三相四线错误接线检查方法
- 格式:docx
- 大小:74.12 KB
- 文档页数:14
低压三相四线电能计量装置错误连接线分析和判断一、引言低压三相四线电能计量装置是电力系统中用于对电能进行计量和监测的重要设备。
正确的连接线对于电能计量的准确性和可靠性至关重要。
由于各种原因,有时会出现错误的连接线,导致电能计量出现异常甚至错误。
对于低压三相四线电能计量装置错误连接线的分析和判断显得十分重要。
二、错误连接线的原因分析1. 人为失误人为失误是导致错误连接线的主要原因之一。
在安装和维护过程中,操作人员可能由于疏忽大意或者不熟悉设备操作流程,错误地连接了计量装置的线路。
将A相接到了B相的端子上,将B相接到了C相的端子上,导致了线路的错误连接。
2. 设备故障设备故障也是导致错误连接线的原因之一。
如果计量装置的插头、端子等零部件出现了损坏或者老化问题,可能会导致连接线接触不良或者断路现象,从而导致错误连接线的出现。
3. 环境影响环境因素也会对连接线造成影响。
设备安装位置不当、工作环境湿度大、温度变化较大等都可能导致连接线的腐蚀、断裂等问题,进而产生错误的连接线。
4. 维修错误在设备维修过程中,如果维修人员操作不当,可能会导致连接线错误。
在更换设备零部件时,未按照正确的顺序连接线,或者没有正确地连接线固定,都可能导致错误连接线的产生。
5. 设计缺陷在一些情况下,设备本身存在设计缺陷,可能会导致连接线错误。
计量装置的插头设计不合理,易于误接线;端子标识不清晰,容易造成误操作等。
三、错误连接线的判断方法1. 监测报警现代的低压三相四线电能计量装置通常会设置监测报警功能,一旦发现连接线错误,会立即产生报警信号。
这是最直接、最有效的判断错误连接线的方法之一。
通过监测报警,操作人员可以及时发现问题并进行处理。
2. 电能计量数据异常错误连接线可能会导致电能计量数据出现异常。
通过对计量数据的定期分析和比对,可以发现异常数据并进行错误连接线的判断。
3. 线路自检设备通常也会提供线路自检功能,操作人员可以通过对设备进行线路自检,判断连接线是否正确。
三相四线电能计量装置常见错误接线及判断摘要:电能计量装置是电力企业实现电量结算及线损考核的重要工具,电能计量准确与否直接关系到发、供电企业的经济效益和社会效益,各发、供电企业在提高计量准确性方面都越来越重视。
而计量装置的接线是否正确,将直接影响到计量的准确性。
因此,掌握电能计量装置错误接线的分析方法极为重要。
关键词:计量装置三相四线电能表接线类型一、引言为确保供电企业和广大电力用户的利益不受损失,对于准确计量电能,使电能计量装置准确、稳定运行在计量管理工作中显得十分重要。
掌握电能计量装置接线检查是每个计量工作者必须具备的。
因此,计量人员、用电检查人员必须学会错误接线的判断方法。
造成电能计量装置的故障原因:1.构成电能计量装置的各组成部分出现故障。
2.电能计量装置接线错误。
3.人为抄读电能计量装置或进行电量计算出现的错误。
4.窃电行为引起的计量失准。
5.外界不可抗力因素造成的电能计量装置故障。
二、计量装置的原理电能计量是通过二次电路、互感器以及电能表按一定的结构组合从而实现在线电能计量功能。
在竞争愈发激烈的今天,在现代电力市场条件下为了能够保证公平、公正、公开的电能生产者和使用提供优越的服务,建立现代化的电能计量、交易以及电力系统是非常必要的。
作为提供电能计量的源头,对于电能的管理和计量是非常至关重要的作用。
电能计量装置是为计量电能所必须的计量器具和辅助设备的总体,包括电能表、负荷管理终端、配变监测终端、集中抄表集中器、计量柜(计量表箱)、电压互感器、电流互感器、实验接线盒以及二次回路等。
电能表按接线方式不同可分为:单相表、三相三线电能表、三相四线电能表。
三、常见的错误接线类型三相四线电能表四根电压线钳分别夹电能表2、5、8、10号接线端子,三根电流线钳夹1、4、7号端子,校验仪上则按颜色和顺序依次接好即可。
三相四线电能表在正确接线的情况下,计量功率为:P=P1+P2+P3=3IpUpcosφ电能表计量正常,若接线出现错误,则会出现漏计或错计电量,从而造成相应的损失。
