目标规划模型
- 格式:docx
- 大小:123.33 KB
- 文档页数:8
第一讲 目标规划模型目标规划是由线性规划发展演变而来的。
线性规划考虑的是只有可以个目标函数的问题,而实际问题中往往需要考虑多个目标函数,这些目标不仅有主次关系,而且有的还互相矛盾。
这些问题用线性规划求解就比较困难,因而提出了目标规划。
这里所讨论的目标规划实质上是线性目标规划。
1.1线性规划与目标规划为了进一步了解目标规划的特点和性质,下面对同一问题分别考虑线性规划建模和目标规划建模。
1.1.1线性规划建模与目标规划建模例 1.1(生产安排问题) 某企业生产甲、乙两种产品,需要用到A 、B 、C 三种设备,关于产品的盈利与使用设备的工时及限制如表1-1所示。
问:该企业应如何安排生产,使得在计划期内总利润最大?1. 线性规划建模例8.1是一个线性规划问题,直接考虑它的线性规划模型。
设甲、乙产品的产量分别为12,x x ,建立线性规划模型:12121212m ax 200300,..2212,416,515,,0.Z x x s t x x x x x x =++≤≤≤≥用LINDO 或LINGO 软件求解,得到最优解*123,3,1500x x z ===。
2. 目标规划建模企业的经营目标不仅仅是利润,还要考虑多个方面。
例如在例8.1中,增加下列因素(目标):(1) 力求使利润指标不低于1500元;(2) 考虑到市场需求,甲、乙两种产品的产量比应尽量保持1:2; (3) 设备A 为贵重设备,严格禁止超时使用;(4) 设备C 可以适当加班,但要控制;设备B 既要求充分利用,又尽可能不加班,在重要性上,设备B 是设备C 的3倍。
从上述问题可以看出,仅用线性规划方法是不够的,需要借助于目标规划的方法进行建模求解。
1.1.2 线性规划建模的局限性例1.2(汽车广告费问题) 某汽车销售公司委托一个广告公司在电视上为其做广告。
汽车销售公司提出三个目标:第一个目标,至少有40万高收入的男性公民(记为HIM )看到这个广告; 第二个目标,至少有60万一般收入的公民(记为LIP )看到这个广告; 第三个目标,至少有35万高收入的女性公民(记为HIW )看到这个广告。
目标规划模型 Prepared on 22 November 2020§ 目标规划模型1. 目标规划模型概述1)引例目标规划模型是有别于线性规划模型的一类多目标决策问题模型,通过下面的例子,我们可看出这两者的区别。
例1 某工厂的日生产能力为每天500小时,该厂生产A 、B 两种产品,每生产一件A 产品或B 产品均需一小时,由于市场需求有限,每天只有300件A 产品或400件B 产品可卖出去,每出售一件A 产品可获利10元,每出售一件B 产品可获利5元,厂长按重要性大小的顺序列出了下列目标,并要求按这样的目标进行相应的生产。
(1)尽量避免生产能力闲置;(2)尽可能多地卖出产品,但对于能否多卖出A 产品更感兴趣; (3)尽量减少加班时间。
显然,这样的多目标决策问题,是单目标决策的线性规划模型所难胜任的,对这类问题,须采用新的方法和手段来建立对应的模型。
2)相关的几个概念(1)正、负偏差变量+d 、-d 正偏差变量+d 表示决策值),,2,1(n i x i =超过目标值的部分;负偏差变量-d 表示决策值),,2,1(n i x i =未达到目标值的部分;一般而言,正负偏差变量+d 、-d 的相互关系如下:当决策值),,2,1(n i x i =超过规定的目标值时,0 ,0=>-+d d ;当决策值),,2,1(n i x i =未超过规定的目标值时,0 ,0>=-+d d ;当决策值),,2,1(n i x i =正好等于规定的目标值时,0 ,0==-+d d 。
(2)绝对约束和目标约束绝对约束是必须严格满足的等式约束或不等式约束,前述线性规划中的约束条件一般都是绝对约束;而目标约束是目标规划所特有的,在约束条件中允许目标值发生一定的正偏差或负偏差的一类约束,它通过在约束条件中引入正、负偏差变量+d 、-d 来实现。
(3)优先因子(优先级)与权系数目标规划问题常要求许多目标,在这些诸多目标中,凡决策者要求第一位达到的目标赋予优先因子1P ,要求第二位达到的目标赋予优先因子2P ,……,并规定1+>>k k P P ,即1+k P 级目标的讨论是在kP 级目标得以实现后才进行的(这里n k ,,2,1 =)。
(1)第一规划目标,经济成本最少为目标如下:
)
