线性代数 0 复习序言
- 格式:pdf
- 大小:2.16 MB
- 文档页数:26
1概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确(),nT A r A n A A Ax x Ax A Ax A A A E οοοββ==⇔∀≠≠≠⇔∀∈=≅可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 ,0总有唯一解 是正定矩阵 R 12,s iA p p p p nB AB E AB E⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪=⋅⋅⋅⎪==⎪⎩ 是初等阵存在阶矩阵使得 或 ○注:全体n 维实向量构成的集合nR 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=⇔==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的⎧⎪⎪⎪⎨⎪⎪⎪⎩特征向量○注 ()()a b r aE bA n aE bA aE bA x οολ+<⎧⎪+=⇔+=⎨⎪⎩有非零解=-⎫⎪≅⎪−−−→⎬⎪⎪⎭具有向量组等价矩阵等价()反身性、对称性、传递性矩阵相似()矩阵合同()2√ 关于12,,,n e e e ⋅⋅⋅:①称为n的标准基,n中的自然基,单位坐标向量87p 教材;②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr =E n ;⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示.1212121112121222()1212()n n nn n j j j n j j nj j j j n n nna a a a a a D a a a a a a τ==-∑1√ 行列式的计算:①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.②若A B 与都是方阵(不必同阶),则==()mn A OA A O A BO BO BBO A AA B B O B O*==**=-1(拉普拉斯展开式)③上三角、下三角、主对角行列式等于主对角线上元素的乘积.3④关于副对角线:(1)211212112111()n n nnn n n n n n n a Oa a a a a a a Oa O---*==-1 (即:所有取自不同行不同列的n 个元素的乘积的代数和)⑤范德蒙德行列式:()1222212111112n ijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏111由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭称为m n ⨯矩阵.记作:()ij m n A a ⨯=或mn A ⨯()1121112222*12n Tn ijnnnn A A A A A A A A A A A ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,ij A 为A 中各个元素的代数余子式. √ 逆矩阵的求法:① 1A A A *-= ○注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 主换位副变号②1()()A E E A -−−−−→初等行变换4③1231111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3211111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭√ 方阵的幂的性质:m n m n A A A += ()()m nmnA A =√ 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b b b c c c b b b ααα⎛⎫⎪⎪⋅⋅⋅= ⎪⎪⎝⎭⇔i iA c β= ,(,,)i s =1,2⇔iβ为iAx c =的解⇔()()()121212,,,,,,,,,s s s A A A Ac c c ββββββ⋅⋅⋅=⋅⋅⋅=⇔12,,,s c c c 可由12,,,n ααα⋅⋅⋅线性表示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵. 同理:C 的行向量能由B 的行向量线性表示,TA 为系数矩阵.即: 1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⇔11112212121122222211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩√ 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量; 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.5√ 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B BA---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A C A A CB O B OB ----⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ 1111A O A OC B B CAB ----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭ 分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫=⎪⎝⎭,1122nn n A A A ⎛⎫= ⎪⎝⎭分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ *(1)(1)mn mn A A B BB A **⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭√ 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)A B E X −−−−→初等行变换(I)的解法:构造()()T T T TA XB X X=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动)6⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关114p 教材. