 5-30.已知一个正方形的边长为a ,面积为S ,则( ) A.a S = B.S 的平方根是a C.a 是S 的算术平方根 D.S a ±=31. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a 32.22)4(+x 的算术平方根是( )A 、 42)4(+xB 、22)4(+xC 、42+xD 、42+x33.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±34.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-35.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±36.下列各组数中互为相反数的是( )A 、2)2(2--与B 、382--与C 、2)2(2-与D 、22与- 二、填空题:1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是2.非负数a 的平方根表示为3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是4_______;9的平方根是_______.5的平方根是 ,25的平方根记作 ,结果是6.非负的平方根叫 平方根7.2)8(-= , 2)8(= 。