24.圆周角(二)
- 格式:pptx
- 大小:4.66 MB
- 文档页数:16
24.1.4 圆周角(第二课时)教授新课师:在同圆或等圆中,同弧所对应的圆周角有什么关系?[多媒体展示]【探索与思考】∠BAC与∠BDC同BC,∠BAC与∠BDC有什么关系?尝试给出证明过程?生:根据圆周角定理可知,∠BAC=12∠BOC, ∠BDC=12∠BOC∴∠BAC=∠BDC师:由此可知:同弧所对的圆周角相等。
师:在同圆或等圆中,两条弧相等,则他们所对应的圆周角有什么关系?[多媒体展示]【探索与思考】弧BC=弧CE,∠BDC与∠CAE有什么关系?尝试给出证明过程?生:连接BO、CO、OE根据圆周角定理可知,∠BDC=12∠BOC,∠CAE=12∠COE 又由弧BC=弧CE可知,∠BOC=∠COE.师:由此可知:等弧所对的圆周角相等。
师:推论1:同弧或等弧所对的圆周角相等。
师:尝试运用圆周角推论进行计算。
[多媒体展示]典例1 如图,⊙O中,弦AB、CD相交于点P,若∠A=20°,∠APD=70°,则∠B等于()A.30° B.35° C.40° D.50°变式1-1 如图,⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为()A.15° B.25° C.30° D.50°变式1-2 如图,A,B,C,D是⊙O上的四个点,弧AB=弧BC,若∠AOB=58°,则∠BDC=____度让学生经历猜想-探究-证明的过程,从而掌握圆周角定理推论的内容。
通过配套例题,举一反三,进而消化本节课所学内容。
【师生互动】鼓励学生积极发言,教师通过引导纠正,最后给出解题过程和答案。
师:根据所学知识回答下面问题。
[多媒体展示]【问题一】如图1,AB为⊙O的直径,它所对的圆周角是多少?【问题二】如图2 ,AB为⊙O的直径,改变C点的位置,它所对的圆周角度数会改变吗?【问题三】如图1,圆周角∠C=90°,连接AB,弦AB经过圆心吗?为什么?生1:90°生2:不变生3:∵∠ACB=90°∴∠AOB=180°∴弦AB过圆心。
圆周角〔第二课时〕〔张丹丹〕一、教学目标〔一〕学习目标1探索同圆或等圆中,相等的圆周角所对的弧和弦的关系2探索同弦所对圆周角的关系3记住圆周角定理的推论并能运用其解决实际问题4知道圆内接多边形及多边形的外接圆的概念,掌握圆的内接四边形的性质〔二〕学习重点1探索同圆或等圆中,相等的圆周角所对的弧的关系2知道圆内接多边形及多边形的外接圆的概念,掌握圆的内接四边形的性质〔三〕学习难点1探索同弦所对圆周角的关系2圆的内接四边形中对角的关系二、教学设计〔一〕课前设计1预习任务〔1〕在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧和弦也相等.〔2〕在同圆或等圆中,同弦所对的圆周角相等或互补.〔3〕圆内接四边形的对角互补.2预习自测〔1〕如图,A,B,C是⊙O上三点,∠ACB=25°,那么∠BAO的度数是〔〕A.55°B.60°C.65°D.70°【知识点】圆周角定理.【数学思想】数形结合【解题过程】解:连接OB,∵∠ACB=25°,∴∠AOB=2×25°=50°,由OA=OB,∴∠BAO=∠ABO,∴∠BAO=〔180°﹣50°〕=65°.应选C.【思路点拨】连接OB,要求∠BAO的度数,只要在等腰三角形OAB中求得一个角的度数即可得到答案,利用同弧所对的圆周角是圆心角的一半可得∠AOB=50°,然后根据等腰三角形两底角相等和三角形内角和定理即可求得.【答案】C.〔2〕如图,AB是⊙O的直径,BC是⊙O的弦.假设∠OBC=60°,那么∠BAC的度数是〔〕A.75°B.60°C.45°D.30°【知识点】圆周角定理.