第六章船模自航试验及实船性能预估船舶阻力与推进
- 格式:doc
- 大小:644.50 KB
- 文档页数:17
第六章 船模自航试验及实船性能预估为了获得螺旋桨与船体之间的相互作用诸因素,如伴流分数、推力减额分数以及其他相互作用系数,应进行三种试验:船模阻力试验、螺旋桨敞水试验及有附体的船模自航试验。
船模自航试验是分析研究各种推进效率成分的重要手段。
对于给定的船舶来说,通过自航试验应解决两个问题:① 预估实船性能,即给出主机马力、转速和船速之间的关系,从而给出实船的预估航速,验证设计的船舶是否满足任务书中所要求的航速。
② 判断螺旋桨、主机、船体之间的配合是否良好。
如果配合不佳,则需考虑重新设计螺旋桨。
此外,根据实船试航结果与相应的船模自航试验数据,可以进行船模及实船的相关分析,积累资料以便改进换算办法,使船模试验预报实船的性能更正确可靠。
§ 6-1 自航试验的相似条件及摩擦阻力修正值一、相似定律在船模阻力试验时,我们只满足了傅氏数相同的条件,对于船模的雷诺数只要求超过临界数值。
因此,mm ss g g L V L V =上式中,下标带m 者表示模型数值,带s 者表示实船数值(以下相同)。
在螺旋桨敞水试验时,只满足进速系数相同的条件,对于螺旋桨模型的雷诺数也只要求超过临界数值,因此,mm Am s s As D n VD n V = 在进行船模的自航试验时,两者都要求满足,根据几何相似,有:λD DL L ==ms m s 则满足傅氏数相等时有: λV V /s m = (6-1)满足进速系数相等时有:λn V n V mAms As = 由于 ()s s As 1V ωV -=,()m m Am 1V ωV -= 故()()λn Vωn Vωmmmsss11-=-或 ⎪⎪⎭⎫⎝⎛--=s ms m 11ωω λn n 假定伴流无尺度作用,则m s ωω=,因此,可得:λn n s m = (6-2)(6-1)及(6-2)两式是船模自航试验应满足相似定律的条件,由于船后螺旋桨满足了进速系数相等的条件,因此在不考虑尺度作用的情况下,螺旋桨实桨及其模型在推力、转矩及收到马力方面存在下列关系:⎪⎪⎪⎭⎪⎪⎪⎬⎫===5.3ms Dm Ds 4ms m s 3ms ms λρρP P λρρQ Q λρρT T (6-3)(6-3)式只对螺旋桨说来是正确的,但自航试验是把螺旋桨与船体联系起来统盘考虑的。
船舶阻⼒与船舶推进1知识讲解船舶阻⼒与船舶推进1⼀、船舶阻⼒总论第⼀部分:主要知识点⼀、船舶快速性的含义1、概念:船舶尽可能消耗较⼩的主机功率以维持⼀定航⾏速度的能⼒。
或者说,船舶快速性是在给定主机功率时,表征船舶航⾏速度⾼低的⼀种性能。
对⼀定的船舶在给定主机功率时,能达到的航速较⾼者,谓之快速性好,反之为差;或者,对⼀定的船舶要求达到⼀定航速时,所需主机功率⼩者,谓之快速性好,反之则否。
2、船舶能达到航速的⾼低取决于:它所受阻⼒的⼤⼩、主机功率⼤⼩和推进效率⾼低这三个因素。
3、主要内容:船舶阻⼒和船舶推进两个⽅⾯。
4、推进器是指把发动机发出的功率转换为推船前进的动⼒的专门装置和机构。
⼆、船舶阻⼒的分类裸船体阻⼒静⽔阻⼒船舶阻⼒⽔阻⼒附体阻⼒船舶阻⼒汹涛阻⼒附加阻⼒空⽓阻⼒*汹涛阻⼒:波浪中的⽔阻⼒增加值。
三、船体阻⼒的成因和分类1、成因船体在静⽔中运动时所受到的阻⼒与船体周围的流动现象密切有关。
1)兴波⼀般⾸柱后缘为波峰,尾柱前缘为波⾕,改变了船体周围的⽔压⼒分布,船⾸的波峰使⾸部压⼒增加,⽽船尾的波⾕使尾部压⼒降低,于是产⽣⾸尾流体动压⼒差(与船航⾏⽅向相反)。
这种由兴波引起的压⼒分布改变所产⽣的阻⼒称为兴波阻⼒,⼀般⽤R w 表⽰。
从能量观点看,船体兴起的波浪具有⼀定的能量,这些能量必然由船体供2)边界层当船体运动时,由于⽔的粘性,在船体周围形成“边界层”,从⽽使船体运动过程中受到粘性切应⼒作⽤,亦即船体表⾯产⽣了摩擦⼒,它在运动⽅向的合⼒便是船体摩擦阻⼒,⽤R f 表⽰。
从能量观点看,船体携带边界层⽔流⼀起前进,边界层⽔流质点不断消耗能量体现为摩擦阻⼒。
补充:⽜顿内摩擦定律dv dy τµ=。
µ:流体的动⼒粘性系数,2/N s m ?;/νµρ=:流体的运动粘性系数,2/m s 。
ν和ρ均为⽔温的函数。
3)边界层分离在船体曲度骤变处,特别是较丰满船的尾部由于⽔具有粘性常会产⽣旋涡,旋涡处的⽔压⼒下降,从⽽改变了沿船体表⾯的压⼒分布情况,使⾸压⼒⾸部⽔压⼒尾部⽔压⼒⼤于尾压⼒。