低压三相四线制错误接线分析判定方法1、接线图2、判断步骤和方法(1)测量相电压U1、U2、U3的电压值,正常情况下,相电压为220V 左右,线电压U12/U23/U31的电压值在380V左右;若U1、U2、U3电压为几十伏,则说明该相断线;若U12/U23/U31中有电压为0者,则说明线电压为0者的两相接入了同一相;测量I1、I2、I3的电流值,根据负荷情况判定二次电流的大小。
(2)如三相电压未失压,测量U1/I1,U1/I2,U1/I3,U2/I2之间的夹角;如有失压,选定相电压正常的任何一相,测量正常相的相电压对三相电流的相位角,再测量另外正常相对本相的电流相位角。
(3)测量电压相序,以验证最终分析判定的结果是否和测量结果一致。
(4)根据测试的相位角度关系绘制向量图,在依据负载相位角判定错误接线类型(5)计算更正系数和退补电量(6)更正接线例1:某三相四线客户,现场测量U1、U2、U3均在228V左右,U12=403V,U23=398V,U31=402V,电流I1=1.21A,I2=1.20A,I3=1.20A,负载为感性15°,U1/I1夹角192°,U1/I2夹角为136°,U1/I3夹角为253°,U2/I2夹角252°,U3/I3夹角133°,用相序表测量为逆相序,错误接线期间抄见电量为-50000kwh,请分析错接线形式,计算更正系数和退补电量。
分析:根据上述相位关系绘制向量图如下1、假定U1为A相,那么U3为B相电压,U2为C相;依据判断出的电压相别和负载相位角关系,可判定电流I1/I2/I3的相别。
结论:电压A、C、B(逆相序,同时从绘制的向量图也可以判定相序,U1-U2-U3的顺序为逆,因此是逆相序),电流接入-Ia,Ib,Ic更正系数Kg计算的方法:退补电量△W=W(kg-1)=-50000(-1.49-1)=124500kwh如果△W大于0,则客户应向供电部门补电量,如果△W小于0,供电部门应向客户退电量。
谈谈电能计量装置常见错误接线和检查方法引言电能计量装置的准确性不仅取决于电能表、互感器的等级,还与它们的接线有关。
即使电能表和互感器本身准确性很高,接线错误也会导致整套计量装置少计、不计或反记,致使电力企业遭受损失。
因此,在电力运行过程中,需要对电能计量装置进行定期的检查,做到预防工作,以确保电能计量装置的准确性。
本文结合笔者的工作总结,主要就电能计量错误接线的形式及检查方法进行了论述。
1 电能计量装置中常见错误接线在整个电能计量装置中,主要包括电能表、互感器和附件、失压计时仪以及二次回路部分。
在出现接线错误的过程中,都能通过不同的部件反映出来。
而在电能计量装置中常见错误接线形式主要包括以下几方面:1.1 计量单相电路有功电能的错误接线计量单相电路有功电能的错误接线是整个电能计量装置错误接线中最为常见的错误类型,在这种错误类型中,主要分为以下5个方面:第一,工作人员在连接相线与零线的过程中,由于工作失误将其接反。
第二,在整个装置中,工作人员没有准确的区分装置的进出线。
第三,在接线的过程中,电流线圈与电源之间出现短路。
第四,在接线时,工作人员忘记连接电压钩连片。
第五,在计量380V单相负载电能时,工作人员习惯用一只220V的单相电能表读数乘以2的方法来计量,然而这种方法缺乏一定的规范性与稳定性。
1.2 計量三相四线电路有功电能的错误接线计量三相四线电路有功电能的错误接线形式中,主要包括以下3种:(1)在三相四线有功电能表电压线圈连接的过程中,电压线圈中线出现断线状况。
(2)三相四线有功电能表在运转的过程中,本应经过一台电流互感器接入电路,然而在某些状况下经过两台电流互感器连入电路,由此造成错误接线。
(3)在计量三相四线电路有功电能时,工作人员习惯使用三相三线两元件来对其进行计量,这样的计量结果与实际结果存在很大的偏差。
1.3 计量三相三线电路有功电能的错误接线计量三相三线电路有功电能的错误接线形式有:(1)电流端子进出线接反;(2)电压端子接线顺序不对;(3)电压与电流相位不对应等。
111页
三相四线电能计量装置接线检查与分析
作品介绍:
在日常生活中我们经常会遇到怀疑电能表计量不准的情况,遇到这种问题该如何分析?有没有可能是接线出现了错误?本次课,我们将讨论如何利用相位伏安表等工具判断电能计量装置的接线方式。