【数学思想】数形结合【解题过程】解:∵AB是⊙O的直径,∴∠ACB=90°,又∵∠OBC=60°,∴∠BAC=180°﹣∠ACB﹣∠ABC=30°.应选D.【思路点拨】根据AB是⊙O的直径可得出∠ACB=90°,再根据三角形内角和为180°以及∠OBC=60°,即可求出∠BAC的度数.【答案】D.〔3〕如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,那么∠OAD∠OCD=度.【知识点】圆周角定理;平行四边形的性质【数学思想】数形结合【解题过程】解:连接OB∵四边形OABC为平行四边形∴AB=OC=OB=OA=BC∴△OAB和△OBC都为等边三角形∴∠OAB=∠OCB=60°∵四边形ABCD为圆的内接四边形∴∠DAB∠DCB=180°∴∠OAD∠OCD=180°﹣60°﹣60°=60°【思路点拨】由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B∠ADC=180°,即可求得∠B=∠AOC=12021∠ADC=60°,然后由三角形外角的性质,即可求得∠OAD∠OCD的度数.【答案】60°〔4〕如图,AB为⊙O的直径,AB=AC,AC交于⊙O点E,∠BAC=45°.假设AE=1,那么BC=.【知识点】圆周角定理;等腰直角三角形【数学思想】数形结合【解题过程】解:∵AB是圆的直径,∴∠AEB=90°,又∵∠BAC=45°,∴△ABE是等腰直角三角形,那么AB=,BE=AE=1,那么EC=AC﹣AE=AB﹣AE=﹣1,在直角△BCE中,BC=.故答案是:.【思路点拨】首先利用圆周角定理证明△ABE是等腰直角三角形,那么求得AB、BE的长度,那么EC即可求得,然后再在直角△BCE中,利用勾股定理即可求解.【答案】二课堂设计1知识回忆〔1〕把顶点在圆上,并且两边都与圆相交的角叫做圆周角。
人教版数学九年级上24.1.4.2圆周角(2)教学设计一、复习旧知1、还记得圆周角的定义吗?2、请你说出圆周角定理及推论。
圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半.推论1:同弧或等弧所对的圆周角相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.二、探究新知活动1,抢答:1.你能用三角尺画出下面这个圆的圆心吗?2.填空:如图,∠BAC=55°,∠CAD=45°,则∠DBC=_____°,∠BDC=_____°,∠BCD=______°3.如图,BD是⊙O的直径,∠ABC=130°则∠ADC=______°活动2:讨论请看我们做的抢答习题第2、3题,同学们有没有发现什么规律,请大家以小组为单位讨论后发言。
学生小组1回答:这个四边形的四个顶点,点A,点B,点C,点D都在⊙O上。
学生小组2回答:这个四边形的对角和是180°。
学生小组3回答:……学生小组4回答:……教师总结:同学们真是火眼金睛,找到的特点很多。
这个四边形有一个特点,四边形的四个顶点,点A,点B,点C,点D都在⊙O上,我们把这个四边形叫做圆内接四边形(板书:⊙O叫做四边形ABCD的外接圆)师:出示圆内接三角形图片,并指出:这是一个三角形,这个三角形的所有顶点都在这个圆上,我们把这个三角形叫做圆内接三角形,把这个圆叫做这个三角形的外接圆.师:出示圆内接五边形图片,并指出:这是五边形,这个五边形的所有顶点都在这个圆上,我们把这个五边形叫做圆内接五边形,把这个圆叫做这个五边形的外接圆.师:(出示圆内接六边形图片)归纳总结:现在,同学们能总结出“圆内接多边形”的定义了吗?一般地说,如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.刚才有同学说习题中的四边形的对角和是180°,我们再来看圆内接四边形有什么性质。
