24.1.4圆周角(2)
- 格式:ppt
- 大小:373.00 KB
- 文档页数:19
24.1.4 圆周角(第二课时)教授新课师:在同圆或等圆中,同弧所对应的圆周角有什么关系?[多媒体展示]【探索与思考】∠BAC与∠BDC同BC,∠BAC与∠BDC有什么关系?尝试给出证明过程?生:根据圆周角定理可知,∠BAC=12∠BOC, ∠BDC=12∠BOC∴∠BAC=∠BDC师:由此可知:同弧所对的圆周角相等。
师:在同圆或等圆中,两条弧相等,则他们所对应的圆周角有什么关系?[多媒体展示]【探索与思考】弧BC=弧CE,∠BDC与∠CAE有什么关系?尝试给出证明过程?生:连接BO、CO、OE根据圆周角定理可知,∠BDC=12∠BOC,∠CAE=12∠COE 又由弧BC=弧CE可知,∠BOC=∠COE.师:由此可知:等弧所对的圆周角相等。
师:推论1:同弧或等弧所对的圆周角相等。
师:尝试运用圆周角推论进行计算。
[多媒体展示]典例1 如图,⊙O中,弦AB、CD相交于点P,若∠A=20°,∠APD=70°,则∠B等于()A.30° B.35° C.40° D.50°变式1-1 如图,⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为()A.15° B.25° C.30° D.50°变式1-2 如图,A,B,C,D是⊙O上的四个点,弧AB=弧BC,若∠AOB=58°,则∠BDC=____度让学生经历猜想-探究-证明的过程,从而掌握圆周角定理推论的内容。
通过配套例题,举一反三,进而消化本节课所学内容。
【师生互动】鼓励学生积极发言,教师通过引导纠正,最后给出解题过程和答案。
师:根据所学知识回答下面问题。
[多媒体展示]【问题一】如图1,AB为⊙O的直径,它所对的圆周角是多少?【问题二】如图2 ,AB为⊙O的直径,改变C点的位置,它所对的圆周角度数会改变吗?【问题三】如图1,圆周角∠C=90°,连接AB,弦AB经过圆心吗?为什么?生1:90°生2:不变生3:∵∠ACB=90°∴∠AOB=180°∴弦AB过圆心。
24.1.4 圆周角(2)自主学习、课前诊断一、温故知新:1.什么是圆心角和圆周角?2.圆周角定理及其推论的内容是什么?二、设问导读:阅读课本P87-88完成下列问题: 1.概念理解:(1)圆内接多边形:如果一个多边形的所有顶点都在________上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的__________.(2)你是怎样区分“内接”“外接”的?例如,在课本图24.1-15,四边形ABCD 是⊙O 的___________,⊙O 是四边形ABCD 的____________. 2.性质探究:(1)图24.1-17中,∠A 和∠C 都是圆周角吗?它们所对的圆心角分别是什么,有什么关系?可以得到什么结论? (2)圆内接四边形的性质:圆内接四边形的对角________. 用符号表示为:四边形ABCD 是⊙O 的内接四边形,则 __________+__________=180°, __________+__________=180°.三、自学检测:1.如图,已知⊙O 的内接四边形ABCD , ∠A=50°,∠B =100°,则∠C=________, ∠D=________.其理由是________________.2.如图,四边形ABCD 内接于⊙O ,△ACD 是等边三角形,则∠ABC 的度数为( ) A.120° B.135° C. 140° D.150°3.如图,在⊙O 中,∠CBD=30° , ∠BDC=20°,求∠A.互动学习、问题解决一、导入新课 二、交流展示学用结合、提高能力一、巩固训练:1.在⊙O 中,一条弧所对的圆心角和圆周角分别为(2x+100)°和(5x-30)°,则x=_ ______.2.如图,在直径为AB 的半圆中,O 为圆心,C ,D 为半圆上的两点,∠COD=50°,则∠CAD=______.·OB ACD3.如图,圆心角∠AOC=100°,则∠ABC=__________.4.如图,正方形ABCD内接于圆,点P在AD⌒上,则∠APD的度数为().A.135°B.5.如图,BD是⊙O的直径,圆周角∠A =30︒,则∠CBD的度数是 ( )A.30︒ B.45︒ C.60︒D.80︒6.如图,四边形ABCD内接于圆,BD平分∠ABC,且AB∥CD .求证:CD⌒=CB⌒.二、当堂检测:1.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于( ).A.69°B.42°C.48°D.38°2.已知四边形ABCD是⊙O的内接四边形,AB为直径,点C是BD⌒的中点,若∠ABC=50°,求∠BCD、∠ADC、∠DAB的度数。
24.1.4 圆周角第1课时圆周角定理及推论教学内容1.圆周角的概念.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弦所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.教学目标1.了解圆周角的概念.2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半.3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径.4.熟练掌握圆周角的定理及其推理的灵活运用.设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题.重难点、关键1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题.2.难点:运用数学分类思想证明圆周角的定理.3.关键:探究圆周角的定理的存在.教学过程一、复习引入(学生活动)请同学们口答下面两个问题.1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系呢?老师点评:(1)我们把顶点在圆心的角叫圆心角.(2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们A所对的其余各组量都分别相等.刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题. 二、探索新知问题:如图所示的⊙O ,我们在射门游戏中,设E 、F 是球门,•设球员们只能在EF 所在的⊙O 其它位置射门,如图所示的A 、B 、C 点.通过观察,我们可以发现像∠EAF 、∠EBF 、∠ECF 这样的角,它们的顶点在圆上,•并且两边都与圆相交的角叫做圆周角. 现在通过圆周角的概念和度量的方法回答下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化? 3.同弧上的圆周角与圆心角有什么关系? (学生分组讨论)提问二、三位同学代表发言. 老师点评:1.一个弧上所对的圆周角的个数有无数多个.2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的. 3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,•并且它的度数恰好等于这条弧所对的圆心角的度数的一半.”(1)设圆周角∠ABC 的一边BC 是⊙O 的直径,如图所示 ∵∠AOC 是△ABO 的外角 ∴∠AOC=∠ABO+∠BAO ∵OA=OB ∴∠ABO=∠BAO ∴∠AOC=∠ABO ∴∠ABC=12∠AOC (2)如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的两侧,那么∠ABC=12∠AOC 吗?请同学们独立完成这道题的说明过程.CC老师点评:连结BO 交⊙O 于D 同理∠AOD 是△ABO 的外角,∠COD 是△BOC 的外角,•那么就有∠AOD=2∠ABO ,∠DOC=2∠CBO ,因此∠AOC=2∠ABC .(3)如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的同侧,那么∠ABC=12∠AOC 吗?请同学们独立完成证明.老师点评:连结OA 、OC ,连结BO 并延长交⊙O 于D ,那么∠AOD=2∠ABD ,∠COD=2∠CBO ,而∠ABC=∠ABD-∠CBO=12∠AOD-12∠COD=12∠AOC现在,我如果在画一个任意的圆周角∠AB ′C ,•同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的.从(1)、(2)、(3),我们可以总结归纳出圆周角定理:在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 进一步,我们还可以得到下面的推导:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 下面,我们通过这个定理和推论来解一些题目.例1.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系?为什么?分析:BD=CD ,因为AB=AC ,所以这个△ABC 是等腰,要证明D 是BC 的中点,•只要连结AD 证明AD 是高或是∠BAC 的平分线即可. 解:BD=CD理由是:如图24-30,连接AD ∵AB 是⊙O 的直径 ∴∠ADB=90°即AD ⊥BC 又∵AC=AB ∴BD=CD 三、巩固练习1.教材P92 思考题. 2.教材P93 练习. 四、应用拓展例2.如图,已知△ABC 内接于⊙O ,∠A 、∠B 、∠C 的对边分别设为a ,b ,c ,⊙O 半径为R ,求证:sin a A =sin b B =sin c C=2R . 分析:要证明sin a A =sin b B =sin c C =2R ,只要证明sin a A =2R ,sin b B =2R ,sin cC=2R ,即sinA=2a R ,sinB=2b R ,sinC=2cR,因此,十分明显要在直角三角形中进行.证明:连接CO 并延长交⊙O 于D ,连接DB ∵CD 是直径∴∠DBC=90° 又∵∠A=∠D在Rt △DBC 中,sinD=BC DC ,即2R=sin aA同理可证:sin b B =2R ,sin cC =2R∴sin a A =sin b B =sin cC=2R五、归纳小结(学生归纳,老师点评) 本节课应掌握: 1.圆周角的概念;2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.~。
人教版数学九年级上24.1.4.2圆周角(2)教学设计一、复习旧知1、还记得圆周角的定义吗?2、请你说出圆周角定理及推论。
圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半.推论1:同弧或等弧所对的圆周角相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.二、探究新知活动1,抢答:1.你能用三角尺画出下面这个圆的圆心吗?2.填空:如图,∠BAC=55°,∠CAD=45°,则∠DBC=_____°,∠BDC=_____°,∠BCD=______°3.如图,BD是⊙O的直径,∠ABC=130°则∠ADC=______°活动2:讨论请看我们做的抢答习题第2、3题,同学们有没有发现什么规律,请大家以小组为单位讨论后发言。
学生小组1回答:这个四边形的四个顶点,点A,点B,点C,点D都在⊙O上。
学生小组2回答:这个四边形的对角和是180°。
学生小组3回答:……学生小组4回答:……教师总结:同学们真是火眼金睛,找到的特点很多。
这个四边形有一个特点,四边形的四个顶点,点A,点B,点C,点D都在⊙O上,我们把这个四边形叫做圆内接四边形(板书:⊙O叫做四边形ABCD的外接圆)师:出示圆内接三角形图片,并指出:这是一个三角形,这个三角形的所有顶点都在这个圆上,我们把这个三角形叫做圆内接三角形,把这个圆叫做这个三角形的外接圆.师:出示圆内接五边形图片,并指出:这是五边形,这个五边形的所有顶点都在这个圆上,我们把这个五边形叫做圆内接五边形,把这个圆叫做这个五边形的外接圆.师:(出示圆内接六边形图片)归纳总结:现在,同学们能总结出“圆内接多边形”的定义了吗?一般地说,如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.刚才有同学说习题中的四边形的对角和是180°,我们再来看圆内接四边形有什么性质。