首先利用相位伏安表测量电气参数,测试步骤我给大家总结为四步:“先测压,后测流,确定基准,角随后”即:第一步测电压,第二步测电流,第三步确定基准相,第四步测量电压之间的夹角及电压和电流之间的夹角。
根据测量的电气参数(特别是角度信息)画出各相量在相量图中的位置,根据正确相量图的“三符合原则”确定各电压、电流电气量。
从而判断电能计量装置的接线方式有无错误。
低压三相四线电能计量装置错误连接线分析和判断电能计量装置是电力系统中必不可少的设备之一。
然而,在现实生产中,由于人员操作不当、设备故障、配电系统改造等原因,电能计量装置的连线错误情况时有发生。
其中,低压三相四线电能计量装置错误连接线是一种比较常见的问题。
下面将从错误连接线的原因、影响和解决方法三个方面进行分析和判断。
一、错误连接线的原因1、现场施工疏忽在电气设备安装、改造和维修过程中,有时候为了简单快捷,施工人员可能会选择不按照规定的接线方式进行连线,导致出现错误连接线的情况。
2、设备故障引起在设备本身存在故障的情况下,电能计量装置也会出现误差,而且可能会引起错误连接线。
例如,接线端子松动、连接线路短路、计量装置内部部件损坏等。
3、电气工程改造在电气工程改造过程中,可能会涉及到现有设备的移位、重新接线或更换,如果在改造过程中没有按照原有接线方式进行连线,则也会引起错误连接线。
1、计量误差增大错误连接线会导致电能计量装置的工作出现误差,进而产生计量误差。
这种误差可能是累积误差,也可能是单次测量误差。
误差的增大会导致电能计量不准确,进而影响到用户的用电量计量和电费计算。
2、计量装置故障错误连接线在一定程度上会影响计量装置的正常工作,还可能引起设备故障,如果不及时处理,就会给设备带来更严重的影响,甚至影响电力系统的安全运行。
1、查明原因,重新接线发现错误连接线后,首先要查明具体原因,了解接线方式和接线要求,然后重新按照规定的接线方式进行接线,保证接地可靠、保护完好。
2、加强施工管理,质量控制加强施工管理是避免出现错误连接线的关键,严格执行电气设备施工规定,对施工过程进行质量控制,保证按照标准规定接线。
3、定期检查维护定期检查和维护电能计量装置的连线状态,及时发现和处理错误连接线,确保计量装置的正常工作。
总之,低压三相四线电能计量装置错误连接线是一种常见的设备故障,对电力系统的安全稳定运行有重要影响。
因此,应加强施工管理,保证设备按照规定标准进行接地,同时定期检查维护设备,确保电气设备的正常运行。
三相四线有功电度表错误接线分析与判断刘艳红重庆建峰化肥公司重庆涪陵 408601摘要:本文针对三相四线有功电度表经过电流互感器间接接入低压系统计量时容易出现的几种错误接法进行了分析,并提出了判断依据。
关键词:三相四线有功电度表接法电流互感器1 前言三相四线有功电度表在低压系统电能计量中应用较为普遍,其接线方式主要有直接接入和经过电流互感器间接接入两种方式,直接接入法主要用于负荷电流较小的用户,负荷较大的用户一般采用经电流互感器接入法。
采用电流互感器间接接入时,在实际接线中经常会出现电流互感器接反、电流电压不同相、电压回路断线等造成电度表不能准确计量等现象,本文针对以上几种现象进行了分析,并给出了判断依据。
2 三相四线有功电度表经电流互感器间接接入正确接线正确接线图及向量图如图1所示,此时三相有功功率的计算式为:P=U a I a COS(180°-Φa)+ U b I b COSΦb+ U c I c COSΦc假设三相负载对称,则此时有功功率为:P=UICOSΦ,是正确接线计量值的1/3,此时电度表明显走慢。
B、C相CT接反与A相接反结果相同。
3.1.2 2CT接反3个CT中2个CT接反,假设为A、B相CT接反,其接线图及向量图如图3所示:此时三相有功功率的计算式为:P=U a I a COS(180°-Φa)+ U b I b COS(180°-Φb)+ U c I c COS(180°-Φc)假设三相负载对称,则此时有功功率为:P=-3UICOSΦ,是正确接线计量值的-1倍,此时电度表反转。
3.2电压、电流回路不同相3.2.1两元件电压、电流不同相假设A相电压、电流同相,其它两相电压、电流不同相,其接线图、向量图如图5所示。