1000000)634333231(70003500(1min 121i i i i i i i i p tt tt tt tt tt q f ++++++=∑
=
其中qi 为第i 架无人机的起降落次数,Ti 为第i 架无人机完成任务的总时间,直线飞行时间tt1、侦查时间tt2、小转弯时间tt3、起飞和降落时间tt4、补充燃料时间tt5、爬升时间tt6。
①其中⎩⎨⎧=架无人机被雷达摧毁i 第,0架无人机没有被摧毁
i 第,1i p
②起降落次数qi 受Ti 影响,如当小于3小时,只起降一次,大于3小时小于6小时,起降两次。
即:
1]3
[+=Ti qi ③pi 受ti 影响。
⎩⎨⎧>≤=s ti s
ti pi 652,1652,0
(2)第二规划目标,时间最短,由问题一可知无人机完成规定任务的时间可分为直线飞行时间tt1、侦查时间tt2、小转弯时间tt3、起飞和降落时间tt4、补充燃料时间tt5、爬升时间tt6。
即第i 架无人机完成规定任务时间为:
i i i i i i i tt tt tt tt tt tt T 654321+++++=。
目标规划模型目标规划是一种多目标决策方法,旨在寻找一个可行的目标向量,这个向量最好满足一组优先级排序的目标。
目标规划模型可以用来解决多目标决策问题。
目标规划模型通常包括以下几个要素:决策者的目标向量、决策变量、约束条件和目标函数。
决策者的目标向量是指决策者对决策问题中各个目标的优先级排序。
在目标规划模型中,通常将目标向量表示为一个具有多个元素的向量,每个元素表示各个目标的权重。
决策变量是可以被决策者调整的变量,在目标规划模型中,在决策变量的取值范围内寻找一个可行的解。
决策变量的具体取值将影响各个目标的实现程度。
约束条件是对决策变量的限制条件。
这些限制条件可能是由于资源有限,或由于业务规则等原因导致的。
约束条件是确保决策方案可行和符合实际情况的必要条件。
目标函数是目标规划模型的核心部分。
目标函数是一个由决策变量和目标向量构成的函数,表示决策方案对各个目标的实现程度。
目标函数的含义是在满足约束条件的前提下,最大化或最小化目标向量中的各个元素。
目标规划模型的解决方法通常有两种:基于罚函数的解法和基于切比雪夫距离的解法。
基于罚函数的解法通过引入罚函数,将目标规划问题转化为单目标规划问题,然后使用传统的单目标规划方法求解。
基于切比雪夫距离的解法则通过计算决策方案与目标向量之间的切比雪夫距离,将目标规划问题转化为一个单目标规划问题。
目标规划模型的求解过程通常包括以下几个步骤:确定决策变量、建立目标函数、建立约束条件、确定目标权重、求解目标规划模型。
目标规划模型具有以下几个优点:可以考虑多个目标,能够灵活地适应不同的决策需求;可以根据决策者的需求制定不同的目标权重,不受固定的优先级限制;可以通过引入不同的解决方法,得到不同的结果,提供更多的选择。
总之,目标规划模型是一种多目标决策方法,可以用于解决多目标决策问题。
它通过优化决策方案和目标向量之间的关系,寻找一个满足决策者需求的最优解。
目标规划模型具有灵活性和鲁棒性等优点,是现代决策科学中的重要工具之一。
《运筹学》教案-目标规划数学模型第一章:目标规划概述1.1 目标规划的定义与意义1.2 目标规划与其他规划方法的区别1.3 目标规划的应用领域1.4 目标规划的发展历程第二章:目标规划的基本原理2.1 目标规划的基本假设2.2 目标规划的数学模型2.3 目标规划的求解方法2.4 目标规划的评估与决策第三章:目标规划的数学模型3.1 单一目标规划模型3.2 多目标规划模型3.3 带约束的目标规划模型3.4 动态目标规划模型第四章:目标规划的求解方法4.1 线性规划求解方法4.2 非线性规划求解方法4.3 整数规划求解方法4.4 遗传算法求解方法第五章:目标规划的应用案例5.1 生产计划目标规划案例5.2 人力资源规划目标规划案例5.3 投资组合目标规划案例5.4 物流配送目标规划案例第六章:目标规划的高级应用6.1 目标规划在供应链管理中的应用6.2 目标规划在项目管理中的应用6.3 目标规划在金融管理中的应用6.4 目标规划在能源管理中的应用第七章:目标规划的软件工具7.1 目标规划软件工具的介绍7.2 常用目标规划软件工具的操作与应用7.3 目标规划软件工具的选择与评估7.4 目标规划软件工具的发展趋势第八章:目标规划在实际问题中的应用8.1 目标规划在制造业中的应用案例8.2 目标规划在服务业中的应用案例8.3 目标规划在政府决策中的应用案例8.4 目标规划在其他领域的应用案例第九章:目标规划的局限性与挑战9.1 目标规划的局限性分析9.2 目标规划在实际应用中遇到的问题9.3 目标规划的发展趋势与展望9.4 目标规划的未来研究方向10.1 目标规划的意义与价值10.2 目标规划在国内外的发展现状10.3 目标规划在未来的发展方向10.4 对运筹学领域的发展展望重点和难点解析重点环节一:目标规划的数学模型补充和说明:在讲解目标规划的数学模型时,重点关注单一目标规划模型和多目标规划模型的构建。