第一章总论1.船舶快速性,船舶快速性问题的分解。
船舶快速性:对一定的船舶在给定主机功率时,能达到的航速较高者快速性好;或者,对一定的船舶要求达到一定航速时,所需主机功率小者快速性好。
船舶快速性简化成两部分:“船舶阻力”部分:研究船舶在等速直线航行过程中船体受到的各种阻力问题。
“船舶推进”部分:研究克服船体阻力的推进器及其与船体间的相互作用以及船、机、桨(推进器)的匹配问题。
2.船舶阻力,船舶阻力研究的主要内容、主要方法。
船舶阻力:船舶在航行过程中会受到流体(水和空气)阻止它前进的力,这种与船体运动相反的作用力称为船的阻力。
船舶阻力研究的主要内容:1.船舶以一定速度在水中直线航行时所遭受的各种阻力的成因及其性质;2.阻力随航速、船型和外界条件的变化规律;3.研究减小阻力的方法,寻求设计低阻力的优良船型;4.如何较准确地估算船舶阻力,为设计推进器(螺旋桨)决定主机功率提供依据。
研究船舶阻力的方法:1.理论研究方法:应用流体力学的理论,通过对问题的观察、调查、思索和分析,抓住问题的核心和关键,确定拟采取的措施。
2.试验方法:包括船模试验和实船实验,船模试验是根据对问题本质的理性认识,按照相似理论在试验池中进行试验,以获得问题定性和定量的解决。
3.数值模拟:根据数学模型,采用数值方法预报船舶航行性能,优化船型和推进器的设计。
3.水面舰船阻力的组成,每种阻力的成因。
船舶在水面航行时的阻力由裸船体阻力和附加阻力组成,其中附加阻力包括空气阻力、汹涛阻力和附体阻力。
船体阻力的成因:船体在运动过程中兴起波浪,船首的波峰使首部压力增加,而船尾的波谷使尾部压力降低,产生了兴波阻力;由于水的粘性,在船体周围形成“边界层”,从而使船体运动过程中受到摩擦阻力;在船体曲度骤变处,特别是较丰满船的尾部常会产生漩涡,引起船体前后压力不平衡而产生粘压阻力。
4.船舶阻力分类方法。
1.按产生阻力的物理现象分类:船体总阻力由兴波阻力、摩擦阻力和粘压阻力Rpv三者组成,即Rt二Rw+Rf+Rpv.2.按作用力的方向分类:分为由兴波和旋涡引起的垂直于船体表面压力和船体表面切向水质点的摩擦阻力,即Rt=Rf+Rp.3.按流体性质分类:分为兴波阻力和粘性阻力(摩擦阻力和粘压阻力),即Rt=Rw+Rv.4.傅汝德阻力分类:分为摩擦阻力和剩余阻力(粘压阻力和兴波阻力), 即Rt二Rf+Rr.5.船舶动力相似定律,研究船舶动力相似定律的意义,粘性与重力互不相干假定。
船舶静力学基本知识1、简述表示船体长度的三个参数并说明其应用场合?答:船长[L] Length船长包括:总长,垂线间长,设计水线长。
总长(Length overall)——自船首最前端至船尾最后端平行于设计水线的最大水平距离。
垂线间长 (Length Between perpendiculars)首垂线(F.P.)与尾垂线(A.P.)之间的水平距离。
首垂线:是通过设计水线与首柱前缘的交点可作的垂线(⊥设计水线面)尾垂线:一般舵柱的后缘,如无舵柱,取舵杆的中心线。
军舰:通过尾轮郭和设计水线的交点的垂线。
水线长[ ](Length on the waterline):——平行于设计水线面的任一水线面与船体型表面首尾端交点间的距离。
设计水线长:设计水线在首柱前缘和尾柱后缘之间的水平距离。
应用场合:静水力性能计算用:分析阻力性能用:船进坞、靠码头或通过船闸时用:2、简述船型系数的表达式和物理含义。
答:船型系数是表示船体水下部分面积或体积肥瘦程度的无因次系数,它包括水线面系数、中横剖面系数、方形系数、棱形系数(纵向棱形系数)、垂向棱形系数。
船型系数对船舶性能影响很大。
(1)水线面系数——与基平面平行的任一水线面的面积与由船长L、型宽B所构成的长方形面积之比。
(waterplane coefficient)表达式:物理含义:表示是水线面的肥瘦程度。
(2)中横剖面系数[ ]——中横剖面在水线以下的面积与由型宽B吃水所构成的长方形面积之比。
(Midship section coefficient)表达式:物理含义:反映中横剖面的饱满程度。
(3)方形系数[ ]——船体水线以下的型排水体积与由船长L、型宽B、吃水d所构成的长方体体积之比。
(Block coefficient)表达式:物理含义:表示的船体水下体积的肥瘦程度,又称排水量系数(displace coefficient)。
(4)棱形系数[ ]——纵向棱形系数 (prismatic coefficient)船体水线以下的型排水体积Δ与相对应的中横剖面面积、船长L所构成的棱柱体积之比。