图6所示接法中有功功率的计算式为P=U a I b COS(120°+Φb)+ U b I c COS(120°+Φc)+ U c I a COS(120°+Φa)假设三相负载对称,则此时有功功率为:P=3UICOS(120°+Φ),此时电度表反转,计量值为正确接法的-1/(1/2+ tanΦ* /2)图7所示接法中有功功率的计算式为P=U a I c COS(120°-Φc)+ U b I a COS(120°-Φa)+ U c I b COS(120°-Φb)假设三相负载对称,则此时有功功率为:P=3UICOS(120°-Φ)当0°<Φ<30°时,电度表反转,当Φ=30°时,电度表不转,当Φ>30°时,电度表正转,但比正确接线时慢,此时计量值为正确接法的1/(-1/2+ tanΦ* /2)3.4电压回路断线3.4.1一相电压断线假设为A相断线,其接线图如图8所示此时第一元件不计量,有功功率计算式为:P= U b I b COSΦb+ U c I c COSΦc假设三相负载对称,则此时有功功率为:P=2UICOSΦ,此时计量值为正确接法的2/3,电度表走慢。
错接线的检查步骤及计算一、错接线的检查步骤1、验电2、检查计量装置外观3、确定参考相(找B相)4、测量电压、电流(使用万用表或相位伏安表)5、测相序(使用相序表)6、测量电压电流的相位角,确定电流位置(使用相位伏安表)7、画向量图8、计算9、改正接线(做好措施)10、表记加封11、清理现场。
注意事项:工作前应正确着装,检查工具、安全工器具、仪表等。
二、错接线的计算必须记住的公式:cos()=cos sin sin1、三相四线正确的功率表达式:P= P1+P2+P3= U U I U cosϕ +U V I V cosϕ +U W I W cosϕ= 3UIcosϕ,例题:有一只三相四线有功电能表,V相电流互感器反接达一年之久,累计电量W=2000kWh。
求差错电量∆W1(假定三相负载平衡且正确接线时的功率P cor=3U p-p I p-p cosϕ)。
答案:解:由题意可知,V相电流互感器极性接反的功率表达式P inc=U U I U cosφ+U V(-I V)cosφV+U W I W cosφW三相负载平衡:U U=U V=U W=U p-p,I U=I V=I W=I p-p,ϕ U= ϕ V= ϕ W=ϕ,则P inc=U p-p I p-p cosϕ正确接线时的功率表达式为P cor=3U p-p I p-p cosϕ更正系数K=差错电量∆W1=(K-1)W=(3-1)×2000=4000(kWh)答:应补收差错电量∆W为4000kWh。
2、三相三线正确的功率表达式:P= P1+P2= U UV I U cos(30°+ ϕU)+U WV I W cos(30°-ϕW)= UIcosϕ,例题:已知三相三线有功电能表接线错误,其接线方式为:U相元件,,W相元件,,请写出两元件功率P U、P W表达式和总功率P inc表达式,并计算出更正系数K(三相负载平衡)。
浅谈电能表错误接线的检查方法及预防措施摘要:自改革开放以来,我国社会和经济的发展越来越快,电力行业的发展相较之前也有了一定的进步。
电能计量作为电力企业与用户核算的重要依据,其计量的准确性直接关系到供用电双方的利益,而且还与供用电双方的和谐关系具有极为重要的影响,所以需要做好电能计量工作。
而要想实现电能计量的准确性,则需要做好电能表的检修和维护工作的同时,还要确保电能表接线的正确,这样才能有效的降低电能表误差的产生。
因此在电能表安装过程中,需要装接人员不仅要具有较强的专业技能,而且还要对相关规章制度等进行掌握,这样才能确保装接工作能够遵守相关的规程,确保接线的正确性,降低操作错误的可能性,为用户提供更优质的服务。
基于此,本文主要阐述了对电能表错误接线进行详细的分析、解决电能表错误接线的预防策略,以供参考。
关键词:电能表;错误接线;预防策略一、对电能表错误接线的详细的分析1.1对三相四线电能表出现错误接线的详细分析(1)一般的状况下,电能表必须要用铜芯线作为二次回路的连接线,可是对用户的进户线一般都会使用多股的铝芯线,通常都会运用破皮接来对两种连接线进行连接,可是在长期的连接时会很容易出现接头氧化,进而导致电源接触不良等状况的出现,就会引发电能表发生电压断压问题。
