矩阵的相似变换(第一章)
- 格式:docx
- 大小:32.49 KB
- 文档页数:4
★ 1、求下列矩阵的Jordan 标准形:⑴ -101120-403A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ ;⑵;⑵31-1-202-1-13A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦解:⑴解:⑴ 求A 的特征多项式并得到特征值的特征多项式并得到特征值101det(I A)1243λλλλ+−−=−−− 第一行乘以3λ−并加上第三行并加上第三行+10-1=-1-20(3)(1)40λλλλ−++ 这里变换行列式列使其变为上三角行列式这里变换行列式列使其变为上三角行列式 2210121(1)(2)0(1)λλλλλ−+=−−−=−−− 所以A 的特征值为12==1λλ ,3=2λ ,对应的2重特征值12==1λλ解方程组(I-A)x =0,由2131122201201201110110011/2402000000r r r r I A +−−−−⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥−=−−⎯⎯⎯→−−⎯⎯⎯→−−⎢⎥⎢⎥⎢⎥−⎣⎦⎣⎦⎣⎦121×, 2101/2011/2000r r −−⎡⎤⎢⎥⎯⎯⎯⎯→⎢⎥⎢⎥⎣⎦ 10021002x y z x y z ⎧+−=⎪⎪⎨⎪++=⎪⎩ 设x 为1,依次可以解出112x y z =⎧⎪=−⎨⎪=⎩ 得基础解系:T T1(1,1,2)p =−只有一个线性无关特征向量,故A 的Jordan 标准形为:标准形为:1112J ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⑵ 求A 的特征多项式并得到特征值的特征多项式并得到特征值2311211det(I A)2202113213211211020202400(44)/λλλλλλλλλλλλλλλλ−−−−−=−=−−−−−−−−−=−−+−⑴ 7543192864A A A A A I −−++−⑵ 1A − ⑶ 100A解:解:2322110102210()det(I A)43110011124343210011(1)(2)45200(1)/(1)λλλψλλλλλλλλλλλλλλλλλ+−−−−−=−=−=+−=+−−−−−−−=+−=−−=−+−−+⑴ 令7543()192864g λλλλλλ=−−++−,需要计算g(A),用()/g()ψλλ 得到:得到:4322()(41032)()3228g λλλλλψλλλ=+++−−+−由Hamilton-Cayley 定理知(A)O ψ= ,于是:,于是:221160(A)3A 22A 8I 6443019324g −⎡⎤⎢⎥=−+−=−⎢⎥−⎣⎦⑵ 由32(A)A 4A 5A 2I O ψ=−+−= 得21(A 4A 5I)2A I ⎡⎤−+=⎢⎥⎣⎦故得到:故得到:123101(A 4A 5I)41023/21/21/2A −−⎡⎤⎢⎥=−+=−⎢⎥−⎣⎦⑶ 设100210()()b 2b b q λλψλλλ=+++ 注意到(2)(1)'(1)0ψψψ=== ,分别将2λ=和1λ= 代入上式,再对上式求导数后将1λ=代入得到:代入得到:1002102102124211002b b b b b b b b ⎧=++⎪=++⎨⎪=+⎩ 解得到解得到 100010111002220023022101b b b ⎧=−⎪=−+⎨⎪=−⎩故得到:故得到:100221010010010019910004002010201221012A b A b A b I −⎡⎤⎢⎥=++=−⎢⎥⎢⎥−−⎣⎦31122113λλλ−−−+−-21-1-2-21-1-2+1λλλ211221122λλ−−−−−−1122162616p i p ⎥⎥==−⎥⎥22212012p ⎤−⎥==33213313i p ⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦111623263111623ii ⎤−⎥⎥−⎥⎥⎥⎥⎦则称A 是Hermite 正定矩阵(半正定矩阵)。
§5.1 等价关系与集合的划分本节只做简单介绍,考试不考此部分,在以后抽象代数 中还会讲到。
§5.2 矩阵的相抵(也叫等价)第一章§1已经证明,任何一个矩阵AJ 。
如果再对J那么能变成什么样的最简单的矩阵?看例子:13213213212101101124601010000A ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭101011000⎛⎫ ⎪→- ⎪⎪ ⎪⎝⎭(以上行变换); 再经过列变换100010000A ⎛⎫ ⎪→ ⎪⎪⎝⎭。
最后这个矩阵非常简单,把它写成分块矩阵的形式就是:2000I ⎛⎫ ⎪⎝⎭。
任何一个矩阵经过初等行、列变换是否都可以化成这种简单形呢?定义1 数域K 上的矩阵A 经过一系列初等行变换和初等 列变换变成矩阵B ,则称A 与B 是相抵的或等价的,记作AB 相抵,或AB 等价。