姓名:报名编号:学习中心:奥鹏层次:专升本专业:船舶与海洋工程实验1:船模阻力实验一、实验知识考察1、简述水面船舶模型阻力实验相似准则。
答:主要研究船模在水中匀速直线运动时所受到的作用力及其航行状态。
其具体目标包括:(1)船型研究通过船模阻力实验比较不同船型阻力性能的优劣。
(2)确定设计船舶的阻力性能;对具体设计的船舶,通过船模阻力实验,计算实船的有效功率,供设计推进器应用。
(3)预报实船性能;船模自航实验前,必须进行船模阻力实验,为分析自航实验结果预报实船提供必要的数据。
(4)系列船模实验;为提供各类船型的阻力图谱,必须进行系列船模的阻力实验。
此外还有进行几何相似船模组实验,其目的在于研究推进方面的一些问题。
(5)研究各种阻力成分实验;为了研究分类,确定某种阻力成分,必须进行某些专门的实验。
(6)附体阻力实验;目的在于求得附体的阻力值以及比较不同形式的附体对阻力的影响。
(7)流线实验;在船模实验的同时,有时还要进行船模流线实验,目的在于确定舭龙骨,轴支架等附体以及船首尾侧推器开孔的位置等。
(8)航行状态的研究;在船模阻力实验时,测量船模在高速直线运动时的纵倾及升沉等状态,这对于高速排水型船,滑行快艇、水翼艇等高速船舶尤为重要。
(1)船模与实船保持几何相似。
(2)船模实验的雷诺数达到临界雷诺数以上。
(3)船模与实船傅汝德数相等。
2、船模阻力实验结果换算方法有哪些?答:常用的船模阻力实验结构换算方法有两种,即二因次方法和三因次方法。
二因次方法亦称傅汝德方法;三因此方法为1978年ITTC性能委员会推荐的换算方法。
二、实验后思考题1、船模阻力实验结果换算方法之间的区别是什么?答:常用的船模阻力实验结构换算方法有两种,即二因次方法和三因次方法。
二因次方法亦称傅汝德方法;三因此方法为1978年ITTC 性能委员会推荐的换算方法。
这两种方法的区别在于对粘性阻力的处理原则不同。
2、实船摩擦阻力计算中,粗糙度补贴系数是根据什么选取的?答:实船船体表面比较粗糙,故实船摩擦阻力为其中为粗糙度补贴系数,按不同船长选取。
大工15秋《船模性能实验》实验报告及要求参考答案(1)实验报告一一、实验名称:船模阻力实验二、实验目的:主要研究船模在水中匀速直线运动时所受到的作用力及其航行状态。
其具体目标包括:(1)船型研究通过船模阻力实验比较不同船型阻力性能的优劣。
(2)确定设计船舶的阻力性能;对具体设计的船舶,通过船模阻力实验,计算实船的有效功率,供设计推进器应用。
(3)预报实船性能;船模自航实验前,必须进行船模阻力实验,为分析自航实验结果预报实船提供必要的数据。
(4)系列船模实验;为提供各类船型的阻力图谱,必须进行系列船模的阻力实验。
此外还有进行几何相似船模组实验,其目的在于研究推进方面的一些问题。
(5)研究各种阻力成分实验;为了研究分类,确定某种阻力成分,必须进行某些专门的实验。
(6)附体阻力实验;目的在于求得附体的阻力值以及比较不同形式的附体对阻力的影响。
(7)流线实验;在船模实验的同时,有时还要进行船模流线实验,目的在于确定舭龙骨,轴支架等附体以及船首尾侧推器开孔的位置等。
(8)航行状态的研究;在船模阻力实验时,测量船模在高速直线运动时的纵倾及升沉等状态,这对于高速排水型船,滑行快艇、水翼艇等高速船舶尤为重要。
三、实验原理:1.简述水面船舶模型阻力实验相似准则。
(1)船模与实船保持几何相似。
(2)船模实验的雷诺数达到临界雷诺数以上。
(3)船模与实船傅汝德数相等。
2.分别说出实验中安装激流丝和称重工作的作用。
称量船模重量和压载重量,以达到按船模缩尺比要求的实船相应的排水量。
3.船模阻力实验结果换算方法有哪些?1mm金属丝缚在船模的19站处使其在金属丝以后的边界层中产生紊流。
2)称重工作:准确称量船模重量和压载重量,以达到按船模缩尺比要求的实船相应的排水量。
3.船模阻力实验结果换算方法有哪些?常用的船模阻力实验结构换算方法有两种,即二因次方法和三因次方法。
二因次方法亦称傅汝德方法;三因此方法为1978年ITTC性能委员会推荐的换算方法。
第六章船型对阻力的影响船舶设计中的一个重要步骤是确定船型参数,就是确定表征船体水线以下部分的一些特征参数的数值和几何形状。
但是应该指出的是:船舶设计是一个必须考虑各种因素的综合性问题。
船型参数的选择应顾及总体布置、工艺结构、快速性、耐波性、稳性、航区和经济性等诸方面既有联系又有矛盾的各种要求。