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余n -1个向量线性表示. 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余n -1个向量线性表示. ⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=.⑨ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一. ⑩ 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0⑪ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系; 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系. 即:矩阵的初等变换不改变矩阵的秩. √ 矩阵的初等变换和初等矩阵的关系:对A 施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A ;7对A 施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A .如果矩阵A 存在不为零的r 阶子式,且任意r +1阶子式均为零,则称矩阵A 的秩为r .记作()r A r =向量组12,,,n ααα的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r αααA 经过有限次初等变换化为B . 记作:A B =12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅⑫ 矩阵A 与B 等价⇔PAQ B =,,P Q 可逆⇔()(),,,r A r B A B A B =≠>为同型矩阵作为向量组等价,即:秩相等的向量组不一定等价.矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑬ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔AX B =有解⇔12(,,,)=n r ααα⋅⋅⋅1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅. ⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价; ⑯ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑰ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑱ 若两个线性无关的向量组等价,则它们包含的向量个数相等.8⑲ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关;若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关. √ 矩阵的秩的性质:①()A O r A ≠⇔若≥1 ()0A O r A =⇔=若 0≤()m n r A ⨯≤min(,)m n ②()()()TTr A r A r A A == p 教材101,例15 ③()()r kA r A k =≠ 若0④()(),,()0m n n s r A r B n A B r AB B Ax ⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤()r AB ≤{}min (),()r A r B⑥()()()()A r AB r B B r AB r A ⇒=⇒=若可逆若可逆 即:可逆矩阵不影响矩阵的秩.⑦若()()()m n Ax r AB r B r A n AB O B OA AB AC B C ο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩ 只有零解在矩阵乘法中有左消去律;若()()()n s r AB r B r B n B ⨯=⎧=⇒⎨⎩在矩阵乘法中有右消去律.⑧()rrE O E O r A r A A OO OO ⎛⎫⎛⎫=⇒⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型.9⑨()r A B ±≤()()r A r B + {}max (),()r A r B ≤(,)r A B ≤()()r A r B + p 教材70 ⑩()()A O O A r r A r B O B B O ⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭ ()()A C r r A r B O B ⎛⎫≠+ ⎪⎝⎭121212,,,0,,,()(),,,A n n A n Ax A n Ax Ax r A r A Ax A n βαααβαααβββααα⇔=−−−−−→=<⇔⇒⇔=⇔=⇔=⇔=−−−−−→≠⇒=⇔⇒当为方阵时当为方阵时有无穷多解0表示法不唯一线性相关有非零解可由线性表示有解有唯一组解0克莱姆法则表示法唯一 线127()(),,,()()()1()n Ax r A r A Ax r A r A r A r A οββαααβββ⎧⎪⎪⎪⎪⎨⎪⎪⎪⇔=⎪⎩⎧⇔≠⎪⇔=⇔<⎨⎪⇔+=⎩教材72讲义8性无关只有零解不可由线性表示无解 ○注:Ax Axββ⇒=<≠⇒=<≠有无穷多解其导出组有非零解有唯一解其导出组只有零解Ax β=1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭1101212(,,,)n n x xx αααβ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212),(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηοηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解√ 设A 为m n ⨯矩阵,若()r A m =⇒()()r A r A β=⇒Ax β=一定有解,当m n <时,一定不是唯一解⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A β和的上限. √ 判断12,,,s ηηη是Ax ο=的基础解系的条件:① 12,,,s ηηη线性无关; ② 12,,,s ηηη都是Ax ο=的解;③ ()s n r A =-=每个解向量中自由未知量的个数.