(2)电压和电流之间如果发生不同相位的时候,就是说在出现电流互感器和需要连接的电能表两者在不同的平面上却必须进行连接安装情况下,就很容易发生其电压、电流的连接错相,这就引起电能表在各种不一样的功率因数下发生倒走、慢走、不走的状况。
在发生这种问题的时候,可以运用抽压的方法,分别利用每相电压让电能表进行运转,在三相分别运转后如果它们都是以正转的顺序进行转动就表示连接是正确的,反之就是错误的。
(3)电流互感器二次极性接反。
如果是三相负载对称,在单相互感器出现反接的状况时,电能表就会出现慢走的情况,没有其它两相电的电量,是接线正确时的1/3,;如果是两相互感器进行了反接,电能表就会出现反转的情况,这时候计量的电量也就是一相反转的电量,是接线正确时的-1/3;还有一种状况就是三相互感器全部接反,这就直接导致电能表反转,当然计量的电量也就是反转的电量,是接线正确时的-1倍。
三相四线电能表错误接线分析及判断三相四线电度表接线方式的分析与判断1、三相四线电度表标准接线方式P=P1+P2+P3=U A I A cos ψA + U B I B cos ψB + U C I C cos ψC =3 UI cos ψ负载120o120o120oU AU BU CI AI BI C ΨAΨBΨC(a)(b)2、三相四线电度表电压正相序A 、B 、C 而电流正相序是B 、C 、A 的接线方式P=P1+P2+P3=U A I B cos (120°+ψB )+ U B I C cos (120°+ψC )+ U C I A cos (120°+ψA ) =3 UI cos (120°+ψ)=-3 UI cos (60°-ψ)故当Ψ在0°~60°内,呈反转状态。
负载120o120o120oU AU BU CI AI BI C ΨAΨBΨC(a)(b)P=P1+P2+P3=U A I C cos (120°-ψC )+ U B I A cos (120°-ψA )+ U C I B cos (120°-ψB ) =3 UI cos (120°-ψ)=-3 UI cos (60°+ψ)故当Ψ在0°~30°内,呈反转状态。
负载120o120o120oU AU BU CI AI BI C ΨAΨBΨC(a)(b)4、三相四线电度表电压正相序B 、C 、A 而电流正相序是A 、B 、C 的接线方式P=P1+P2+P3=U B I A cos (120°-ψA )+ U C I B cos (120°-ψB )+ U A I C cos (120°-ψC ) =3 UI cos (120°-ψ)=-3 UI cos (60°+ψ)故当Ψ在0°~30°内,呈反转状态。
三相四线有功电度表错误接线分析与判断1、三相四线有功电度表经电流互感器间接接入正确接线正确接线图及向量图如图1所示,此时三相有功功率的计算式为:P=U a I a COS(180°-Φa)+ U b I b COSΦb+ U c I c COSΦc假设三相负载对称,则此时有功功率为:P=UICOSΦ,是正确接线计量值的1/3,此时电度表明显走慢。
B、C相CT接反与A相接反结果相同。
3.1.2 2CT接反3个CT中2个CT接反,假设为A、B相CT接反,其接线图及向量图如图3所示:此时三相有功功率的计算式为:P=U a I a COS(180°-Φa)+ U b I b COS(180°-Φb)+ U c I c COS(180°-Φc)假设三相负载对称,则此时有功功率为:P=-3UICOSΦ,是正确接线计量值的-1倍,此时电度表反转。
3.2电压、电流回路不同相3.2.1两元件电压、电流不同相假设A相电压、电流同相,其它两相电压、电流不同相,其接线图、向量图如图5所示。
图6所示接法中有功功率的计算式为P=U a I b COS(120°+Φb)+ U b I c COS(120°+Φc)+ U c I a COS(120°+Φa)假设三相负载对称,则此时有功功率为:P=3UICOS(120°+Φ),此时电度表反转,计量值为正确接法的-1/(1/2+ tanΦ* /2)图7所示接法中有功功率的计算式为P=U a I c COS(120°-Φc)+ U b I a COS(120°-Φa)+ U c I b COS(120°-Φb)假设三相负载对称,则此时有功功率为:P=3UICOS(120°-Φ)当0°<Φ<30°时,电度表反转,当Φ=30°时,电度表不转,当Φ>30°时,电度表正转,但比正确接线时慢,此时计量值为正确接法的1/(-1/2+ tanΦ* /2) 3.4电压回路断线3.4.1一相电压断线假设为A相断线,其接线图如图8所示此时第一元件不计量,有功功率计算式为:P= U b I b COSΦb+ U c I c COSΦc假设三相负载对称,则此时有功功率为:P=2UICOSΦ,此时计量值为正确接法的2/3,电度表走慢。