本章主要应用船舶阻力的基本知识在分析船模试验和实船试航的基础上来讨论船型对阻力的影响,以使在船舶设计过程中考虑选择阻力较低的船型参数:同时亦可对某些给定船舶的阻力性能进行分析,以期供设计或改型时考虑。
§6-1 船型对阻力影响的基本概念为了便于叙述和理解船型对阻力的影响问题,有几个概念先予以阐述。
一、船型、航速与阻力性能之间的关系1.优良船型的含义船型对阻力性能的影响是与船速密切联系的,在不同速度范围内,船型参数对阻力的影响不仅程度上不同,甚至还有本质上的差别,因此,所谓阻力性能优良的船型是对某一定速度范围而言。
换句话说,优良的船型将随速度而异,低速时阻力性能良好的船型,在高速时可能反而不佳。
由此可以推断:对于不同速度范围内的船舶说来,影响船体阻力的主要船型参数应该是不同的。
为此,在船舶设计过程中考虑参数选择的出发点不应完全相同。
由此知,讨论船型对阻力性能的影响问题,必须与设计船的速度范围联系在一起。
但是应该看到,对于同一设计船的航速也有不同的要求,如民用船舶,速度有服务速度和试航速度之分。
前者是在平均海面情况中所能保持的速度,后者是在试航时使用全部功率所能达到的速度。
过去惯例在任务书中规定试航速度,但对实际服务情况未必经济合理,对军舰,其巡航速度与最大速度相差甚大,对船型的要求常相矛盾。
所有这些不同的航速要求,在设计中应根据具体情况予以注意。
2.船舶分类及其主要阻力成分目前研究一般水面排水型船的阻力问题,较普遍的是按照傅汝德数将各类船舶分为低速船(Fr<0.18)、中速船(0.18<Fr<0.30)和高速船(Fr>0.30)。
船舶阻力与推进答案一单项选择题1.以下关于降低粘压阻力的船型要求说法,错误的是(D )A.去流段长度满足Lr4.≥B.后体收缩要缓和C.前体线型应适当注意D.避免船体曲率变化过小2.由于兴波干扰作用,兴波阻力曲线上会出现(B)。
A.首波系和尾波系B.波阻谷点和波阻峰点C.横波系、散波系D.基元波、叠加波3.船模阻力试验前要安装人工激流装置,一般用1φ=mm细金属丝缚在船模上,该金属丝应装在船模的(A)。
A.9.5站B.9.75站C.9.25站D.9站4.假定船体的摩擦阻力等于同速度、同长度、同湿面积的平板摩擦阻力,通常称为(D)A.雷诺定律B.傅汝德定律C.傅汝德假定D.平板假定5. 剩余阻力通常包含(B )A.摩擦阻力和粘压阻力B.兴波阻力和粘压阻力C.破波阻力和波形阻力D.摩擦阻力和压差阻力6.下列几种推进器中,推进效率最高的是(A)A.螺旋桨B.明轮C.直叶推进器D.喷水推进器7.螺旋桨工作时,桨叶所受的应力最大处为(B)A.叶梢B.根部C.0.6R处D.0.25R处8.已知螺旋桨的直径为5米,该桨的盘面积等于(C)A.30.213m2B.4.90625m2C.19.625m2D.29.367m29.螺旋桨模型的敞水试验中,实际上桨模与实桨之间只能满足的条件为(C)A.傅汝德数相等B.雷诺数相等C.进速系数相等D.雷诺数和进速系数均相等10.某船的船后平均伴流分数为0.18,推力减额分数为0.13,则该船的船身效率为(D)A.0.96 B.1.0C.1.04 D.1.0611.螺旋桨进速AV与船速V的关系为(A)A.AV V<B.AV V>C.AV V=D.不确定12.下列不一定介于[0,1]之间的效率是(B)A.0ηB.HηC.RηD.Sη13.对于船体表面粗糙度的处理采用粗糙度补贴系数,对于一般船舶,我国取fC∆为(C)A.30210.-⨯B.30310.-⨯C.30410.-⨯D.30510.-⨯14.船模阻力试验是将实船按一定缩尺比制成几何相似的船模,在船池中拖曳以测得船模阻力与速度之间的关系,应满足的条件是(B)A.Re相等B.Fr相等C.Re和Fr相等D.无条件二、判断题(本大题共10小题,每题1分,共10分)1.当两条形似船雷诺数相等时,粘性阻力系数必相等。
船模阻力试验船舶阻力与推进第五章船模阻力试验船模试验是研究船舶阻力最普遍的方法,目前关于船舶阻力方面的知识,特别是提供设计应用的优良船型资料及估算阻力的经验公式和图谱绝大多数是由船模试验结果得来的。
新的理论的发展和新船的设计是否能得到预期的效果都需要由船模试验来验证。
而理论分析的进一步发展,又为船型设计和船模试验提供更为丰富的内容,以及指出改进的方向。
因此船模试验是进行船舶性能研究的重要组成部分。
本章先对船模试验池和船模阻力试验作一简要介绍,然后分别从设计和研究观点来讨论表达船模阻力数据的方法。