√ 一个齐次线性方程组的基础解系不唯一. √ 若η*是Ax β=的一个解,1,,,s ξξξ是Ax ο=的一个解⇒1,,,,s ξξξη*线性无关√ Ax ο=与Bx ο=同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 两个齐次线性线性方程组Ax ο=与Bx ο=同解⇔()()A r r A r B B ⎛⎫==⎪⎝⎭. √ 两个非齐次线性方程组Ax β=与Bx γ=都有解,并且同解⇔()()A r r A r B B βγ⎛⎫==⎪⎝⎭.√ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组Ax ο=与Bx ο=同解⇔PA B =(左乘可逆矩阵P );101p 教材 矩阵m n A ⨯与l n B ⨯的列向量组等价⇔AQ B =(右乘可逆矩阵Q ). √ 关于公共解的三中处理办法:① 把(I)与(II)联立起来求解;② 通过(I)与(II)各自的通解,找出公共解;当(I)与(II)都是齐次线性方程组时,设123,,ηηη是(I)的基础解系, 45,ηη是(II)的基础解系,则 (I)与(II)有公共解⇔基础解系个数少的通解可由另一个方程组的基础解系线性表示.即:1231231425(,,)(,,)r r c c ηηηηηηηη=+当(I)与(II)都是非齐次线性方程组时,设11122c c ξηη++是(I)的通解,233c ξη+是(II)的通解,两方程组有公共解⇔2331c ξηξ+-可由12,ηη线性表示. 即:12122331(,)(,)r r c ηηηηξηξ=+-③ 设(I)的通解已知,把该通解代入(II)中,找出(I)的通解中的任意常数所应满足(II)的关系式而求出公共解。
线性代数是数学的一个分支,它研究的是向量空间和线性变换等概念。
在大学数学课程中,线性代数是一门重要的基础课程。
本文将为大家提供一份详细的线性代数复习资料,包括定义和常用公式,希望能够帮助大家复习线性代数知识。
1. 向量空间的定义向量空间是指一个非空集合V,其中定义了两个运算:向量的加法和数乘运算,满足以下条件:(1)对于任意两个向量u、v∈V,它们的和u+v∈V。
(2)对于任意一个向量u∈V和一个标量a,它们的积au∈V。
(3)加法满足交换律和结合律。
(4)存在一个零向量0∈V,使得对于任意一个向量u∈V,都有u+0=u。
(5)对于任意一个向量u∈V,存在一个负向量−u∈V,使得u+(−u)=0。
(6)数乘满足分配律和结合律。
2. 线性变换的定义线性变换是指一个向量空间到另一个向量空间的映射,它满足以下条件:(1)对于任意两个向量u、v∈V,有T(u+v)=T(u)+T(v)。
(2)对于任意一个向量u∈V和一个标量a,有T(au)=aT(u)。
(3)对于任意一个向量u∈V,有T(0)=0。
3. 矩阵的定义矩阵是一个由m行n列的数构成的矩形阵列,通常用大写字母A、B、C等表示,其中Aij 表示第i行第j列的元素。
4. 矩阵的加法和数乘矩阵加法和数乘的定义如下:(1)矩阵加法:设A和B是两个m×n的矩阵,则它们的和A+B是一个m×n的矩阵,其中每个元素为Aij+Bij。
(2)数乘:设A是一个m×n的矩阵,k是一个标量,则kA是一个m×n的矩阵,其中每个元素为kAij。
5. 矩阵乘法设A是一个m×n的矩阵,B是一个n×p的矩阵,则它们的乘积AB是一个m×p的矩阵,其中第i行第j列的元素为∑k=1nAikBkj。
6. 行列式的定义行列式是一个函数,它将一个n×n的矩阵映射到一个实数上。
行列式的定义如下:(1)n=1时,行列式为矩阵中唯一的元素。
考研数学线性代数的知识点怎么复习范本三份知识点一:矩阵1.矩阵的定义:矩阵是一个由数域中的元素排列成的矩形阵列。
2.矩阵的运算:包括矩阵的加法、减法、数乘、乘法等。
3.矩阵的类型:包括列矩阵、行矩阵、方阵、行满秩矩阵、列满秩矩阵等。
4.矩阵的转置:行变为列,列变为行。
5.矩阵的逆:满足矩阵乘法交换律的方阵,存在逆矩阵。
6.矩阵的秩:线性无关行(列)向量的最大个数。
知识点二:行列式1.行列式的概念:一个由n*n个元素构成的方阵,与其他方阵不同的一个特殊数。
2.行列式的性质:包括行互换、列互换、其中一行(列)乘以一个非零常数、其中一行(列)加上另外一行(列)的k倍等运算。
3.行列式的计算:包括按定义计算、按行(列)展开、按行列式的性质计算等方法。
4.行列式的性质与结论:含有零行(列)的行列式为零、对调两行(列)行列式变号、行列式与其转置行列式相等等。
知识点三:向量空间1.向量空间的定义:满足一定条件的集合,其中的元素可以进行向量运算。
2.向量空间的性质:包括封闭性、线性组合、线性无关、向量子空间等性质。
3.线性相关与线性无关:一组向量之间的线性组合关系。
4.基、维数与坐标:向量空间的基、维数与坐标之间的关系。
5.线性映射:保持向量空间的线性性质的映射。
6.矩阵的秩与线性方程组的解:矩阵的秩与方程组解的个数及解的性质之间的关系。
知识点四:特征值与特征向量1.特征值与特征向量的定义:对于一个n*n矩阵A,如果存在常数λ和非零向量x,使得Ax=λx,则称λ为矩阵A的特征值,x为矩阵A的特征向量。
2.特征值与特征向量的计算:包括求解特征方程、求解特征向量的过程。
3.特征值与特征向量的性质:特征值的和等于矩阵的迹,特征向量对应不同特征值的特征向量线性无关等。
知识点五:二次型1.二次型的定义:一个含有二次项和线性项的多项式。
2.二次型的矩阵表示:用矩阵表示二次型。
3.二次型的规范化:将二次型化为标准形,即去除二次项的干涉项。