低压三相四线电能计量装置错误接线新型检查方法【摘要】低压三相四线电能计量装置的主要功能就是对电能的准确计量,如果无法实现对电能的准确计量,就谈不上用电的节约和计划,也谈不上能提高经济效益。
随着经济的发展和人们生活水平的提高,对用电也有了越来越高的而要求,供电企业为了更好地为电力用户提供服务,同时可以确保自己的企业的经济效益,就必须要确保对电能的准确计量。
本文主要分析了通过压降对比法对带电流互感器的低压三相四线电能计量装置的错误接线进行了检查的方法,该方法作为一种新型的检查方法,可以提高简化操作步骤,提高现场测试人员的工作效率,最后简单的提出了错误接线造成的误差电力的计算方法,以供同行参考。
【关键词】低压三相四线电能计量装置;错误接线;检查方法通常想要确保对电能的准确计量,就要保证电能计量装置的接线没有错误。
电能计量表本身的误差很小可以忽略不计,而如果是由于接线的错误而导致的误差就很大的,比真实电量大也有可能,比真实电量小也有可能,这样可能给用户或者是供电企业带来很大的损失,因此想要真实的将用户的电量计量出来,在保证电能计量表自身可靠性的前提下,就需要保证其接线的正确。
人们通常都是采用相量法来对带电流互感器的低压三相四线电能计量装置的错位接线检查,而事实上这种方法对于新装表人员和接电人员来说是比较困难的,误判的情况时有发生,而压降对比法就可以避免这些错位,作为一种新的检查方法越来越多的被装表节电人员使用,保证了检查的结果,进而保证了电能计量装置的正确接线,可以实现对电能的准确计量,提高了现场装表人员的工作效率,同时还保证了供电企业和用户的经济效益。
1.低压三相四线电能计量装置的错误接线类型通常情况下,计量低压三相四线有功电能的错误接线类型有:第一,有功电能表电压线圈中线断线;第二,有功电能表在接入电路的时候进过了两台电流互感器;第三,对三相四线有功电能表的计量采用了三相三线两元件来实现。
计量低压三相四线电流无功电能的错误接线类型有两种,一种是将三元件900无功电能表的相序弄反了,另一种是将带附加电流线圈的无功电能表B相电流接反了。
电能表错误接线的形式及其检查方法摘要:本文结合笔者多年工作经验,对电能表错接线的几种形式及相应的一些检查方法做了详细分析,仅供同行参考。
关键词:三相电压中性线错误接线电压线圈用户的电能计量工作是计量管理中的一个重要环节,如果出现表计不准、接线错误、倍率差错及其他异常情况,不但要影响国家电费收入,而且还要影响用户的经济核算,因此必须确保用户的电能计量正确,及时发现和纠正由于新装轮换、线路设备的检修等原因而导致表计异常运行情况。
这除了加强现场校验工作外,还必须提高装表质量及表计本身质量。
在电能计量装置方面,常见故障有电流互感器开路、电压互感器短路、熔丝熔断等,这些故障都会造成计量不准确,这类问题可用电流表、电压表进行检查。
大部分故障是电路接线错误,反映在电能表上有倒转或停转等现象,一看就能发现,但对顺转的错误接线,要仔细检查,否则就难以发现。
1单相电能表的错接单相电能表发生错接线,常见的有以下3种情况:第一,相线和中性线对调,当灯头接地时电能表不转或漏计电量。
第二,电源线和负载线在接线端柱上反接,计量很不正确。
第三,接线端1与2之间的电压连片未接,电能表不走。
单相电能表的错接线可以通过直观检查或使用低压测电笔测试检查来发现并纠正。
2三相四线(三元件)电能表的错接线形式三相四线(三元件)电能表的正确接线是UAIA、UBIB、UCIC,正三相功率为:P=UAIAcosφ+UBIBcosφ+UCICcosφ=3U相I相cosφ。
三相四线(三元件)电能表的错接线形式主要有以下几种。