§ 5-1 拖曳试验依据、设备和方法船模试验是研究船舶阻力性能的主要方法。
因此需要了解船模阻力试验的依据,试验设备和具体的试验方法。
一、船模阻力试验的依据由§1-2的阻力相似定律指出:如能使船模和实船实现全相似,即船模和实船同时满足Re 和Fr 数相等,则可由船模试验结果直接获得实船的总阻力系数。
§1-4中已阐述船模和实船难以实现全相似条件。
根据现实可能性,也不能实现船模和实船单一的粘性相似,即保持Re 相等,这是因为,如要使Re m = Re s ,则必有:υm L m /v m = υs L s /v s即υm = α υs v m / v s (5-1) 式中,α为船模缩尺比。
因为船模和实船的运动粘性系数两者数值相近,如假定v m = v s ,则(5-1)式为:υm = α υs (5-2) 由于船模均要比实船缩小几十倍以上,因而要求船模的速度较实船速度大几十倍,甚至达到超音速情况下进行试验,显然是不现实的。
因此船模阻力试验,对水面船舶来说,实际上就是在满足重力相似条件下(保持Fr 数相等)进行的。
由于是在部分相似条件下所得的船模阻力值,因此必需借助于某些假设,诸如傅汝德假定,休斯假定等才能换算得到相应的实船总阻力。
二、船模试验池船模试验池是进行船舶性能研究和某些结构、强度试验的重要设施,因而世界各国均普遍建造了各种船模试验池。
船舶阻力船模实验报告实验目的:本实验旨在通过船舶阻力的船模实验,探究船舶在运动中所受到的阻力及其影响因素,并对实验结果进行分析和讨论。
实验装置和材料:1. 船模装置:用于模拟真实船舶运动的实验装置,包括船模、推进器、测力传感器等。
2. 测力传感器:用于测量船模受到的阻力大小。
3. 航行介质:为了保证实验的准确性和可重复性,我们选择使用同质的水作为航行介质。
4. 启动装置:用于控制船模的启动和停止,确保实验过程的可控性。
实验步骤:1. 准备工作:安装船模、推进器和测力传感器,并确保各设备的正常运作。
2. 实验参数设置:根据实验需要,设置船模的初始位置、速度和船模与水的接触面积等参数。
3. 开始实验:启动装置使船模开始运动,在船模运动的过程中,测力传感器记录下船模所受到的阻力。
4. 实验数据记录:根据实验参数设置,实时记录下船模受到的阻力大小和相应的运动参数,如速度、时间等。
5. 实验重复:重复实验步骤3和步骤4,进行多次试验,以获得更加准确和可靠的数据。
6. 实验结束:停止船模运动,关闭实验装置,记录实验过程中的观察和发现。
实验数据处理和分析:1. 数据处理:整理所获得的实验数据,计算不同条件下船模受到的平均阻力和标准差。
2. 数据分析:根据实验数据,探究船舶阻力与船模初始速度、接触面积等参数之间的关系,并进行相关性分析。
3. 结果讨论:根据实验分析的结果,讨论船舶阻力的影响因素,并解释实验结果的合理性。
4. 总结:对实验过程和结果进行总结,提出改进实验设计和进一步研究的建议。
实验安全注意事项:1. 在实验过程中,注意保持实验区域的整洁和安全,避免杂物或障碍物对实验的干扰。
2. 操作实验装置时,注意遵守使用说明和操作规程,确保设备的正常运作和人身安全。
3. 在实验过程中,严禁向实验区域投掷物体或进行不安全操作,保证实验环境的安全。
4. 当实验装置出现故障或异常情况时,应立即停止实验,并及时报告相关人员进行处理。
网络教育学院《船模性能实验》实验报告学习中心:层次:专升本专业:船舶与海洋工程学号:学生:完成日期: 2013年2月6日实验报告一一、实验名称:船模阻力实验二、实验目的:主要研究船模在水中匀速直线运动时所受到的作用力及其航行状态。
其具体目标包括:(1)船型研究通过船模阻力实验比较不同船型阻力性能的优劣。
(2)确定设计船舶的阻力性能;对具体设计的船舶,通过船模阻力实验,计算实船的有效功率,供设计推进器应用。
(3)预报实船性能;船模自航实验前,必须进行船模阻力实验,为分析自航实验结果预报实船提供必要的数据。
(4)系列船模实验;为提供各类船型的阻力图谱,必须进行系列船模的阻力实验。
此外还有进行几何相似船模组实验,其目的在于研究推进方面的一些问题。
(5)研究各种阻力成分实验;为了研究分类,确定某种阻力成分,必须进行某些专门的实验。
(6)附体阻力实验;目的在于求得附体的阻力值以及比较不同形式的附体对阻力的影响。
(7)流线实验;在船模实验的同时,有时还要进行船模流线实验,目的在于确定舭龙骨,轴支架等附体以及船首尾侧推器开孔的位置等。