圆周角教案【精华】圆周角教案4篇圆周角教案篇1教材依据圆周角是新课标人教版九年级数学上册第二十四章第一节圆的有关性质的重要内容,本节内容依据新人教版九年级《课程标准》和《教师教学用书》及《初中数学新教材详解》。
设计思想本节课是在学习了圆心角的定义、性质定理和推论的基础上,由生活实例引出圆周角,类比圆心角认识圆周角,类比圆心角的性质探究圆周角定理,精选例题及习题对本节内容进行迁移应用。
在教学过程中本着“以人为本,让课堂变为学堂,把时间和空间更多地留给学生”为原则,注重学生的实践活动,通过让学生作图、度量、分析、猜想、验证得出结论,教学过程中充分利用学生已有的认知水平,由浅入深、逐层递进,并能适时地应用直观教具引导学生运用分类讨论及转化的数学思想对圆周角定理进行证明,化解本节课的难点。
这样学生易于接受新知识,也能很快地理解并掌握圆周角定理的内容,同时给学生自主探索留有很大空间,让学生在实践探究、合作交流活动中,亲身体验应用数学的乐趣和成功的喜悦,发展学生的思维,培养学生的多种学习能力。
教学目标1.知识与技能(1)理解圆周角的概念,掌握圆周角定理,并运用它进行简单的论证和计算。
(2)经历圆周角定理的证明,使学生初步学会运用分类讨论的数学思想和转化的数学思想解决问题。
2.过程与方法采用“活动与探究”的学习方法,由感性到理性、由简单到复杂、由特殊到一般的思维过程研究新知识,引导学生理解知识的发生发展过程,并使学生能应用所学知识解决简单的实际问题。
3.情感、态度与价值观通过学生探索圆周角定理,自主学习、合作交流的学习过程,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习数学的自信心。
教学重点圆周角的概念、圆周角定理及应用。
教学难点圆周角定理的探究过程及定理的应用。
教学准备学生:圆规、量角器、尺子教师:多媒体课件、活动教具教学过程一、创设情景,引入新课大屏幕显示学生熟悉的画面(足球射门游戏)足球场有句顺口溜:“冲向球门跑,越近就越好;歪着球门跑,射点要选好。
人教版数学九年级上册24.1.4《圆周角》教学设计2一. 教材分析《圆周角》是人教版数学九年级上册第24章的一部分,主要讲述了圆周角定理及其应用。
通过学习本节内容,学生能够理解圆周角定理,掌握圆周角与圆心角的关系,并能运用圆周角定理解决一些几何问题。
二. 学情分析学生在学习本节内容前,已经掌握了相似三角形的性质、圆的性质等知识。
但部分学生对于圆周角定理的理解和应用仍有困难,需要通过实例和练习来进一步巩固。
三. 教学目标1.知识与技能:理解圆周角定理,掌握圆周角与圆心角的关系。
2.过程与方法:通过观察、思考、讨论,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:圆周角定理的理解和应用。
2.难点:圆周角定理在解决复杂几何问题时的运用。
五. 教学方法1.引导法:通过问题引导学生思考,激发学生的学习兴趣。
2.讨论法:分组讨论,培养学生的团队合作精神。
3.实例分析法:通过具体的例子,让学生更好地理解圆周角定理。
六. 教学准备1.准备相关的几何模型和图片,用于直观展示圆周角定理。
2.设计一些具有代表性的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个简单的几何问题引导学生思考,例如:在圆上任意取一点,连接圆心,求该角的度数。
让学生感受到圆周角与圆心角之间的关系。
2.呈现(10分钟)介绍圆周角定理的内容,并用几何模型和图片进行展示,让学生直观地理解圆周角定理。