目标规划模型Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT§ 目标规划模型1. 目标规划模型概述1)引例目标规划模型是有别于线性规划模型的一类多目标决策问题模型,通过下面的例子,我们可看出这两者的区别。
例1 某工厂的日生产能力为每天500小时,该厂生产A 、B 两种产品,每生产一件A 产品或B 产品均需一小时,由于市场需求有限,每天只有300件A 产品或400件B 产品可卖出去,每出售一件A 产品可获利10元,每出售一件B 产品可获利5元,厂长按重要性大小的顺序列出了下列目标,并要求按这样的目标进行相应的生产。
(1)尽量避免生产能力闲置;(2)尽可能多地卖出产品,但对于能否多卖出A 产品更感兴趣; (3)尽量减少加班时间。
显然,这样的多目标决策问题,是单目标决策的线性规划模型所难胜任的,对这类问题,须采用新的方法和手段来建立对应的模型。
2)相关的几个概念(1)正、负偏差变量+d 、-d 正偏差变量+d 表示决策值),,2,1(n i x i =超过目标值的部分;负偏差变量-d 表示决策值),,2,1(n i x i =未达到目标值的部分;一般而言,正负偏差变量+d 、-d 的相互关系如下:当决策值),,2,1(n i x i =超过规定的目标值时,0 ,0=>-+d d ;当决策值),,2,1(n i x i =未超过规定的目标值时,0 ,0>=-+d d ;当决策值),,2,1(n i x i =正好等于规定的目标值时,0 ,0==-+d d 。
(2)绝对约束和目标约束绝对约束是必须严格满足的等式约束或不等式约束,前述线性规划中的约束条件一般都是绝对约束;而目标约束是目标规划所特有的,在约束条件中允许目标值发生一定的正偏差或负偏差的一类约束,它通过在约束条件中引入正、负偏差变量+d 、-d 来实现。
(3)优先因子(优先级)与权系数目标规划问题常要求许多目标,在这些诸多目标中,凡决策者要求第一位达到的目标赋予优先因子1P ,要求第二位达到的目标赋予优先因子2P ,……,并规定1+>>k k P P ,即1+k P 级目标的讨论是在kP 级目标得以实现后才进行的(这里n k ,,2,1 =)。
若要考虑两个优先因子相同的目标的区别,则可通过赋予它们不同的权系数jw 来完成。
3)目标规划模型的目标函数目标规划的目标函数是根据各目标约束的正、负偏差变量+d 、-d 和其优先因子来构造的,一般而言,当每一目标值确定后,我们总要求尽可能地缩小与目标值的偏差,故目标规划的目标函数只能是) ,( min -+=d d f z 的形式。
我们可将其分为以下三种情形:(1)当决策值),,2,1(n i x i =要求恰好等于规定的目标值时,这时正、负偏差变量+d 、-d 都要尽可能小,即对应的目标函数为: )( m in -++=d d f z ;(2)当决策值),,2,1(n i x i =要求不超过规定的目标值时,这时正偏差变量+d 要尽可能小,即对应的目标函数为:)( min +=d f z ; (3)当决策值),,2,1(n i x i =要求超过规定的目标值时,这时负偏差变量-d 要尽可能小,即对应的目标函数为:)( min -=d f z 。
目标规划数学模型的一般形式为:有了以上的讨论,在例1中,设21 ,x x 分别表示产品A 、B 的生产数量,-1d 表示生产能力闲置的时间,+1d 表示加班时间,-2d 表示产品A 没能达到销售目标的数目,-3d 表示产品B 没能达到销售目标的数目。
