圆周角2
- 格式:ppt
- 大小:709.00 KB
- 文档页数:16
圆周角定理的推论2及圆
圆周角定理是几何学中的重要定理,它指的是:在任意三角形中,其三个内角的和为180°;而在任意园形内,相应的三角形所有内角的和为园周角,即360°,这就是圆周角定理。
圆周角定理是根据三角形和圆形的基础知识来说明的,其中三角形在几何学中是一种重要的几何体,其有三个角度。
任意三角形中,其三个角度的和是180°,而圆则是一个完整的圆形,因而其一个圈中包含了好多条边缘,所有的角度的和就是360°,这也正好等于园周角。
圆周角定理的推论2是:如果三点不在一条直线上,则这三点可以构成一个三角形,而在三角形内,其三个内角的和为180°;另一方面,一个圆中包含了很多条边缘,而它们如果组成三角形,那么它们的和是360°,因此,三角形内角的和等于园周角的和,就是圆周角定理。
因此,圆周角定理的推论2的意义在于,它使得对于所有的园形,可以很容易构绘出来,也可以更方便地计算出其内部的角度数。
圆周角定理的推论2也可以用来帮助解决许多几何问题,比如求椭圆的长短轴长度等。
总而言之,圆周角定理是一个重要的定理,它反映了三角形和圆形之间的关系,并由此推论出了圆周角定理的推论2,使得求解复杂几何问题更加容易,不仅提高了几何的计算应用,而且也成为了几何学的一大宝贵知识。
圆周角〔第二课时〕〔张丹丹〕一、教学目标〔一〕学习目标1探索同圆或等圆中,相等的圆周角所对的弧和弦的关系2探索同弦所对圆周角的关系3记住圆周角定理的推论并能运用其解决实际问题4知道圆内接多边形及多边形的外接圆的概念,掌握圆的内接四边形的性质〔二〕学习重点1探索同圆或等圆中,相等的圆周角所对的弧的关系2知道圆内接多边形及多边形的外接圆的概念,掌握圆的内接四边形的性质〔三〕学习难点1探索同弦所对圆周角的关系2圆的内接四边形中对角的关系二、教学设计〔一〕课前设计1预习任务〔1〕在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧和弦也相等.〔2〕在同圆或等圆中,同弦所对的圆周角相等或互补.〔3〕圆内接四边形的对角互补.2预习自测〔1〕如图,A,B,C是⊙O上三点,∠ACB=25°,那么∠BAO的度数是〔〕A.55°B.60°C.65°D.70°【知识点】圆周角定理.【数学思想】数形结合【解题过程】解:连接OB,∵∠ACB=25°,∴∠AOB=2×25°=50°,由OA=OB,∴∠BAO=∠ABO,∴∠BAO=〔180°﹣50°〕=65°.应选C.【思路点拨】连接OB,要求∠BAO的度数,只要在等腰三角形OAB中求得一个角的度数即可得到答案,利用同弧所对的圆周角是圆心角的一半可得∠AOB=50°,然后根据等腰三角形两底角相等和三角形内角和定理即可求得.【答案】C.〔2〕如图,AB是⊙O的直径,BC是⊙O的弦.假设∠OBC=60°,那么∠BAC的度数是〔〕A.75°B.60°C.45°D.30°【知识点】圆周角定理.【数学思想】数形结合【解题过程】解:∵AB是⊙O的直径,∴∠ACB=90°,又∵∠OBC=60°,∴∠BAC=180°﹣∠ACB﹣∠ABC=30°.应选D.【思路点拨】根据AB是⊙O的直径可得出∠ACB=90°,再根据三角形内角和为180°以及∠OBC=60°,即可求出∠BAC的度数.【答案】D.〔3〕如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,那么∠OAD∠OCD=度.【知识点】圆周角定理;平行四边形的性质【数学思想】数形结合【解题过程】解:连接OB∵四边形OABC为平行四边形∴AB=OC=OB=OA=BC∴△OAB和△OBC都为等边三角形∴∠OAB=∠OCB=60°∵四边形ABCD为圆的内接四边形∴∠DAB∠DCB=180°∴∠OAD∠OCD=180°﹣60°﹣60°=60°【思路点拨】由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B∠ADC=180°,即可求得∠B=∠AOC=12021∠ADC=60°,然后由三角形外角的性质,即可求得∠OAD∠OCD的度数.