同时,解释圆周角定理的意义和应用。
3.操练(10分钟)让学生分组讨论,每组设计一个符合圆周角定理的例子,并展示给其他同学。
通过实例分析,让学生更好地理解圆周角定理。
4.巩固(10分钟)设计一些具有代表性的练习题,让学生独立完成。
题目难度可以适当递增,以检验学生对圆周角定理的掌握程度。
5.拓展(10分钟)引导学生思考:圆周角定理在其他几何问题中的应用。
可以让学生举例说明,也可以教师提供一些实际问题,让学生尝试解决。
圆周角一、新课导入1.导入课题:情景:如图,把圆心角∠AOB的顶点O拉到圆上,得到∠ACB.问题1:∠ACB有什么特点?它与∠AOB有何异同?问题2:你能仿照圆心角的定义给∠ACB取一个名字并下个定义吗?由此导入课题.〔板书课题〕2.学习目标:(1)知道什么是圆周角,并能从图形中准确识别它.(2)探究并掌握圆周角定理及其推论.(3)体会“由特殊到一般〞“分类〞“化归〞等数学思想.3.学习重、难点:重点:圆周角定理及其推论.难点:圆周角定理的证明与运用.二、分层学习1.自学指导:〔1〕自学内容:教材第85页到第86页倒数第6行之前的内容. 〔2〕自学时间:10分钟.〔3〕自学方法:完成探究提纲.〔4〕探究提纲:1〕圆周角的概念①顶点在圆上,并且两边都与圆相交的角叫做圆周角.②判别以下各图中的角是不是圆周角,并说明理由.②猜一猜:一条弧所对的圆周角与圆心角有何数量关系?②量一量:用量角器量一量圆心角∠AOB和圆周角∠ACB.a.如图,∠ACB=12∠AOB.b.你可以画多少个AB所对的圆周角?这些圆周角与∠AOB之间有什么数量关系?∠AOB的一半.③想一想:在⊙O中任画一个圆周角∠BAC,圆心O与∠BAC可能会有几种位置关系?有3种位置关系.③证一证:∠BAC的一条边上时(如图1〕:∠BAC的内部时(如图2〕:作直径AD,同a,得.∠BAC的外部时(如图3〕.作直径AD,同a,得⑤归纳:一条弧所对的圆周角等于它所对的圆心角的一半.2.自学:学生可根据自学指导自主学习,相互交流.3.助学:〔1〕师助生:①明了学情:关注学生能否探究、归纳和证明圆周角定理.②差异指导:根据学情进行个别指导或分类指导.〔2〕生助生:小组内交流、研讨.4.强化:〔1〕圆周角定理的内容.〔2〕证明圆周角定理所表达的数学思想.〔3〕练习:如图,OA,OB,OC都是⊙O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC.证明:∵∠ACB=12∠AOB,∠BAC=12∠BOC,∠AOB=2∠BOC,∴∠ACB=2∠BAC.1.自学指导:〔1〕自学内容:教材第86页最后5行至第87页例4.〔2〕自学时间:10分钟.〔3〕自学方法:完成探究提纲.〔4〕探究提纲:①探究图中∠ACB ,∠ADB 和∠AEB 的数量关系.a.如图1,∵∠ACB=12∠AOB,∠ADB=12∠AOB,∠AEB=12∠AOB ,∴∠ACB = ∠ADB = ∠AEB.即同弧所对的圆周角 相等 .b.如图2,AB=AE,∵AB=AE,∴∠AOB = ∠AOE.∵∠ACB=12∠AOB, ∠ADE=12∠AOE, ∴∠ACB = ∠ADE. 即等弧所对的圆周角 相等 .c.由此可得,同弧或等弧所对的圆周角 相等 .d.练习:如图,点A 、B 、C 、D 在同一个圆上,四边形ABCD 的对角线把四个内角分成8个角,这些角中哪些是相等的角?∠1=∠4,∠2=∠7,∠3=∠6,∠5=∠8②半圆(或直径)所对的圆周角是 直角 ;90°的圆周角所对的弦是 直径 .为什么?因为半圆〔或直径〕所对的圆心角是180°,所以它所对的圆周角是90°,即直角.90°的圆周角所对的圆心角是180°,所以它所对的弦是直径.