(8)航行状态的研究;在船模阻力实验时,测量船模在高速直线运动时的纵倾及升沉等状态,这对于高速排水型船,滑行快艇、水翼艇等高速船舶尤为重要。
三、实验原理:1.简述水面船舶模型阻力实验相似准则。
(1)船模与实船保持几何相似。
(2)船模实验的雷诺数达到临界雷诺数以上。
(3)船模与实船傅汝德数相等。
2.分别说出实验中安装激流丝和称重工作的作用。
激流丝是为了使其在金属丝以后的边界层中产生紊流;称重工作是为了准确称量船模重量和压载重量,以达到按船模缩尺比要求的实船相应的排水量。
3.船模阻力实验结果换算方法有哪些?1)安装激流丝:用1=Φmm 金属丝缚在船模的19站处使其在金属丝以后的边界层中产生紊流。
2)称重工作:准确称量船模重量和压载重量,以达到按船模缩尺比要求的实船相应的排水量。
3.船模阻力实验结果换算方法有哪些?常用的船模阻力实验结构换算方法有两种,即二因次方法和三因次方法。
快速性概述一、船舶快速性概念船舶在航行过程中会受到流体(水与空气)阻止它前进的力,这种与船体运动方向相反的作用力称为船的阻力。
为了使船舶维持一定的速度航行,必须对船舶提供推力以克服阻力。
一般船舶航行过程中由主机供给能量,通过推进器(常用的是螺旋桨)转换为推动船舶前进的动力。
显然,船舶所具有的推力大小取决于主机功率的大小和推进器将主机功率转换成推力的效率,即推进效率的高低。
因此船舶能达到航速的高低分别取决于它所受阻力的大小、主机功率大小和推进效率高低这三个因素。
船舶快速性就是研究船舶尽可能消耗较小的机器功率以维持一定航行速度的能力,或者说,船舶快速性是在给定主机功率时,表征船舶航行速度快慢的一种性能。
因此,快速性的含义是:对一定的船舶在给定主机功率时,能达到的航速较高者,谓之快速性好,反之为差;或者,对一定的船舶要求达到一定航速时,所需主机功率小者,谓之快速性好,反之则否。
几乎每一艘船舶,在设计初始阶段就给定明确的快速性指标。
当船舶建成后,测定是否达到原快速性设计指标是交船试航的一个重要内容。
船舶克服阻力做功与主机提供能量的守恒关系是:RηηN υD s s ⋅⋅= 式中, υ —— 船速;R —— 船舶水阻力;N s —— 主机发出的功率;η s 和η D —— 分别为轴系传送效率和推进效率。
从快速性的含义中可知,在主机功率确定的情况下,快速性的优劣不仅与船舶的航行阻力有关,而且还与船的推进效率等有关。
显然,船舶快速性包括两部分内容,即“船舶阻力”和“船舶推进”两门课程:船舶阻力 —— 研究船体在运动过程中所受到的各种阻力问题;船舶推进 —— 研究克服船体阻力的推进器及其与船体间的相互干扰及船、机、桨的匹配问题。
二、本课程的研究内容和任务快速性是船舶诸性能中(如浮性,稳性、抗沉性、快速性、耐波性、操纵性等)的重要性能之一。
快速性的优劣,对民用船舶来说将在一定程度上影响船舶的使用性和经济性,对军用舰艇而言,快速性与提高舰艇的作战性能密切相关。
第六章 船模自航试验及实船性能预估为了获得螺旋桨与船体之间的相互作用诸因素,如伴流分数、推力减额分数以及其他相互作用系数,应进行三种试验:船模阻力试验、螺旋桨敞水试验及有附体的船模自航试验。
船模自航试验是分析研究各种推进效率成分的重要手段。
对于给定的船舶来说,通过自航试验应解决两个问题:① 预估实船性能,即给出主机马力、转速和船速之间的关系,从而给出实船的预估航速,验证设计的船舶是否满足任务书中所要求的航速。
② 判断螺旋桨、主机、船体之间的配合是否良好。
如果配合不佳,则需考虑重新设计螺旋桨。
此外,根据实船试航结果与相应的船模自航试验数据,可以进行船模及实船的相关分析,积累资料以便改进换算办法,使船模试验预报实船的性能更正确可靠。
§ 6-1 自航试验的相似条件及摩擦阻力修正值一、相似定律在船模阻力试验时,我们只满足了傅氏数相同的条件,对于船模的雷诺数只要求超过临界数值。
因此,mm ss g g L V L V =上式中,下标带m 者表示模型数值,带s 者表示实船数值(以下相同)。