2.1电压线圈A、B相接线对调错误接线是UBIA、UAIB、UCIC,错误三相功率为P′=UBIAcos(120°-φ)+UAIBcos(120°+φ)+UCICcosφ=0。
这种错误接线将A相电压误接入B相,B相电压误接入A相,结果电能表停走,但实际上往往出现转盘稍向前走些或稍向后倒些的现象,原因是3个元件之间存在着不平衡问题。
三相四线错误接线检查作业指导书一、任务要求1、遵守安全工作规程,正确使用仪表;2、画出向量图,描述故障错误;3、列出各元件功率表达式及总的功率表达式;4、求出更正系数。
二、使用工具1、低压验电笔;2、相位表;3、相序表。
三、适用范围三相四线制感应式有功电能表与三相四线制感应式跨相900无功电能表无TV、经TA接入或经TV、TA接入的联合接线方式。
四、相关知识① 三相四线有功电能表正确接线的相量图:②正确功率表达式:五、操作步骤说明:①下列涉及1、2、3数字均表示电能表第几元件;N 表示有功电能表的零线端,即在万特模拟台有功电能表的零线端。
②操作前均需办理第二种工作票,并做好安全措施。
1、未经TV ,经TA 接入的三相四线制有功和无功电能表接线方式:(1)测量相电压,判断是否存在断相。
U 1N = U 2N = U 3N =注:不近似或不等于220V 的为断线相。
(2)测量各相与参考点(U u )的电压,判断哪相是U 相。
U 1u = U 2u = U 3u =注:①0V 为U 相;②其他两相近似或等于380V ,则非0V 相为U 相。
(3)确定电压相序。
注:①利用相序表确定电压相序;②利用任意正常两相相电压的夹角(按顺序相邻两相夹角为1200或相隔两相夹角为2400均为正相序;反之类推)。
12120U U ∧••= 013240U U ∧••= 023120U U ∧••=均为正相序;12240U U ∧••= 013120U U ∧••= 023240U U ∧••=均为逆相序;(4)测量相电流,判断是否存在短路、断相。
I 1= I 2= I 3=注:①出现短路,仍有较小电流,出现断相电流为0A ;②同时出现短路与断相,应从TA 二次接线端子处测量(此处相序永远正确),如哪相电流为0A ,则就是哪相电流断路。
(5)以任意一正常的相电压为基准,测量与正常相电流的夹角,判断相电流的相序。
11U I ∧••= 12U I ∧••= 13U I ∧••= (设U 1、I 1、I 2、I 3均为正常)(6)如出现相电流极性反,测量相应元件进出电流线的对地电压,判断哪种极性反(此项只能记录在草稿纸上)。
注:①TA极性反与表尾反的区别:即TA极性反是指从TA二次出线端K1、K2与联合接线盒之间的电流线接反;表尾反是指从TA二次出线K1、K2未接反,只是从联合接线盒到有功电能表的电流进出线接反;②相电流进线对地电压>相电流出线对地电压,则为TA极性反;③相电流进线对地电压<相电流出线对地电压,则为电流表尾反。
(7)根据上述结果画出向量图。
(8)正确描述故障结果:①电压相序:②电压断相:③电流相序:④电流短路:⑤电流断相:⑥电流互感器反极性:⑦电流表尾反:(9)写出各元件功率表达式及总的功率表达式(10)求出更正系数K=PP 02、经TV ,经TA 接入的三相四线制有功和无功电能表接线方式:(1)测量相电压,判断是否存在断相。
U 1N = U 2N = U 3N =注:不近似或不等于57.7V ,为断相。
(2)测量各相与参考点(U u )的电压,判断哪相是U 相及是否存在极性反。
U 1u = U 2u = U 3u =注:①0V 为U 相;②其他两相近似或等于100V ,则非0V 相为U 相;③出现相近或等于57.7V 的相为极性反的相;④一面加电:TV 一次断相,断相电压<10V ;TV 二次断相,断相电压>10V(当A 相TV 一次断,其他一相极性反为例外);⑤二面或三面加电:当只有电压断相而没有电压极性反时,与一面加电情况相同;当电压断相与电压极性反同时出现时,二面加电,TV一次断相,断相电压为12V左右;TV二次断相,断相电压为25V左右;三面加电,TV一次断相,断相电压为15V左右;TV二次断相,断相电压为25V左右。
(3)确定电压相序注:①利用相序表。
Ⅰ、电压极性未反,按正常情况判断;Ⅱ、出现电压极性反,测量为正相序,实际为逆相序;测量为逆相序,实际为正相序。