【答案】60°〔4〕如图,AB为⊙O的直径,AB=AC,AC交于⊙O点E,∠BAC=45°.假设AE=1,那么BC=.【知识点】圆周角定理;等腰直角三角形【数学思想】数形结合【解题过程】解:∵AB是圆的直径,∴∠AEB=90°,又∵∠BAC=45°,∴△ABE是等腰直角三角形,那么AB=,BE=AE=1,那么EC=AC﹣AE=AB﹣AE=﹣1,在直角△BCE中,BC=.故答案是:.【思路点拨】首先利用圆周角定理证明△ABE是等腰直角三角形,那么求得AB、BE的长度,那么EC即可求得,然后再在直角△BCE中,利用勾股定理即可求解.【答案】二课堂设计1知识回忆〔1〕把顶点在圆上,并且两边都与圆相交的角叫做圆周角。
5.3 圆周角(2)
鞍湖实验学校九年级数学备课组
学习目标
1、熟练应用圆周角定理及其推论解决有关的计算和证明的问题
2、在综运应用圆周角的有关性质解决一些运用问题过程中,进一步培养观察、分析和解决问题的能力
学习重、难点
重点:圆周角定理及其推论的应用;难点:熟练应用圆周角定理及其推论
学习过程:
一、情境创设
我们学习过哪些与圆有关的角?它们之间有什么关系?
二、探索活动
1、如图,BC 为⊙O 的直径,它所对的圆周角是锐角、钝角,还是直角?
2、如图,圆周角∠BAC=90°,弦BC 经过圆心吗?为什么?(以上两个问题,小组交流,让学生自主探索解决)
通过上面的探索发现了什么?
结论:直径(或半圆)所对的圆周角是直角。
90°的圆周角所对的弦是直径。
三、例题解析
例 1 如图,AB 是⊙O 的直径,弦CD 与AB ∠ACD=60°, ∠ADC=50°,求∠CEB 的度数。
B
B C B C
(1) (2)
例 2 已知:如图,△ABC的3个顶点都在⊙
AD是△ABC的高,AE是⊙O的直径,△ABE与△ACD
B 为什么?
本题的变形将△ABE与△ACD相似吗?变成线段AB、AC
在这样的关系?为什么?
四、课堂练习
1、P121练习1、
2、3
2、课课练P97、1-3
五、课堂小结
1、本节课你有什么收获?
2、你还有哪些疑问?
六、作业
课堂作业:P122 习题5.3 7、8、9
家庭作业:完成课课练P97-98;预习书P124-126.。
人教版数学九年级上24.1.4.2圆周角(2)教学设计一、复习旧知1、还记得圆周角的定义吗?2、请你说出圆周角定理及推论。
圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半.推论1:同弧或等弧所对的圆周角相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.二、探究新知活动1,抢答:1.你能用三角尺画出下面这个圆的圆心吗?2.填空:如图,∠BAC=55°,∠CAD=45°,则∠DBC=_____°,∠BDC=_____°,∠BCD=______°3.如图,BD是⊙O的直径,∠ABC=130°则∠ADC=______°活动2:讨论请看我们做的抢答习题第2、3题,同学们有没有发现什么规律,请大家以小组为单位讨论后发言。
学生小组1回答:这个四边形的四个顶点,点A,点B,点C,点D都在⊙O上。
学生小组2回答:这个四边形的对角和是180°。
学生小组3回答:……学生小组4回答:……教师总结:同学们真是火眼金睛,找到的特点很多。
这个四边形有一个特点,四边形的四个顶点,点A,点B,点C,点D都在⊙O上,我们把这个四边形叫做圆内接四边形(板书:⊙O叫做四边形ABCD的外接圆)师:出示圆内接三角形图片,并指出:这是一个三角形,这个三角形的所有顶点都在这个圆上,我们把这个三角形叫做圆内接三角形,把这个圆叫做这个三角形的外接圆.师:出示圆内接五边形图片,并指出:这是五边形,这个五边形的所有顶点都在这个圆上,我们把这个五边形叫做圆内接五边形,把这个圆叫做这个五边形的外接圆.师:(出示圆内接六边形图片)归纳总结:现在,同学们能总结出“圆内接多边形”的定义了吗?一般地说,如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.刚才有同学说习题中的四边形的对角和是180°,我们再来看圆内接四边形有什么性质。