④ 如图,用直角曲尺检查半圆形的工件,哪个是合格的?为什么?第二个工件是合格的.因为半圆所对的圆周角为直角.④如图, ⊙O 的直径AB 为10cm,弦AC 为6cm, ∠ACB 的平分线交⊙O 于D,求BC ,BD 的长.∵AB 是直径,∴∠ACB=90°,∴在ACB Rt 中,()BC AB AC cm =-=-=22221068. 同理∠ADB=90°,又CD 是∠ACB 的平分线,∴∠DCA=∠DCB=12∠ACB=45°, ∴∠DBA=∠DAB=45°,∴AD=BD.在ADB Rt 中,AD 2+BD 2=AB 2,∴BD AB cm ==21522. ⑤ 如图,你能设法确定一个圆形片的圆心吗?你有多少种方法?能,方法很多,例如:利用三角尺的直角可以找出两条直径〔90°的圆周角所对的弦是直径〕,两直径交点就是圆心.2.自学:学生可在自学指导的指引下自主学习,相互交流.3.助学:〔1〕师助生:①明了学情:关注学生是否会完成任务.②差异指导:根据学情进行个别指导或分类指导.〔2〕生助生:小组内交流、研讨.4.强化:〔1〕常规辅助线:遇直径,想直角.〔2〕点一名学生口答探究提纲中的问题②,点两名学生板演问题④,并点评.1.自学指导:〔1〕自学内容:教材第87页“思考〞到第88页“练习〞之前的内容.〔2〕自学时间:7分钟.〔3〕自学方法:阅读课文,完成自学参考提纲.〔4〕自学参考提纲:①什么叫圆内接多边形和多边形的外接圆?如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.②在图中标出BAD 和BCD 所对的圆心角,这两个圆心角有什么关系?∠BAD+∠BCD = 180 度,同理可得:∠ABC+∠ADC = 180 度.③圆内接四边形的性质:圆内接四边形的对角互补.④练习:a.如图,四边形ABCD为⊙O的内接四边形,∠BOD=100°,那么∠BAD=50°,∠BCD=130° .b.如图,四边形ABCD内接于⊙∠B=110°,求∠ADE的度数.∵四边形ABCD内接于⊙O,∴∠B+∠ADC=180°,又∠ADC+∠ADE=180°,∴∠ADE=∠B=110°.c.求证:圆内接平行四边形是矩形.∵圆内接四边形对角互补,而平行四边形对角相等,∴圆内接平行四边形四个角都是直角.∴圆内接平行四边形是矩形.d.:如图,两个等圆⊙O1和⊙O2都经过A,B两点,经过点A的直线与两圆分别交于点C,D,经过点B的直线与两圆分别交于点E,F.假设CD∥EF,求证:四边形EFDC 是平行四边形.连接AB.∵四边形ABEC是⊙O1的内接四边形,∴∠C+∠ABE=180°.又∵四边形ABFD是⊙O2的内接四边形.∴∠D+∠ABF=180°.又∵∠ABE+∠ABF=180°.∴∠C+∠D=180°.∴CE∥DF.又∵CD∥EF,∴四边形EFDC是平行四边形.2.自学:学生可结合自学指导自主学习.3.助学:〔1〕师助生:①明了学情:明了学生自学提纲的答题情况.②差异指导:根据学情进行个别指导或分类指导.〔2〕生助生:生生互动,交流研讨.4.强化:〔1〕圆内接四边形的性质.〔2〕让学生完成自学参考提纲中的第④题,并点评.〔3〕练习:圆内接四边形ABCD中,∠A、∠B、∠C的度数的比是2∶3∶6,求四边形ABCD各内角的度数.解:∵∠A∶∠C=2∶6,∠A+∠C=180°,∴∠A=45°,∠C=135°.又∠A∶∠B=2∶3,∴∠B=67.5°,∠D=180°-∠B=112.5°.三、评价1.学生的自我评价〔围绕三维目标〕:这节课你学到了哪些知识?在哪些方面还感到比较困难?2.教师对学生的评价:〔1〕表现性评价:点评学生学习的态度、积极性、小组探究协作情况以及存在的问题等.