矩阵的相抵关系满足 1°反身性:AA 相抵, 即A 与自己相抵; 2°对称性:若A B 相抵,则B A 相抵;3°传递性:若A B 相抵,BC 相抵, 则A C 相抵.因此,矩阵的相抵关系是一种等价关系。
事实 1 ⇔A 经过初等行变换和初等列变换变成矩阵B⇔存在K 上的s 阶初等矩阵12,,,t P P P 与n 阶初等矩阵12,,,m Q Q Q , 使得2112tm P P P AQ Q Q B =(1)定理1 设数域K 上的s n ⨯矩阵A 的秩为r 。
如果0r >,则A 相抵于下述形式的矩阵000rI ⎛⎫⎪⎝⎭, (2)称矩阵(2)为A的相抵标准形。
证明 如果0r >, 则A 经过一系列初等行变换化成的 简化行阶梯形矩阵J 有r 个非零行:1210000100000100000000000000n n rn c c c J ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭再经过适当的两列互换,可以变成下述形式:111212111000010000010000000000r n r n r r rn c c c c J c c +++⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪⎪ ⎪ ⎪ ⎪⎝⎭,,,。
线性变换和矩阵的相似性线性变换和矩阵的相似性是线性代数中一个重要的概念。
在研究线性变换和矩阵时,相似性的概念可以帮助我们更好地理解它们之间的关系。
本文将从线性变换的定义开始讨论,然后介绍矩阵的相似性以及它们之间的关系。
一、线性变换的定义和性质在线性代数中,线性变换是指保持向量加法和数乘运算的函数。
具体来说,对于一个向量空间V上的线性变换T,满足以下条件:1. 对于任意的两个向量u和v,T(u+v) = T(u) + T(v);2. 对于任意的标量k和向量u,T(ku) = kT(u)。
线性变换可以用一个矩阵来表示,这个矩阵称为线性变换的矩阵表示。
对于一个n维向量空间V上的线性变换T,我们可以找到一个n×n 的矩阵A,使得对于任意的向量u,有T(u) = Au。
线性变换的矩阵表示有许多性质,比如矩阵乘法对应了线性变换的复合,单位矩阵对应了恒等变换等等。
二、矩阵的相似性矩阵的相似性是指对于两个矩阵A和B,存在一个可逆矩阵P,使得PAP⁻¹=B。
换句话说,两个相似的矩阵具有相同的特征多项式和特征值。
矩阵的相似性具有以下性质:1. 相似性是一个等价关系,即满足自反性、对称性和传递性。
2. 如果两个矩阵相似,它们必定具有相同的秩和迹。
3. 相似矩阵具有相似的对角化形式。
也就是说,如果A和B相似,那么它们都可以对角化,并且它们的对角线上的元素相等。
三、线性变换的矩阵表示和矩阵的相似性有密切的关系。
对于一个n维向量空间V上的线性变换T以及它的矩阵表示A,如果存在一个可逆矩阵P,使得P⁻¹AP是对角矩阵D,则称T和线性变换D相似。
换句话说,T和D具有相同的特征多项式和特征值。
线性变换和矩阵的相似性在很多应用中具有重要的意义。
比如,在求解线性微分方程和矩阵对角化等问题中,相似矩阵的性质可以帮助我们简化计算过程,提高求解效率。
同时,相似性也为我们的理论研究提供了一个统一的观点,使得我们能够更好地理解线性变换和矩阵之间的关系。
解题技巧第一章 矩阵的相似变换1.判断矩阵A 是否是正规矩阵,若果是,则求酉矩阵U ,使AU U 1-为对角矩阵。
理论依据:(1)A 酉相似于对角矩阵的充要条件是A 为正规矩阵(即:HH AA A A =)。
(2)Hermite 矩阵(A A H=),实对称矩阵,对角矩阵等常用矩阵都是正规矩阵。
注:酉矩阵A (H A A=-1,1det =A ),HA :先转置,再共轭(虚部取反)。
结论:所以判断矩阵A 是否是正规矩阵,只需判断A AH=是否成立,若A A H =成立,则存在酉矩阵U ,使AU U 1-为对角矩阵。
(当矩阵A 中都为实数时,THA A =)解题步骤:(1)由A 为Hermite 矩阵(A AH=)或实对称矩阵,推出A 为正规矩阵。
(2)由()A I -λdet 求得矩阵的特征值i λ,并求出相应的特征向量i p 。
(3)对特征向量先正交化(不同特征值之间的特征向量两两正交,无需正交化。
只有在重根所对应的特征向量之间需要正交化);然后再单位化(当特征值都不同时只需正交化即可)。
正交化公式:()()量)为重根的另一个特征向为重根的一个特征向量21111222111(,,)(x y x x x x x y x x y -== (4)得酉矩阵U(为单位化之后的向量321,,q q q 组成的矩阵),对角矩阵AU U 1-(为特征值所组成的对角矩阵)。
(注:内积计算公式:()x y y x H=,,尤其注意虚数的计算)2.求解矩阵的最小多项式()λA m 。
理论依据:(1)最小多项式()λA m 包含A 的所有互不相同的特征多项式的因式。
(2)特征多项式必须是零化多项式。
(3)设nn CA ⨯∈,i λλλ ,,2是A 所有互不相同的特征值,则:()()()()t mi mmA m λλλλλλλ---= 2121,其中i m 是A 的标准型J 中含i λ的Jordan 块的最高阶数。