《线性代数》知识点归纳整理-⼤学线代基础知识.docx 《线性代数》知识点归纳整理诚毅学⽣编01、余⼦式与代数余⼦式................................................................... - 2 -02、主对⾓线............................................................................. - 2 -03、转置⾏列式........................................................................... - 2 -04、⾏列式的性质......................................................................... - 3 -05、计算⾏列式........................................................................... - 3 -06、矩阵中未写出的元素................................................................... - 4 -07、⼏类特殊的⽅阵....................................................................... - 4 -08、矩阵的运算规则....................................................................... - 4 -09、矩阵多项式........................................................................... - 6 -10、对称矩阵............................................................................. - 6 -11、矩阵的分块........................................................................... - 6 -12、矩阵的初等变换....................................................................... - 6 -13、矩阵等价............................................................................. - 6 -14、初等矩阵............................................................................. - 7 -15、⾏阶梯形矩阵与⾏最简形矩阵......................................................... - 7 -16、逆矩阵............................................................................... - 7 -17、充分性与必要性的证明题............................................................... - 8 -18、伴随矩阵............................................................................. - 8 -19、矩阵的标准形:....................................................................... - 9 -20、矩阵的秩:........................................................................... - 9 -21、矩阵的秩的⼀些定理、推论............................................................. - 9 -22、线性⽅程组概念....................................................................... - 10 -23、齐次线性⽅程组与⾮齐次线性⽅程组(不含向量)......................................... - 10 -24、⾏向量、列向量、零向量、负向量的概念................................................. - 11 -25、线性⽅程组的向量形式................................................................. - 11 -26、线性相关与线性⽆关的概念.......................................................... - 12 -27、向量个数⼤于向量维数的向量组必然线性相关............................................ - 12 -28、线性相关、线性⽆关;齐次线性⽅程组的解;矩阵的秩这三者的关系及其例题................. - 12 -29、线性表⽰与线性组合的概念.......................................................... - 12 -30、线性表⽰;⾮齐次线性⽅程组的解;矩阵的秩这三者的关系其例题.......................... - 12 -31、线性相关(⽆关)与线性表⽰的3个定理................................................. - 12 -32、最⼤线性⽆关组与向量组的秩........................................................... - 12 -33、线性⽅程组解的结构................................................................... - 12 -01、余⼦式与代数余⼦式a 22 a 23对M ii 的解释:划掉第1⾏、第1列,剩下的就是⼀个⼆阶⾏列式a a ,这个 a 32 a 33⾏列式即元素an 的余⼦式M ii 。
线性代数复习提纲第一章行列式本章重点是行列式的计算,对于n阶行列式的定义只需了解其大概的意思。