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:〔1〕这节课首先是类比圆心角得出圆周角的概念.在探究圆周角与圆心角关系过程中,要求学生学会使用分类讨论以及转化的数学思想解决问题,同时也培养了学生勇于探究的精神.其次,本节课还学习了圆内接四边形定义及圆内接四边形的性质,通过例题和习题训练,可以使学生在解答问题时灵活运用前面的一些根底知识,从中获取成功的经验,建立学习的自信心.〔2〕圆周角定理的证明分了三种情况探讨,这里蕴含着重要的数学思想——分类思想,教材中多处闪烁着分类思想的光环:三角形分类、方程的分类等,故教学过程中要整理相互交融的知识结构,加强分类思想的渗透.(时间:12分钟总分值:100分)一、根底稳固〔80分〕1.(10分)以下四个图中,∠x是圆周角的是〔C〕2.(10分)如图,⊙O 中,弦AB 、CD 相交于E 点,且∠A=40°,∠AED=75°,那么∠B=〔D 〕A.15°B.40°C.5°D.35°3.(10分)如图,⊙O 的直径AB 与弦CD 垂直,且∠BAC=40°,那么∠BOD= 80° . 4.(10分)如图,点B 、A 、C 都在⊙O 上,∠BOA =110°,那么∠BCA= 125° .5.(10分)如图,⊙O 中,弦AD 平行于弦BC ,∠AOC=78°,求∠DAB的度数.解:∵AD ∥BC ,∴∠DAB=∠B.又∵∠B=12∠AOC=39°. ∴∠DAB=39°.6.(10分)如图,⊙O 的半径为1,A,B,C 是⊙O 上的三个点,且∠ACB=45°,求弦AB 的长.解:连接OA 、OB.∵∠BCA=45°,∴∠BOA=2∠BCA=90°.又OA=OB,∴△AOB 是等腰直角三角形.∴AB OA OB OA OA =+===222222.7.(10分)如图,A,P,B,C 是⊙O 上的四点,∠APC=∠CPB=60°,判断△ABC 的形状并证明你的结论.解:△ABC 是等边三角形.证明如下:∵∠APC=∠ABC=60°,∠CPB=∠BAC=60°,∴∠ACB=180°-∠ABC-∠BAC=60°,∴△ABC 是等边三角形.8.(10分)如图,A ,B ,C ,D 是⊙O 上的四点,延长DC ,AB 相交于点E ,假设BC=BE .求证:△ADE 是等腰三角形.证明:∵∠A+∠BCD=180°,∠BCE+∠BCD=180°.∴∠A=∠BCE.∵BC=BE,∴∠E=∠BCE,∴∠A=∠E,∴AD=DE,∴△ADE是等腰三角形.二、综合应用〔10分〕9.(10分)如图,EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC 放在直线EF上,斜边AB与⊙O交于点P,点B与点O重合;将三角形ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x°,那么x的取值范围是30≤x≤60.三、拓展延伸〔10分〕10.(10分)如图,BC为半圆O的直径,点F是BC上一动点〔点F不与B、C重合〕,A是BF上的中点,设∠FBC=α,∠ACB=β.〔1〕当α=50°时,求β的度数;〔2〕猜想α与β之间的关系,并给予证明.解:〔1〕连接OA,交BF于点M.∵A是BF上的中点,∴OA垂直平分BF.∴∠BOM=90°-∠B=90°-α=40°.∴∠C=12∠AOB=12×40°=20°,即β=20°.〔2〕β=45°-1 2α.证明:由〔1〕知∠∠C=β=12∠AOB,∴β=12〔90°-α〕=45°-12α.三角形的稳定性【知识与技能】1.通知过观察、实践、想象、推理、交流等活动,让学生了解三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用.2.