在螺旋桨敞水试验时,只满足进速系数相同的条件,对于螺旋桨模型的雷诺数也只要求超过临界数值,因此,mm Am s s As D n VD n V = 在进行船模的自航试验时,两者都要求满足,根据几何相似,有:λD DL L ==ms m s 则满足傅氏数相等时有: λV V /s m = (6-1)满足进速系数相等时有:λn V n V mAms As = 由于 ()s s As 1V ωV -=,()m m Am 1V ωV -= 故()()λn Vωn Vωmmmsss11-=-或 ⎪⎪⎭⎫⎝⎛--=s ms m 11ωω λn n 假定伴流无尺度作用,则m s ωω=,因此,可得:λn n s m = (6-2)(6-1)及(6-2)两式是船模自航试验应满足相似定律的条件,由于船后螺旋桨满足了进速系数相等的条件,因此在不考虑尺度作用的情况下,螺旋桨实桨及其模型在推力、转矩及收到马力方面存在下列关系:⎪⎪⎪⎭⎪⎪⎪⎬⎫===5.3ms Dm Ds 4ms m s 3ms ms λρρP P λρρQ Q λρρT T (6-3)(6-3)式只对螺旋桨说来是正确的,但自航试验是把螺旋桨与船体联系起来统盘考虑的。
因此推力与阻力之间必然有:对于实船 ()s s s 1R t T =-对于船模 ()m m m 1R t T =- 如果将(6-3)、(6-4)两式联系起来分析,发现两者是不一致的。
从推进的角度出发,当满足傅氏数和进速系数相同的条件时,模型与实桨的推力之间确实存在缩尺比三次方的关系。
假定推力减额无尺度作用,即t s = t m ,则从(6-4)式看来,实船与船模的阻力之间也应与缩尺比三次方有关才能使两者一致。
但是,在《船舶阻力》课程中我们已知,当船模与实船在傅氏数相同时,两者的总阻力并不存在缩尺比三次方的关系,即3ms m s λρρR R ≠为了克服这个矛盾,需要在船模自航试验中作适当处理后才能进行实船的换算。
二、摩擦阻力的修正-实船自航点的确定在船模自航试验中,当满足傅氏数Fr 及进速系数J 相同的条件时,则模型与实船之间的各种力基本上是缩尺比的三次方关系,唯阻力之间不存在这种关系。
在阻力中,剩余阻力部分实际上也是满足这种关系的,因为在Fr 相同时实船和船模的剩余阻力系数相等,故两者总阻力之间不存在缩尺比三次方关系主要是摩擦阻力部分造成的。
为了使试验中各种力都存在缩尺比三次方的关系,需对阻力进行修正(实际上是对摩擦阻力修正),人为地将其硬凑成三次方关系。
(6-4)设船模在速度V m 时的阻力为R m ,实船在相当速度m s V λV =时的阻力为R s ,则摩擦阻力修正值F D 为:3s s m m D λRρρR F -=或 ()D m 3ms s F R λρρR -=(6-5) 这样,在船模自航试验中,当船模速度为V m 时,我们设法预先对船模加一个拖曳力F D ,则螺旋桨模型发出的推力T m 仅需克服阻力(R m -F D ),此点称为实船自航点即相当于实际螺旋桨发出推力T s 克服实船的总阻力R s 。
经过这样处理以后,船模自航试验系统中各种力便都存在λ3的关系。
假定t m = t s ,则(6-5)式可写作:3m D m s s 11λρρt F R t R m s ⋅--=- 或 3ms ms λρρT T = 从上面的分析可知,进行摩擦修正(或称为决定实船自航点)的目的,是使模型桨的载荷与实船螺旋桨相当,只有在这种情况下,才能根据船模自航试验的结果预估实船推进性能。
§ 6-2 自航试验方法及数据表达一、自航试验概述船模自航试验,一般是在阻力试验和敞水试验之后进行的,据此可以分析推进效率的各种成分。
图6-1是船模自航试验布置的示意图,借以说明试验中测量有关数据。
船模在速度V m 时的阻力R m 已自阻力试验中求得,在自航试验中,螺旋桨模型的转速n 、推力T 及转矩Q B 由动力仪2测得,强制力z 由阻力仪1测得,船模速度V m 即为拖车的前进速度。
由于试验时要求保持等速直线前进,故力的平衡必然是:()m m 1R z t T =+- (6-6)图 6-1自航试验的方法有所谓大陆法(即纯粹自航法)和英国法(即强制自航法)两种。
纯粹自航法根据船模速度V m 时的F D 值,事先在船模上予以扣除(即图6-1中时z 应等于F D ),然后调节螺旋桨的转速,使其发出的推力恰能克服阻力(R m -F D ),保持船模速度与拖车速度V m 相等。
由于F D 在试验中不能改变,因此调节比较困难。
在我国各水池中,基本上都采用强制自航法。
强制自航法是船模在螺旋桨推力T 和强制力z 的共同作用下,其前进速度和拖车速度V m保持相等。
对某一选定的船模试验速度V m ,一般需要外加五个强制力,即z 1、z 2、z 3、z 4、z 5。
对不同的强制力,为维持船模速度V m 而要求螺旋桨模型发出的推力T ,转速n 及转矩Q B 是不同的。
因此对于一个速度一般需要试五次,各次尽可能保持同一速度V m 。