②利用未断相两相相电压的夹角。
Ⅰ、极性未反,按顺序相邻两相夹角为1200或相隔两相夹角为2400均为正相序;反之类推;Ⅱ、电压极性反,按已知电压(Uu)为参考,结合测量出的角度,判断出电压相序。
(4)测量相电流,判断是否存在短路、断相。
I1= I2= I3=注:①出现短路,仍有较小电流,出现断相,电流为0A ;②同时出现短路与断相,应从TA 二次接线端子处测量,如哪相电流为0A ,则就是哪相电流断相。
(5)以任意一正常的相电压为基准,测量与正常相电流的夹角,判断相电流的相序。
11U I ∧••= 12U I ∧••= 13U I ∧••= (设U 1、I 1、I 2、I 3均为正常)(6)如出现相电流极性反,测量相应元件进出电流线的对地电压,判断哪种极性反(此项只能记录在草稿纸上)。
注:①TA 极性反与表尾反的区别:即TA 极性反是指从TA 二次出线端K 1、K 2与联合接线盒之间的电流线接反;表尾反是指从TA 二次出线K 1、K 2未接反,只是从联合接线盒到有功电能表的电流进出线接反;②当相电流进线对地电压>相电流出线对地电压,则为TA 极性反;③当相电流进线对地电压<相电流出线对地电压,则为电流表尾反。
(7)根据上述结果画出向量图①以万特模拟接线台为标准Ⅰ、出现断相,则断相电压U U 21-='(U 为正常相电压)Ⅱ、出现极性反,则极性反电压U U -='(U 为正常相电压)Ⅲ、断相与极性反同时出现时,则根据上述两种情况综合考虑②电压互感器一次(二次)断相:③电压极性反:④电流相序:⑤电流短路:⑥电流断相:⑦电流互感器反极性:⑧电流表尾反:(9)写出各元件功率表达式及总的功率表达式。
(10)求出更正系数。
K=P P '例1、 V U N 581= V U N 2202= V U N 2203=逆相序/ 24032=∧••U U(V U I 12.02=进 V U I 36.02=出)① 电压相序:u 、w 、v② 电压断相:u③ 电流相序:I w 、I u 、I v④ 电流表尾反接:第二元件⑤ 电流断相:w功率表达式:更正系数:例2、 V U N 581= V U N 2202= V U N 2203=逆相序/ 24032=∧••U U(V U I 14.02=进 V U I 64.02=出 V U I 53.03=出 V U I 28.03=出)故障现象:① 电压相序:v 、u 、w② 电压断相:v③ 电流相序:I w 、I u 、I v④ 电流短路:w⑤ 电流互感器极性反:v⑥ 电流表尾反接:第二元件功率表式:更正系数:例3、 V U N 9.571= V U N 8.32=V U N 1.583= 逆相序/ 12031=∧••U U(V U I 29.01=进 VU I 12.01=出 V U I 09.03=进 V U I 28.03=出)故障现象:① 电压相序:u 、w 、v② 电压互感器一次断相:w③ 电流相序:I w 、I u 、I v④ 电流短路:u⑤ 电流互感器极性反:w⑥ 电流表尾反接:第三元件功率表达式:更正系数:例4、 V U N 9.571= V U N 9.572=V U N 1.263= 逆相序/ 30021=∧••U U( V U I 3.03=进 V U I 16.03=出)故障现象:① 电压相序:u 、v 、w② 电压互感器二次断相:w③ 电压互感器极性反:v④ 电流相序:I u 、I v 、I w⑤ 电流断相:u⑥ 电流互感器极性反:w功率表达式:更正系数:例5、V U N 4.261= V U N 7.572= V U N 1.583=正相序/ 6032=∧••U U(V U I 32.02=进 V U I 16.02=出 VU I 12.03=出 V U I 29.03=出)故障现象:① 电压相序:v 、u 、w② 电压互感器二次断相:v③ 电压互感器极性反:w④ 电流相序:I u 、I w 、I v⑤ 电流断相:u⑥ 电流互感器极性反:w⑦ 电流表尾反接:第三元件功率表达式:0)sin 23cos 21sin 23cos 21()120cos()60cos(321=+--=-++='+'+'='ϕϕϕϕϕϕUI UI UI P P P P 更正系数:。