因要求尽量避免生产能力闲置及尽量减少加班时间,故有目标约束条件为:5001121=-+++-d d x x (-1d 、+1d 要尽可能小),又要求尽可能多地卖出产品,故有目标约束条件为:400,3003221=+=+--d x d x (-2d 、-3d 要尽可能小),多卖出A 产品的要求可体现在目标函数的权系数中,于是可得到例1的目标规划模型为: 满足的约束条件为:2.应用实例例1. 职工的调资方案问题 1)问题的提出某单位领导在考虑本单位职工的升级调资方案时,要求相关部门遵守以下的规定: (1) 年工资总额不超过60000元; (2) 每级的人数不超过定编规定的人数;(3) П、Ш级的升级面尽可能达到现有人数的20%;(4) Ш级不足编制的人数可录用新职工,又I 级的职工中有10%的人要退休。
相关资料汇总于下表中,试为单位领导拟定一个满足要求的调资方案。
2)模型分析与变量假设显然这是一个多目标规划的决策问题,适于用目标规划模型求解,故需要确定该问题与之对应的决策变量、目标值、优先等级及权系数等。
设1x 、2x 、3x 分别表示提升到I 、П级和录用到Ш级的新职工人数,由题设要求可确定各目标的优先因子为:1P ——年工资总额不超过60000元; 2P ——每级的人数不超过定编规定的人数;3P ——П、Ш级的升级面尽可能达到现有人数的20%;下面再确定目标约束,因要求年工资总额不超过60000元,所以有:2000(10-10×10%+1x )+1500(12-1x +2x )+1000(15-2x +3x )+6000011=-+-d d 且正偏差变量+1d 要尽可能小,又第二目标要求每级的人数不超过定编规定的人数,所以,对I 级有:12)1.01(10221=-++-+-d d x ,且正偏差变量+2d 要尽可能小;对П级有:15123321=-++-+-d d x x ,且正偏差变量+3d 要尽可能小;对Ш级有:15154432=-++-+-d d x x ,且正偏差变量+4d 要尽可能小;对第三目标——П、Ш级的升级面尽可能达到现有人数的20%,我们有:%,2012551⨯=-++-d d x 且负偏差变量-5d 要尽可能小;%,2015662⨯=-++-d d x 且负偏差变量-6d 要尽可能小;3)模型的建立由此,我们可得到该问题的目标规划模型为: 满足约束条件求解后可得到该问题的一个多重解,并将这些解汇总于下表中,以供领导根据具体情况进行决策:例2.物资的调运安排问题 1)问题的提出有一供需不平衡(供应量<需求量)的物资调运问题如下表所示:请为其制订物资调运方案,使之满足以下的目标要求:1P ——尽量保证满足重点客户3B 的需求指标; 2P ——要求总运费不超过预算指标41066 元;3P ——至少满足客户321 , ,B B B 需求指标的80%;4P ——由3A 至1B 的运输量按合同规定不少于1万吨;5P ——1A 3B2)模型分析与变量假设这仍然是一个多目标决策规划问题,虽然未给出给出仓库到客户之间的单位运价,但这并不影响我们的分析与建模。
设从仓库)3,2,1(=i A i 调拨到客户)3,2,1(=j B j 的货运量为ijx ,因该问题的供应量小于需求量,故从仓库)3,2,1(=i A i 调拨到客户jB 的货运量)3,2,1(321=++j x x x j j j 不可能超过所要求的需求量,因此,)3,2,1( 0 ,0=≥=-+i d d i i ,于是有:又目标1P 为:尽量保证满足重点客户3B 的需求指标,故有:1044332313=-++++-d d x x x ,且+-44,d d 都要尽可能小; 对目标2P :因要求总运费不超过预算指标41066⨯元,故有:∑∑==+-⨯=-+31314551066i j ij ijd d x c,且+5d 应尽可能小;对目标3P :因要求至少满足客户321 , ,B B B 需求指标的80%,故有:%8010%806%808883323137732221266312111⨯=-+++⨯=-+++⨯=-++++-+-+-d d x x x d d x x x d d x x x ,且)8,7,6(=-i d i 应尽可能小;对目标4P ——因要求由3A 至1B 的运输量按合同规定不少于1万吨,故有:19931=-++-d d x ,且-9d 应尽可能小;对目标5P ——因1A 至3B 的道路危险,而要求运量要减少到最低点,故有:1013=-+d x ,且+10d 应尽可能小;另外,从仓库iA 调拨到客户321 , ,B B B 的货运量)3,2,1(321=++i x x x i i i 不可能超过该仓库的供应量,所以有: 3)模型的建立与求解至此,我们得到该“物资调运安排问题”的目标规划模型为: 满足约束条件 这里,,≥+-k k ij d d x 。