测量记录数据有V m 、z 、T 、Q B 及n 五项。
五个强制力的范围大致是:z 1 = 0,相应于船模的自航点,即螺旋桨模型发出的推力克服船模的阻力;z 3=F D ,相应于实船的自航点。
z 2 = 0.5F D ,z 4、z 5一般大于F D ,总之使试验点子能合理布置。
为了正确预估实船性能,一般需要四个船模自航速度,即V 1,V 2,V 3,V 4,其中V 3约相当于实船试航速度,V 4则高于实船试航速度,以保证预估之实船性能在试验范围之内。
在对某一速度V m 进行试验时,由于很难保证相应于五个强制力的各次试验速度都相同,在有小量偏离的情况下,可以用下列办法进行修正。
如某次试验量得之船模速度为mV ',其相应的数值为T ′,BQ ',n ′,z ′,现在要化至标准的速度V m ,及其对应的数值T ,Q B ,n ,z ,其间之关系为:nn'V V ='m m(6-7) 2m m B B⎪⎪⎭⎫ ⎝⎛'=='=V V z z'Q Q T T' (6-8) 自航试验的测量结果通常应绘制成如图6-2所示之船模自航试验曲线。
据此可以进行各种推进效率成分的分析及实船性能预估。
二、试验结果的数据处理根据船模阻力曲线、螺旋桨模型敞水性征曲线及船模自航试验曲线,大体按下列步骤进行推进效率成分的分析处理,以便求得船体与螺旋桨相互影响的诸因素及推算出实船在相当速度时的推进性能。
1.相当于实船自航点的推进效率分析Q zT 图 6-22.推进效率成分的分析上述表中分析所得的各种效率成分都是对应于船模的数值。
此外,两种表中分析所得之推进效率在数值上应基本一致,其误差应不超过0.001。
§6-3实船推进性能预估所谓实船性能预估,是指根据船模自航试验结果给出实船航速、螺旋桨转速及收到马力之间的关系。
在20世纪50年代前,常用模型自航试验数据按相似定律和缩尺比直接算出实船的有关数据,由于忽略了所有的尺度作用,不可能得到正确的预报结果。
自50年代末开始,各国水池十分重视实船性能的预估问题,同时实船试航的资料积累也日渐增多,有可能对尺度作用进行经验统计的修正。
例如英国船池会议BTTP 于1965年采用的(1+ x )、K 2作为标准方法,1966年ITTC 也曾给以推荐,(1+x )、K 2统称为实船船模相关因子,前者主要是对阻力估算的相关因子,后者是照顾伴流尺度作用的相关因子。
由于该方法在分析中物理意义不清晰,后被废弃不用。
本节主要介绍实船性能预估的T ΔC 、ωΔ方法及1978 ITTC 的标准方法。
一、T ΔC 、ωΔ法在20世纪60、70年代,日本以及北欧的一些国家喜欢采用这种方法预估实船性能。
T ΔC 、ωΔ也称为相关因子,是根据经验统计资料而得出的修正数据。
这种方法认为:在船模实船的换算中,造成预估不正确的主要问题在于阻力和伴流二项,由于粘性不相似及摩擦阻力计算的外插等问题,致使阻力换算结果与实际有差别,因此需要用相关因子T ΔC 予以补救。
伴流受粘性的影响较大,船模试验得到的伴流数值偏高,应由相关因子ωΔ予以修正。
至于相对旋转效率ηR ,推力减额分数t 则认为尺度作用影响较小,可直接采用船模试验数据。
螺旋桨的敞水性征曲线有修正与不修正两种意见。
这类预估方法的大体步骤是:表中2T /J K 对于一定的船速是一常数,表示从阻力角度对螺旋桨的要求。
在螺旋桨的敞水性征图上可事先另设一个纵坐标2T /J K ,并绘制该桨的2T /J K J 曲线,从该曲线上可以读出表中2T /J K =常数的点子,该点表示了实船螺旋桨的工作点,由此可以读出η0、J 、K Q 等,并可按下表计算转速及马力。
据上述表中的计算结果,同样可以绘制如图6-3所示之N s -V s 及P Ds -V s 曲线。
二、1978 ITTC 单桨船实船性能预估的标准方法近二十年来关于实船性能预估问题的研究十分活跃,在历届ITTC 会议上都有相当的资料公布和有关这方面的讨论。
十五届ITTC 性能委员会企图总结出一个标准方法,经过三年的准备,在1978年十五届ITTC 会议上提出了一个《1978 ITTC 单桨船实船性能的预估方法》,并被大会通过作为暂行标准方法,要求各成员组织按此进行实船性能预估。
原先十五届ITTC 性能委员会准备给出统一的标准,但实际上无法做到,因而采取折衷的办法,将暂行标准分为两部分。
第一部分是1978 ITTC 标准预估,一切照其规定办法进行计算,第二部分是结合各水池自己积累的资料给予经验性修正,并据以得出实船航速、螺旋桨转速及收到马力之间的关系。