要注重学会利用行列式的各条性质及按行(列)展开等基本方法来简化行列式的计算,对于计算行列式的技巧毋需作过多的探索。
1、行列式的性质D D。
(1)行列式与它的转置行列式相等,即 T (2)互换行列式的两行(列),行列式变号。
(3)行列式中如有两行(列)相同或成比例,则此行列式为零。
(4)行列式的某一行(列)中所有元素都乘以同一数k,等于用数k乘此行列式;换句话说,若行列式的某一行(列)的各元素有公因子k,则k可提到行列式记号之外。
(5)把行列式某一行(列)的各元素乘以同一数k,然后加到另一行(列)上,行列式的值不变。
(6)若行列式的某一行(列)的各元素均为两项之和,则此行列式等于两个行列式之和。
2、行列式的按行(按列)展开(1)代数余子式:把n 阶行列式中(),i j 元ij a 所在的第i 行和第j 列划掉后所剩的1-n 阶行列式称为(),i j 元ij a 的余子式,记作ij M ;记()1+=-i j ij ij A M ,则称ij A 为(),i j 元ij a 的代数余子式。
(2)按行(列)展开定理:n 阶行列式等于它的任意一行(列)的各元素与对应于它们的代数余子式的乘积之和,即可按第i 行展开:1122...,(1,2,...,)=+++=i i i i in in D a A a A a A i n 也可按第j 列展开:1122...,(1,2,...,)=+++=j j j j nj nj D a A a A a A j n(3)行列式中任意一行(列)的各元素与另一行的对应元素的代数余子式乘积之和等于零,即1122...0,()+++=≠i j i j in jn a A a A a A i j ; 或1122...,()+++≠i j i j ni nj a A a A a A i j 。
山东省考研数学复习资料线性代数重点知识点总结一、向量与线性空间1. 向量的定义及性质1.1 向量的概念1.2 向量的加法和数乘1.3 向量的点乘和叉乘2. 线性空间的定义和基本性质2.1 线性空间的定义2.2 线性空间的子空间2.3 线性空间的基和维数二、线性变换与矩阵1. 线性变换的概念及性质1.1 线性变换的定义1.2 线性变换的基本性质1.3 线性变换的表示与矩阵2. 矩阵的定义和基本运算2.1 矩阵的定义2.2 矩阵的加法和数乘2.3 矩阵的乘法和转置三、线性方程组与矩阵的应用1. 线性方程组的表示和解法1.1 线性方程组的标准形式1.2 齐次线性方程组与非齐次线性方程组1.3 解线性方程组的常见方法2. 矩阵的应用2.1 方阵的逆与可逆矩阵2.2 矩阵的秩与线性无关性2.3 矩阵的特征值与特征向量四、线性空间中的基和坐标表示1. 线性空间的基及坐标表示1.1 线性空间的基的定义和性质1.2 向量在基下的坐标表示2. 基变换和相似矩阵2.1 基变换的概念与性质2.2 矩阵的相似性与相似矩阵的计算五、特殊线性空间和二次型1. 子空间和陪集空间1.1 子空间的定义和性质1.2 陪集空间的定义和性质2. 二次型的定义和矩阵表示2.1 二次型的定义和性质2.2 二次型的矩阵表示和标准形六、广义特征值问题1. 广义特征值问题的概念和性质1.1 广义特征值问题的定义和性质1.2 广义特征值与特征向量的关系2. 广义特征值问题的求解2.1 广义特征值问题的求解方法2.2 广义特征值问题的应用举例总结:线性代数作为数学的一个重要分支,在数学科学以及工程技术中起着重要的作用。
本文对山东省考研数学复习资料线性代数的重点知识点进行了总结。
通过学习本文所述的内容,读者可以对向量与线性空间、线性变换与矩阵、线性方程组与矩阵的应用、线性空间中的基和坐标表示、特殊线性空间和二次型、广义特征值问题等知识点有一个较为全面的了解和掌握。
《线性代数》复习提纲 1.行列式的定义第一部分:基本要求(计算方面)用 n2个元素 aij 组成的记号称为 n 阶行列四阶行列式的计算;式。
N 阶特殊行列式的计算(如有行和、列和相(1)它表示所有可能的取自不同行不同等);列的 n 个元素乘积的代数和;矩阵的运算(包括加、减、数乘、乘法、转(2)展开式共有 n项,其中符号正负各置、逆等的混合运算);半;求矩阵的秩、逆(两种方法);解矩阵方程; 2.行列式的计算含参数的线性方程组解的情况的讨论;一阶αα 行列式,二、三阶行列式有对角线法则;齐次、非齐次线性方程组的求解(包括唯一、无穷多解); N 阶(ngt3)行列式的计算:降阶法讨论一个向量能否用和向量组线性表示;定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积讨论或证明向量组的相关性;的和。
求向量组的极大无关组,并将多余向量用极方法:选取比较简单的一行(列),保保大无关组线性表示;留一个非零元素,其余元素化为0,利用定理展开降阶。
将无关组正交化、单位化;特殊情况求方阵的特征值和特征向量;上、下三角形行列式、对角形行列式的值等讨论方阵能否对角化,如能,要能写出相似于主对角线上元素的乘积;变换的矩阵及对角阵;(2)行列式值为0的几种情况:通过正交相似变换(正交矩阵)将对称矩阵对角化;Ⅰ 行列式某行(列)元素全为0;写出二次型的矩阵,并将二次型标准化,写Ⅱ 行列式某行(列)的对应元素相同;出变换矩阵;Ⅲ 行列式某行(列)的元素对应成比例;判定二次型或对称矩阵的正定性。
Ⅳ 奇数阶的反对称行列式。
第二部分:基本知识二.矩阵一、行列式 1.矩阵的基本概念(表示符号、一些特(注意顺序)殊矩阵――如单位矩阵、对角、对称矩阵等);(3)可逆的条件: 2.矩阵的运算① A≠0;②rAn ③A-gtI(1)加减、数乘、乘法运算的条件、结果;(4)逆的求解(2)关于乘法的几个结论:伴随矩阵法 A-11/AA;A A 的伴随矩阵①矩阵乘法一般不满足交换律(若 AB=BA,称 A、B 是可交换矩阵);② 初等变换法(A:I)-gt施行初等变换(I:A-1)②矩阵乘法一般不满足消去律、零因式不存在; 5.用逆矩阵求解矩阵方程:③若 A、B 为同阶方阵,则ABAB;AXB,则 X(A-1)B;④kAknA XBA,则 XBA-1; 3.矩阵的秩 AXBC,则 XA-1CB-1 三、线性方程组(1)定义非零子式的最大阶数称为矩阵的秩; 1.线性方程组解的判定(2)秩的求法一般不用定义求,而用下面结论:定理:矩阵的初等变换不改变矩阵的秩;阶梯形矩 1 rAb≠rA 无解;阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵 2 rAbrAn 有唯一解;称为行阶梯阵)。