培养实事求是的学习作风和学习习惯.【过程与方法】1.通过提问、合作讨论以及小组交流方式探究三角形的稳定性.2.实物演示,激发学习兴趣,活泼课堂气氛.3.探究质疑,总结结果.和学生共同探究三角形稳定性的实例,答复课前提出的疑惑.【情感态度】1.引导学生通过实验探究三角形的稳定性,培养其独立思考的学习习惯和动手能力.2.通过合作交流,养成学生互助合作意识,提高数学交流表达能力.【教学重点】了解三角形稳定性在生产、生活中的实际应用.【教学难点】准确使用三角形稳定性于生产生活之中.一、情境导入,初步认识课前准备:木条〔用硬纸条代替〕假设干、小钉假设干、小黑板.问题1 工程建筑中经常采用三角形的结构,如屋顶钢架,钢架桥,其中道理是什么?问题 2 盖房子时,在窗框未安装好之前.木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢? 活动挂架为什么做成四边形?【教学说明】问题设立要让学生体会三角形在生产和生活中的应用,并引导思考为什么要在这些地方用三角形,另一些地方又要用到四边形.注意接纳学生其他不同的思路.教师讲课前,先让学生完成“自主预习〞.二、思考探究,获取新知老师演示P6探究内容,也可叫学生亲手实验,通过实际操作加深学生印象,完后请学生们交流讨论后答复得出了什么?教师根据学生们的答复进行简要归纳.【归纳结论】三角形木架形状不会改变,四边形木架形状会改变,这就是说,三角形具有稳定性,四边形没有稳定性.还可以发现,斜钉一根木条的四边形木架的形状不会改变.这是因为斜钉一根木条后,四边形变成了两个三角形,由于三角形有稳定性,窗框在未安装好之前也不会变形.三、运用新知,深化理解1.如图,一扇窗户翻开后,用窗钩BC可将其固定,这里所运用的几何原理是 .2.以下列图形中哪些具有稳定性?【教学说明】本节课的内容较少,题目比较简单,在学生独立完成后,要求学生说明理由.【答案】1.三角形具有稳定性.2.〔1〕〔4〕〔6〕中的图形具有稳定性.四、师生互动,课堂小结三角形具有稳定性,四边形没有稳定性.1.布置作业:从教材“习题”中选取.2.完成练习册中本课时的练习.本节课学习三角形稳定性,并板书课题.完成的教学目标是通过观察、实践、想象、推理、小组交流合作,使同学们了解三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用,培养同学们实事求是的学习作风和学习习惯,以及自主学习和独立思考的能力.。
数学学科课时教学设计
课时
它是学生已经掌握圆周角的定理、圆周角的定理的推导及运用它们解题基础上,对圆内接四边形的性质进行探索,在圆的有关说理、作图、计算中有应用,是角度转换的重要方法。
学生已经掌握圆周角的定理、圆周角的定理的推导及运用它们解题
展知识应用、拓展迁移:投影展示,学生说出解
决问题方法、思路;拓展迁移:学生板书并讲
解
(教师不代讲、少干预,引导恰当,用短语激励
学生,对学生明显错误的地方可及时纠正)
各小组派代表发
言,组内补充。
其
他小组帮助解决
发言小组提出的
共同疑难,展示时
有补充、有纠错、
有质疑、有挑战。
评展示结束后,教师精讲。
1、强调圆内接四边形性质的几何语言描述。
2、圆内接四边形性质的应用。
全体学生认
真听讲,适时通过
红笔做好笔记,并
和老师一起思考
总结归纳
检
ppt投影出堂测两道题,教师留给学生足够的时
间进行思考,并简单加以点拨。
所有学生必做
堂测设计在⊙O中,点C为劣弧AB的中点,连接AC并延长至D,使CA=CD,连接DB 并延长交⊙O于点E,连接AE.
(1)求证:AE是⊙O的直径;
(2)求证:AE=DE
板书设计
教学反思
检查结果及修改意见:合格不合格
组长(签字):
检查日期:年月日。